JPS6159873A - Thin film field effect transistor and manufacture thereof - Google Patents

Thin film field effect transistor and manufacture thereof

Info

Publication number
JPS6159873A
JPS6159873A JP18171784A JP18171784A JPS6159873A JP S6159873 A JPS6159873 A JP S6159873A JP 18171784 A JP18171784 A JP 18171784A JP 18171784 A JP18171784 A JP 18171784A JP S6159873 A JPS6159873 A JP S6159873A
Authority
JP
Japan
Prior art keywords
layer
silicon compound
semiconductor layer
compound semiconductor
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18171784A
Other languages
Japanese (ja)
Inventor
Shigenobu Shirai
白井 繁信
Masatoshi Kitagawa
雅俊 北川
Sadakichi Hotta
定吉 堀田
Ikunori Kobayashi
郁典 小林
Seiichi Nagata
清一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18171784A priority Critical patent/JPS6159873A/en
Publication of JPS6159873A publication Critical patent/JPS6159873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enhance the electron mobility by forming an amorphous silicon compound layer between an insulating film of a semiconductor layer and an ultrafine crystal silicon compound layer. CONSTITUTION:A metal layer 2 is selectively coated on an insulating substrate 1. Then, a gate insulating layer 3, an amorphous silicon compound semiconductor layer 14, an ultrafine crystal silicon compound conductor layer 24, and an insulating layer 5 are sequentially coated on the entire surface. Then, a portion to become TFT channel in which the layer 5 is superposed on the layer 2 is allowed to remain, the layers 14, 24 are selectively exposed, and an amorphous silicon compound semiconductor layer (n<+>-muC layer) 6 which includes an impurity is coated on the entire surface. Then, the layers 6, 24, 14 are selectively removed, an insulating layer is included in the remaining portion 5' to form insularly. Further, after the hole 7 is formed on the layer 3, a metal layer 9 is coated on the overall surface, source and drain wirings 8 are formed partly on the layer 6' coated on the layers 14', 24', and gate wirings 9 are formed to include the hole 7. With the source and drain wirings 8 as a mask an n<+> type muC layer on the layer 5' is removed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置にかかわり、と夛わけ非晶質シリコ
ン、微結晶シリコン等のシリコン化合物半導体薄膜を用
いた薄膜電界効果トランジスタおよび製造方法(以降T
PTと略す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor devices, and more particularly to thin film field effect transistors and manufacturing methods (hereinafter referred to as T
(abbreviated as PT)).

従来例の構成とその問題点 第1図は、従来開発された半導体の活性@域に非晶質ン
ソコン化合物半導体水素化合物、フ、素化合物、ゲルマ
ニウム[−化合物etcをもちいだTFTの工程断面図
である。まず、第1図(alに示すように、絶縁性基板
1上にゲートとなる第1の金、回層2(たとえばMo 
、 Cr 、 NiCr等)を選択的に被着形成する。
Structure of a conventional example and its problems Figure 1 is a cross-sectional view of the process of a TFT that uses an amorphous compound semiconductor, a hydrogen compound, an elemental compound, a germanium [- compound, etc.] in the active region of a conventionally developed semiconductor. It is. First, as shown in FIG. 1 (al), a first gold layer 2 (for example, Mo
, Cr, NiCr, etc.) are selectively deposited.

ついで全面に第1の絶縁層3(たとえば窒化シリコン、
酸化シリコン等)、非晶質シリコン化合物半導体層4た
とえば水素化非晶質シリコン(以降i層と略す)、そし
て第2の絶縁層5を順次被着する。
Next, a first insulating layer 3 (for example, silicon nitride,
(silicon oxide, etc.), an amorphous silicon compound semiconductor layer 4 such as hydrogenated amorphous silicon (hereinafter abbreviated as i-layer), and a second insulating layer 5 are sequentially deposited.

次に第1図(b)に示したように第2の絶縁層5を第1
の金属層2と重なった部分でTFTのチャンネルとなる
べき部分は少なくとも残し、そうして1層4を選択びフ
にほとんど露出した後に全面に不純物を含む非単結晶シ
リコン化合物半導体層6たとえばPをドープしたn型非
晶質シリコン層(以降n+層と略す)を被着する。その
後、第1図(C)に示したように、n+6 、i層4.
を選択的に除去して、第2の絶縁層を残した部分5を含
む島状の非晶質シリコン層(6′+ 4′)を形成する
Next, as shown in FIG. 1(b), the second insulating layer 5 is
At least a portion of the layer 4 that overlaps with the metal layer 2, which should become the channel of the TFT, is left, and after the first layer 4 is almost completely exposed, a non-single-crystal silicon compound semiconductor layer 6 containing impurities is formed on the entire surface, for example, P. An n-type amorphous silicon layer (hereinafter referred to as n+ layer) doped with n-type amorphous silicon is deposited. Thereafter, as shown in FIG. 1(C), the n+6, i-layer 4.
is selectively removed to form an island-shaped amorphous silicon layer (6'+4') including a portion 5 in which the second insulating layer remains.

さらに、第1の金、次層2への接続を与えるための開口
部7を第1の絶縁層3に形成した後に、全面に第2の金
属FI9を被着し、1.多4上に被着されたn+層6り
上を含んで第1の絶縁層3上にはソース・ドレイン配線
8を、また曲記開口部7を含んで第1の絶縁層3上には
ゲート配線9を形成する。最後にソース・ドレイン配線
8をマスクとして第2の絶縁層5′上のn+層を除去し
て第1図(d)に示すように従来の薄膜電界効果トラン
ジスタが完成する。
Furthermore, after forming an opening 7 in the first insulating layer 3 for providing a connection to the first gold layer 2, a second metal FI9 is deposited over the entire surface, 1. A source/drain wiring 8 is provided on the first insulating layer 3 including the n+ layer 6 deposited on the layer 4, and a source/drain wiring 8 is provided on the first insulating layer 3 including the opening 7. Gate wiring 9 is formed. Finally, using the source/drain wiring 8 as a mask, the n+ layer on the second insulating layer 5' is removed to complete a conventional thin film field effect transistor as shown in FIG. 1(d).

従来のTPTでは、半導体の活性@域に非晶質シリコン
層4′をもちいているため、有効電子移動度が0.1〜
1.○、、l/V、secと低い。それでも高速動作や
大きなON電流を必要としない液晶セルと組み合せるこ
とによって画像表示装置を構成するTFTのスイッチン
グアレイを得ることはできる。しかし半導体の活性領域
に非晶、質シリコンを用いる限り、画像入力信号処理回
路を構成するに充分な応答速度が得られない。
Conventional TPT uses an amorphous silicon layer 4' in the active @ region of the semiconductor, so the effective electron mobility is 0.1~
1. ○, l/V, sec is low. Even so, it is possible to obtain a TFT switching array that constitutes an image display device by combining it with a liquid crystal cell that does not require high-speed operation or a large ON current. However, as long as amorphous silicon is used in the active region of the semiconductor, a response speed sufficient for constructing an image input signal processing circuit cannot be obtained.

ところで、微結晶シリコン化合物半導体の有効電子易動
度は、非晶質シリコン化合物半導体のものの数倍程度大
きい。従って、半導体の活性@域としてゲート絶縁膜に
続いて微結晶シリコン化合物半導体を被着形成すれば良
いのだが、この場合。
Incidentally, the effective electron mobility of a microcrystalline silicon compound semiconductor is several times larger than that of an amorphous silicon compound semiconductor. Therefore, in this case, it is sufficient to deposit a microcrystalline silicon compound semiconductor following the gate insulating film as the active region of the semiconductor.

■微結晶シリコン化合物半導体をグロー放電分解法によ
っ製膜する場合、製膜条沖の高周波電力が大きく(後述
)、ゲート絶縁膜と半導体層との界面のダメージが大き
いこと、■グロー放電とともに基板表面温度が上昇し、
水素分子及び原子が膜中から扱けることの二つの原因で
、界面坐位密度がかなり大きくなり電気的特性が不安定
で劣悪である。
■When forming a microcrystalline silicon compound semiconductor film by glow discharge decomposition method, the high frequency power outside the film formation layer is large (described later), and the interface between the gate insulating film and the semiconductor layer is severely damaged. The surface temperature increases,
Due to the two reasons that hydrogen molecules and atoms can be handled from within the film, the interfacial sitting density becomes considerably large and the electrical properties are unstable and poor.

発明の目的 本発明は、半導体の活性領域に電子易動度の大きい微結
晶シリコン化合物半導体をうまくもちいて、従来の方法
では実現できなかった高速動作を可能にするだめの改菩
すべき一つのテーマとして、薄膜電界効果トランジスタ
の電子易動度を高めることが目的である。
Purpose of the Invention The present invention utilizes a microcrystalline silicon compound semiconductor with high electron mobility in the active region of a semiconductor to achieve high-speed operation that could not be achieved with conventional methods. The purpose of this research is to increase the electron mobility of thin film field effect transistors.

発明の構成 本発明によるTPTは、電子易動度を高めるために、半
導体層に微結晶シリコン化合物をもちいる際絶縁膜と微
結晶シリコン化合物層との間に、非晶質シリ・コン化合
物層をもうけだ。
Structure of the Invention The TPT according to the present invention includes an amorphous silicon compound layer between an insulating film and a microcrystalline silicon compound layer when a microcrystalline silicon compound is used as a semiconductor layer in order to increase electron mobility. I made a profit.

これにより従来より優れていた絶縁膜と非晶質シリコン
化合物半導体層との界面準位密度を小さくたもちつつ、
微結晶シリコン化合物半導体の製作時の物理化学現象を
利用して、非晶質シリコン化合物半導体と微結晶シリコ
ン化合物半導体との界面学位を良好にし、エネルギー学
位密度の低下をはかると伴に、電子易動度の大きい微結
晶シリコン化合物半導体を導入し、電子易動度の高いT
FTを製作した。
As a result, while maintaining the interface state density between the insulating film and the amorphous silicon compound semiconductor layer, which was superior to the conventional one,
Utilizing physical and chemical phenomena during the production of microcrystalline silicon compound semiconductors, we aim to improve the interface between amorphous silicon compound semiconductors and microcrystalline silicon compound semiconductors, reduce energy density, and improve electronic compatibility. Introducing a microcrystalline silicon compound semiconductor with high mobility, T
I made FT.

実施例の説明 第2図は、本発明の一実施例における半導体装置の工程
断面図を示すものである。なお同一機能の各部について
は、第1図と同じ番号を付す。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows a cross-sectional view of a semiconductor device according to an embodiment of the present invention. Note that parts with the same functions are given the same numbers as in FIG. 1.

まず第2図(d)に示すように絶縁性基板1例えばガラ
ス板上にゲート電極及びゲート配線となる第1の金属層
2例えばCr 、 NiCr 、 Moなどを選択的に
被着形成する。次いで全面にまずゲート絶縁層3として
例えば窒化ンリコン層、酸化シリコン層などを、次に第
1の半導体層として非晶質シリコン化合物半導体層14
(以降11と略す)例えば水素化非晶質シリコン27ノ
素化非晶質シリコン、炭化非晶質シリコンなどを、続い
て第2の半導体層とし微結晶シリコン化合物半導体層2
4(以降12と略す)例えば水素化微結晶シリコン。
First, as shown in FIG. 2(d), a first metal layer 2 such as Cr, NiCr, Mo, etc., which will become a gate electrode and gate wiring, is selectively deposited on an insulating substrate 1, such as a glass plate. Next, a gate insulating layer 3 such as a silicon nitride layer or a silicon oxide layer is formed on the entire surface, and then an amorphous silicon compound semiconductor layer 14 is formed as a first semiconductor layer.
(hereinafter abbreviated as 11) For example, hydrogenated amorphous silicon 27, hydrogenated amorphous silicon, carbide amorphous silicon, etc. are then used as the second semiconductor layer, and a microcrystalline silicon compound semiconductor layer 2
4 (hereinafter abbreviated as 12), for example, hydrogenated microcrystalline silicon.

フッ素化微結晶ンリコンなどを、さらに続いて第2の絶
縁層5例えば窒化シリコン、酸化シリコンなどを順次被
着する。
Fluorinated microcrystalline silicon or the like is successively deposited, followed by a second insulating layer 5 such as silicon nitride or silicon oxide.

これら絶縁膜及び半導体膜の被着方法は、容量結合型高
周波グロー放電法による。原料ガスとしては、絶縁層3
,5に窒化ンリコン層を得るならStH、NH3,N2
  の混合ガスを使用し、非晶質シリコン化合物半導体
層14(11)に水素化非晶質シリコン層を得るならS
 iHaを使用し、真空度0.6 Torr 、基板温
度300℃、高周波電力12W(電極直径30crn)
+電極距離21閲で得られる。また微結晶シリコン化合
物半導体層24(i2層)に水素化微結晶シリコンを得
るなら、51H4,55ccrnr H2150Scc
mの混合ガスを使用し、真空度1.4Torr 、基板
温度260℃。
The method for depositing these insulating films and semiconductor films is a capacitively coupled high frequency glow discharge method. As the raw material gas, the insulating layer 3
, 5 to obtain a silicon nitride layer, StH, NH3, N2
If a hydrogenated amorphous silicon layer is obtained in the amorphous silicon compound semiconductor layer 14 (11) using a mixed gas of S.
Using iHa, vacuum degree 0.6 Torr, substrate temperature 300℃, high frequency power 12W (electrode diameter 30crn)
+ Electrode distance obtained by 21 views. Moreover, if hydrogenated microcrystalline silicon is to be obtained in the microcrystalline silicon compound semiconductor layer 24 (i2 layer), 51H4, 55ccrnr H2150Scc
Using a mixed gas of m, the degree of vacuum was 1.4 Torr, and the substrate temperature was 260°C.

13、56)K ノ高周波電力250W(電極直径30
crn)、電極間距離22酎で得られる。
13,56) K high frequency power 250W (electrode diameter 30
crn), obtained with an interelectrode distance of 22 mm.

次に第2図(b)に示したように、第2の絶縁層5を第
1の金属層2と重なった所でTFTのチャンネルとなる
べき部分は少なくとも残して、11層14と12層24
を選択的にほとんどの部分を露出させた後に全面に不純
物を含む非単結晶シリコン化合物半導体層(以降は仮り
にn+−μC層と略す)6を被着する。例えばPをドー
プしたn型水素化微結晶シリコ7層6を被着する場合、
その条件は、SiH6sccrn、  H2150sc
cIn、 PR。
Next, as shown in FIG. 2(b), the 11th layer 14 and the 12th layer are formed, leaving at least a portion where the second insulating layer 5 overlaps with the first metal layer 2 to become the channel of the TFT. 24
After selectively exposing most parts, a non-single-crystal silicon compound semiconductor layer (hereinafter abbreviated as n+-μC layer) 6 containing impurities is deposited on the entire surface. For example, when depositing a P-doped n-type hydrogenated microcrystalline silicon 7 layer 6,
The conditions are SiH6sccrn, H2150sc
cIn, P.R.

0、05 s CCrn  の混合ガスを使用し、真空
度1.4Torr 、基板温度250℃、高周波電力2
00W(電極直径30 cm )、電極距離21叫であ
る。
A mixed gas of 0.05 s CCrn was used, the degree of vacuum was 1.4 Torr, the substrate temperature was 250°C, and the high frequency power was 2.
00W (electrode diameter 30 cm), electrode distance 21 cm.

得られた膜の比抵抗は1o Ω/口、活性エネルギー0
.02 eVであった。
The specific resistance of the obtained film was 10 Ω/mouth, and the active energy was 0.
.. 02 eV.

その後、第2図(C)に示したように、n+−μC層6
.12層24.11層14を選択的に除去して、第2の
絶縁層を残した部分5′を含み島状に形成する。
Thereafter, as shown in FIG. 2(C), the n+-μC layer 6
.. 12 layers 24 and 11 layers 14 are selectively removed to form an island shape including a portion 5' where the second insulating layer remains.

さらに第1の金属層2への接続を与えるための開口部7
を第1の絶縁層3に形成した後に、全面に第2の金属層
9例えばAQ 、 Cr 、 NiCr 、Auなどを
被着し、 11層14′ 、12層24′上に被着され
たn+−μC層6り上を少なくとも一部含んで、第1の
絶縁層3上にはソース・ドレイン配線8を、また卯記開
口部7を含んで第1の絶縁層3上にはゲート配a9を形
成する。
Opening 7 for further providing a connection to the first metal layer 2
After forming on the first insulating layer 3, a second metal layer 9 such as AQ, Cr, NiCr, Au, etc. is deposited on the entire surface, and the n+ layer deposited on the 11th layer 14' and the 12th layer 24'. - A source/drain wiring 8 is provided on the first insulating layer 3, including at least a portion of the upper surface of the μC layer 6, and a gate wiring a9 is provided on the first insulating layer 3, including the opening 7. form.

最後にソース・ドレイン配線8をマスクとして、第2の
絶縁層5′ 上のn+−μC層を除去して、第2図(d
)に示すように本発明のR膜電界効果トランジスタが完
成する。
Finally, using the source/drain wiring 8 as a mask, the n+-μC layer on the second insulating layer 5' is removed, and the layer shown in FIG.
), the R film field effect transistor of the present invention is completed.

第1の半導体層として711Mする非晶質シリコン化合
物半導体層14の膜厚は、2000Å以上では従来の半
導体活性領域に非晶質シリコン化合物半導体のみをもち
いたTPTの特性とさほどかわらず、また前記第1の半
導体層14の膜厚が2ωÅ以下では従来の半導体活性領
域に微結晶シリコン化合物半導体のみをもちいたTPT
と同様、ゲート絶縁膜と半導体層との界面学位密度がか
なり大きく、電気的特性の大きな改善は見られなかった
When the film thickness of the amorphous silicon compound semiconductor layer 14 of 711M as the first semiconductor layer is 2000 Å or more, the characteristics are not much different from those of conventional TPT using only an amorphous silicon compound semiconductor in the semiconductor active region. When the thickness of the first semiconductor layer 14 is 2ωÅ or less, conventional TPT using only a microcrystalline silicon compound semiconductor in the semiconductor active region is used.
Similarly, the interface density between the gate insulating film and the semiconductor layer was quite large, and no significant improvement in electrical characteristics was observed.

しかしゲート絶縁膜に続く第1の半導体層として非晶質
シリコン化合物半導体層14(ここでは水素化非晶質シ
リコンをもちいた)の膜厚を500人波着し、第2の半
導体層として微結晶シリコン本発明によるTFTでは、
絶縁膜と半導体層との界面単位密度を低く保つため、ま
ず第1の半導体層として非晶質ンリコン化合物半専体層
を被着した。またそのTPTの空え層が大きく広がり、
第2の半導体層にまで広がることを利用して、第2の半
導体層に、電子易動度の大きい微結晶シリコン化合物半
導体をもちい前記目的を達成した。
However, the film thickness of the amorphous silicon compound semiconductor layer 14 (here, hydrogenated amorphous silicon was used) was increased to 500 nm as the first semiconductor layer following the gate insulating film, and In the crystalline silicon TFT according to the present invention,
In order to keep the interfacial unit density between the insulating film and the semiconductor layer low, a semi-exclusive layer of an amorphous phosphor compound was first deposited as the first semiconductor layer. In addition, the empty layer of TPT has expanded greatly,
Taking advantage of the fact that it spreads to the second semiconductor layer, the above object was achieved by using a microcrystalline silicon compound semiconductor with high electron mobility for the second semiconductor layer.

尚、第1の半導体層として具体的に用いた水素化非晶質
シリコン層は、たとえば高周波電力12Wで製作され、
次に続く第2の半導体層として具体的に用いた水素化微
結晶シリコン膜は、たとえば高周波電力250Wと約2
0倍の電力で製作されるが、第1の半導体層の膜厚が5
00人の場合第2の半導体層被着時の水素プラズマを主
体とするプラズマに、絶縁膜と第1の半導体層との界面
は影響を受けずに、第1の半導体層と第2の半導体層と
の界面となる表面は、前記プラズマにさらされ欠陥が補
償されるため、エネルギー学位密度の大きな増大を伴な
わずに、連続的に第2の半導体層が被着される。また第
2の半導体層被着に要する時間は十数分間と短時間であ
り、そのプラズマによる基板表面温度もさほど上昇しな
いので電気的特性の優れた有効電子易動度の大きいTP
Tが得られた。
Note that the hydrogenated amorphous silicon layer specifically used as the first semiconductor layer was manufactured using, for example, a high frequency power of 12 W.
The hydrogenated microcrystalline silicon film specifically used as the subsequent second semiconductor layer has a high frequency power of 250 W and about 2
It is manufactured with 0 times the power, but the thickness of the first semiconductor layer is 5
In the case of 00 people, the interface between the insulating film and the first semiconductor layer is not affected by the plasma mainly composed of hydrogen plasma when the second semiconductor layer is deposited, and the first semiconductor layer and the second semiconductor layer are The surface which forms the interface with the layer is exposed to the plasma and defects are compensated for, so that the second semiconductor layer can be deposited successively without a significant increase in the energy density. In addition, the time required for depositing the second semiconductor layer is as short as ten minutes, and the substrate surface temperature due to the plasma does not rise significantly.
T was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図f−)〜(d)は従来の工程断面図、第2図(a
)〜(d)は本発明の一実施例のTFTの概略工程断面
7である。 1・・・・・絶縁性基板、2・・・・・・第1の金属層
、3・・・・・・第1の絶縁層、14 、14’・・・
・・・非晶質シリコン化合物半導体層、5.d・・・・
・・第2の絶縁層、ら。 6(・・・・・非単結晶ンリコ/化合物半導作、@、8
・・・・・・ンース・ドレイン配線、9・・・・・・ゲ
ー11.24124′・・・・・・微結晶シリコン化合
物半導体層。 代理人の氏名 弁理士 中 尾 軟 男 ほか1名第1
図 第1図 5′
Figure 1 f-) to (d) are cross-sectional views of the conventional process, and Figure 2 (a)
) to (d) are schematic process cross-sections 7 of a TFT according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... First metal layer, 3... First insulating layer, 14, 14'...
...Amorphous silicon compound semiconductor layer, 5. d...
...Second insulating layer, et al. 6 (...Non-single crystal non-crystalline/compound semiconductors, @, 8
. . . drain wiring, 9 . . . 11.24124' . . . Microcrystalline silicon compound semiconductor layer. Name of agent: Patent attorney Souo Nakao and 1 other person
Figure 1 Figure 5'

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上にゲートとなる第1の金属層が選択
的に形成され、第1の絶縁層を介して第1の金属層を含
む絶縁性基板上に、第1の半導体層として非晶質シリコ
ン化合物半導体層、第2の半導体層として微結晶シリコ
ン化合物半導体層の二層が島状に選択形成され、前記二
層からなる島状の半導体層上で第1の金属層と一部重な
り合うように形成された1対の不純物を含む非単結晶シ
リコン化合物半導体層をソース・ドレインとし、このソ
ース・ドレインを除く前記二層からなる島状の半導体層
上には第2の絶縁層が選択形成され、前記不純物を含む
非単結晶シリコン層よりなるソース・ドレイン上に第2
の金属層よりなるソース・ドレイン配線が形成されてい
ることを特徴とする薄膜電界効果トランジスタ。
(1) A first metal layer serving as a gate is selectively formed on an insulating substrate, and a first semiconductor layer is formed on the insulating substrate containing the first metal layer via the first insulating layer. Two layers, an amorphous silicon compound semiconductor layer and a microcrystalline silicon compound semiconductor layer as a second semiconductor layer, are selectively formed in an island shape, and the first metal layer and the first metal layer are formed on the island-shaped semiconductor layer consisting of the two layers. A pair of impurity-containing non-single-crystal silicon compound semiconductor layers formed so as to partially overlap are used as a source and a drain, and a second insulating layer is formed on the island-shaped semiconductor layer consisting of the two layers except for the source and drain. is selectively formed, and a second layer is formed on the source/drain made of the non-single crystal silicon layer containing impurities.
A thin film field effect transistor characterized in that source/drain wiring is formed of a metal layer.
(2)絶縁性基板上に第1の金属層を選択的に被着形成
する工程と、全面に第1の絶縁層、第1の半導体層とし
て非晶質シリコン化合物半導体層、第2の半導体層とし
て微結晶シリコン化合物半導体層、第2の絶縁層を順次
形成する工程と、第1の金属層と重なった部分で、チャ
ンネルとなるべき部分は、少なくとも第2の絶縁層を残
す工程と、全面に不純物を含む非単結晶シリコン化合物
半導体層を形成する工程と、前記第2の絶縁層を残した
部分を含んで不純物を含む非単結晶シリコン化合物半導
体層と前記第2、第1の半導体層である微結晶シリコン
化合物半導体層、非晶質シリコン化合物半導体層の三層
を島状に形成する工程と、前記第2の絶縁層を残した部
分以外の前記三層よりなる島部の少なくとも一部を含ん
で第2の金属層を選択的に被着形成する工程と、前記第
2の金属層をマスクとして第2の絶縁層上の不純物を含
む非単結晶シリコン化合物半導体層を除去する工程とか
らなる薄膜電界効果トランジスタの製造方法。
(2) A step of selectively depositing a first metal layer on an insulating substrate, and forming the first insulating layer on the entire surface, an amorphous silicon compound semiconductor layer as the first semiconductor layer, and a second semiconductor layer. a step of sequentially forming a microcrystalline silicon compound semiconductor layer and a second insulating layer as layers; a step of leaving at least the second insulating layer in a portion that overlaps with the first metal layer and is to become a channel; forming a non-single-crystal silicon compound semiconductor layer containing impurities over the entire surface; a non-single-crystal silicon compound semiconductor layer containing impurities including a portion where the second insulating layer is left; and the second and first semiconductors. A step of forming three layers, a microcrystalline silicon compound semiconductor layer and an amorphous silicon compound semiconductor layer, into an island shape, and at least the island portion made of the three layers other than the portion where the second insulating layer is left. selectively depositing a second metal layer on the second insulating layer, using the second metal layer as a mask, and removing the impurity-containing non-single-crystal silicon compound semiconductor layer on the second insulating layer; A method for manufacturing a thin film field effect transistor comprising steps.
JP18171784A 1984-08-31 1984-08-31 Thin film field effect transistor and manufacture thereof Pending JPS6159873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18171784A JPS6159873A (en) 1984-08-31 1984-08-31 Thin film field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18171784A JPS6159873A (en) 1984-08-31 1984-08-31 Thin film field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6159873A true JPS6159873A (en) 1986-03-27

Family

ID=16105632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18171784A Pending JPS6159873A (en) 1984-08-31 1984-08-31 Thin film field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6159873A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214476A (en) * 1985-03-19 1986-09-24 Agency Of Ind Science & Technol Thin-film transistor
JPH021174A (en) * 1988-03-04 1990-01-05 Hitachi Ltd Thin-film field-effect element
US4979006A (en) * 1988-05-30 1990-12-18 Seikosha Co., Ltd. Reverse staggered type silicon thin film transistor
EP0535979A2 (en) * 1991-10-02 1993-04-07 Sharp Kabushiki Kaisha A thin film transistor and a method for producing the same
JPH0728092A (en) * 1993-07-08 1995-01-31 Nec Corp Production of driving circuit built-in type liquid crystal display device
EP0744776A2 (en) * 1995-05-25 1996-11-27 Central Glass Company, Limited Amorphous silicon thin film transistor and method preparing same
US5796116A (en) * 1994-07-27 1998-08-18 Sharp Kabushiki Kaisha Thin-film semiconductor device including a semiconductor film with high field-effect mobility
US5808316A (en) * 1995-05-25 1998-09-15 Central Glass Company, Limited Microcrystal silicon thin film transistor
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886776A (en) * 1981-11-19 1983-05-24 Matsushita Electric Ind Co Ltd Manufacture of mos type transistor
JPS59113667A (en) * 1982-12-20 1984-06-30 Fujitsu Ltd Manufacture of thin film transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886776A (en) * 1981-11-19 1983-05-24 Matsushita Electric Ind Co Ltd Manufacture of mos type transistor
JPS59113667A (en) * 1982-12-20 1984-06-30 Fujitsu Ltd Manufacture of thin film transistor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214476A (en) * 1985-03-19 1986-09-24 Agency Of Ind Science & Technol Thin-film transistor
JPH055186B2 (en) * 1985-03-19 1993-01-21 Kogyo Gijutsu Incho
JPH021174A (en) * 1988-03-04 1990-01-05 Hitachi Ltd Thin-film field-effect element
US4979006A (en) * 1988-05-30 1990-12-18 Seikosha Co., Ltd. Reverse staggered type silicon thin film transistor
EP0535979A2 (en) * 1991-10-02 1993-04-07 Sharp Kabushiki Kaisha A thin film transistor and a method for producing the same
JPH0728092A (en) * 1993-07-08 1995-01-31 Nec Corp Production of driving circuit built-in type liquid crystal display device
US5796116A (en) * 1994-07-27 1998-08-18 Sharp Kabushiki Kaisha Thin-film semiconductor device including a semiconductor film with high field-effect mobility
US6271062B1 (en) 1994-07-27 2001-08-07 Sharp Kabushiki Kaisha Thin film semiconductor device including a semiconductor film with high field-effect mobility
EP0744776A2 (en) * 1995-05-25 1996-11-27 Central Glass Company, Limited Amorphous silicon thin film transistor and method preparing same
US5808316A (en) * 1995-05-25 1998-09-15 Central Glass Company, Limited Microcrystal silicon thin film transistor
US5834796A (en) * 1995-05-25 1998-11-10 Central Glass Company, Limited Amorphous silicon thin film transistor and method of preparing same
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor

Similar Documents

Publication Publication Date Title
US4746628A (en) Method for making a thin film transistor
US20030148567A1 (en) Poly-silicon thin film transistor having back bias effects and fabrication method thereof
US6558986B1 (en) Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
JPS6159873A (en) Thin film field effect transistor and manufacture thereof
EP0082783B1 (en) Process for manufacturing silicon thin-film transistors on an insulating substrate
JP2001102587A (en) Thin film transistor and fabrication thereof and method for forming semiconductor thin film
JPH0422120A (en) Thin film semiconductor device
JPS63200572A (en) Manufacture of thin film semiconductor device
JPH05304171A (en) Thin-film transistor
JPS58212177A (en) Insulated gate type transistor and manufacture thereof
JP3057770B2 (en) Method for manufacturing thin film transistor
JPS6042868A (en) Manufacture of amorphous silicon thin film fet
JPH05243575A (en) Thin film transistor and manufacture thereof
JP2001102590A (en) Method for fabrication of semiconductor device
JPS5968975A (en) Semiconductor device and manufacture thereof
JPS63250178A (en) Manufacture of thin film semiconductor device
JPH0393273A (en) Manufacture of thin film semiconductor device
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JPH05291220A (en) Manufacture of semiconductor device
JP3346060B2 (en) Method for manufacturing thin film semiconductor device
JPH03108319A (en) Manufacture of semiconductor device
JPH03241874A (en) Manufacture of thin film semiconductor device
JPH04373124A (en) Semiconductor device and manufacture thereof
JP2960742B2 (en) Thin film transistor element
JPH03120872A (en) Semiconductor device and manufacture thereof