JPS63200572A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS63200572A
JPS63200572A JP3369887A JP3369887A JPS63200572A JP S63200572 A JPS63200572 A JP S63200572A JP 3369887 A JP3369887 A JP 3369887A JP 3369887 A JP3369887 A JP 3369887A JP S63200572 A JPS63200572 A JP S63200572A
Authority
JP
Japan
Prior art keywords
semiconductor film
source
region
film
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3369887A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shimizu
信宏 清水
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3369887A priority Critical patent/JPS63200572A/en
Publication of JPS63200572A publication Critical patent/JPS63200572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve the leakage current and the dielectric strength characteristic of a thin film semiconductor device by increasing the thicknesses of a source region and a drain region larger than that of a channel region, selectively melting the drain region only to the source region to preferably contact it therewith at the time of beam annealing. CONSTITUTION:A semiconductor film 2 is deposited on an insulating substrate 1, annealed with an energy beam 11 to crystallize the film 2, thereby obtaining a recrystalline semiconductor film 21. A semiconductor film 3 having a small specific resistance is deposited on the film 21, and an N<+> type a-Si is deposited, for example, by a plasma CVD method in case of an N-channel TFT. The source, drain sections remain by a photolithographic technique, and the other is removed by etching. The films 3, 21 are partly etched by the etching so that the thicknesses of the regions 4, 5 become larger than that of the region 6. The regions 4, 5 are selectively melted by the beam 11 to improve the contact. Thereafter, a gate electrode 8, a source electrode 9 and a drain electrode 10 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁物上に薄膜トランジスト(TPT)製
作する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method of fabricating thin film transistors (TPT) on insulators.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁物上にTPTをビームアニールして製作
する工程において、ソースとドレイン領域ヲビームアニ
ールして低抵抗化する際に、ソースとドレイン領域の膜
厚が、チャネル領域の膜厚より厚く、例えば2倍以上厚
くなるようにソースとドレイン領域のみ溶融させること
で、ソースとドレイン部分のコンタクトが良くなり、リ
ーク電流の低下や耐圧の増加など特性の改善が可能とな
る。
In the process of manufacturing TPT on an insulator by beam annealing, the present invention has the advantage that when the source and drain regions are beam annealed to lower their resistance, the film thickness of the source and drain regions is smaller than the film thickness of the channel region. By melting only the source and drain regions so that they are thicker, for example twice as thick, the contact between the source and drain portions becomes better, making it possible to improve characteristics such as reducing leakage current and increasing breakdown voltage.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来の実施例の工程図を第2図(al〜(dlに示す。 Process diagrams of the conventional embodiment are shown in FIG. 2 (al to dl).

第2図fblの工程において、ソースとドレイン領域に
なる第2半導体膜をエツチングする際に、チャネル領域
6の再結晶半導体膜21までオーバーエッチをしないた
め、ソース領域4とドレイン領域5の膜厚が、チャネル
領域6の膜厚とほぼ同じになる。そのため、第2半導体
膜3をビームエネルギー11でアニールする時に、ソー
ス領域5とドレイン領域6のみ選択的に溶融することが
不可能となる。従って、ソースとドレイン部分のコンタ
クトは不十分となり、製作したTPTの特性はリーク電
流が大きく、ソースとドレインの耐圧も低くなってしま
っていた。
In the step of FIG. 2 fbl, when etching the second semiconductor film that will become the source and drain regions, the film thickness of the source region 4 and drain region 5 is is approximately the same as the film thickness of the channel region 6. Therefore, when the second semiconductor film 3 is annealed with the beam energy 11, it becomes impossible to selectively melt only the source region 5 and the drain region 6. Therefore, the contact between the source and drain portions was insufficient, and the characteristics of the manufactured TPT were such that leakage current was large and the withstand voltage between the source and drain was low.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、第1図(b)、
 [01に示すように、ソース領域4とドレイン領域5
との膜厚を、チャネル領域6の膜厚よりも厚くして、ソ
ースとドレイン部分をビームアニールして、選択的にソ
ース領域4とドレイン領域5とが溶融するようにした。
In order to solve the above problems, the present invention has the following features:
[As shown in 01, source region 4 and drain region 5
The film thickness of the channel region 6 was made thicker than that of the channel region 6, and the source and drain portions were beam annealed so that the source region 4 and the drain region 5 were selectively melted.

〔作用〕[Effect]

第1図(blにおいて、ソース領域4とドレイン領域5
との膜厚が、チャネル領域6の膜厚よりも大きくなるほ
ど、ビームエネルギー11の吸収の差が大きくなる。そ
のため、ソースとドレイン領域のみ選択的に溶融させる
ことが可能となる。
FIG. 1 (in bl, source region 4 and drain region 5
As the film thickness of the channel region 6 becomes larger than that of the channel region 6, the difference in absorption of the beam energy 11 becomes larger. Therefore, it becomes possible to selectively melt only the source and drain regions.

〔実施例〕〔Example〕

以下、図面によって本発明を説明する。第1図(al〜
(dlは、本発明の第1実施例の工程を説明するための
断面図である。第1図(alは絶縁基板1上に第1半導
体膜2を堆積し、エネルギービーム11でアニールする
工程である。絶縁基板1の例としては、石英や無アルカ
リガラスやアルカリなどの不純物を含んだガラスの表面
に絶縁物をコートしてガラスからの不純物の拡散を防止
したものなどがある。
The present invention will be explained below with reference to the drawings. Figure 1 (al~
(dl is a cross-sectional view for explaining the process of the first embodiment of the present invention. FIG. Examples of the insulating substrate 1 include quartz, alkali-free glass, glass containing impurities such as alkali, and the surface thereof coated with an insulating material to prevent diffusion of impurities from the glass.

ここでは、550℃のプロセスが使用可能なガラス基板
を使う。
Here, a glass substrate that can be used in a 550°C process is used.

次に第1半導体膜2の例は、各種の膜と堆積力=3− 法があるが、ここではa−3iをプラズマCVD法で堆
積する方法について説明する。堆積温度は、室温から約
400℃の間に設定し、原料ガスは主にシラン(SiH
t)やジシラン(Sitl(6)を使用する。また膜厚
は500人から3000人の間に設定する。
Next, as an example of the first semiconductor film 2, there are various films and a deposition force=3- method, but here, a method of depositing a-3i by a plasma CVD method will be explained. The deposition temperature was set between room temperature and approximately 400°C, and the source gas was mainly silane (SiH).
t) or disilane (Sitl (6)) is used.The film thickness is set between 500 and 3000.

次に第1半導体膜2をビームエネルギー11でアニール
する例について説明する。アニール方法にはレーザや電
子ビームまたはランプやヒータなどを用いた多数のエネ
ルギー源があるが、ここではArレーザを使用してアニ
ールする方法を述べる。
Next, an example in which the first semiconductor film 2 is annealed with beam energy 11 will be described. There are many energy sources for annealing, such as lasers, electron beams, lamps, heaters, etc., but here we will describe an annealing method using an Ar laser.

一般にプラズマCVD法により堆積したa−3tには膜
中に水素ガスが含まれているため、このガスを除去する
プレアニールを行うことで後述の再結晶アニール後の結
晶性が良くなる。プレアニール方法ではa−5i中の水
素ガスが約500℃以上で除去できることが知られてお
り、この温度以上まで上昇できるアニール方法であれば
どの方法でも可能である。例として真空または窒素や不
活性ガス雰囲気中で、a−3iが溶融しない程度のエネ
ルギー密度で静レーザのエネルギービーム11を走査さ
せて行うことができる。また、窒素雰囲気で550℃、
1時間行っても十分である。続いて再結晶アニールを行
う。前記プレアニールと同様に真空または窒素や不活性
ガス雰囲気でArレーザを使って、水素を除去したa−
5tが溶融するエネルギー密度でエネルギービーム11
を走査させる。この結果、第1半導体膜2は結晶化して
再結晶半導体膜21になる。
In general, a-3T deposited by plasma CVD contains hydrogen gas, so performing pre-annealing to remove this gas improves the crystallinity after recrystallization annealing, which will be described later. It is known that the pre-annealing method can remove the hydrogen gas in a-5i at a temperature of about 500° C. or higher, and any annealing method that can raise the temperature to above this temperature can be used. For example, it can be carried out in a vacuum or in a nitrogen or inert gas atmosphere by scanning the energy beam 11 of a static laser with an energy density that does not melt the a-3i. In addition, at 550℃ in a nitrogen atmosphere,
One hour is enough. Subsequently, recrystallization annealing is performed. Similar to the pre-annealing described above, a-
Energy beam 11 at an energy density that melts 5t
to be scanned. As a result, the first semiconductor film 2 is crystallized and becomes a recrystallized semiconductor film 21.

第1図(b)は、再結晶半導体膜21上に、比抵抗0.
1Ω口以下の第2半導体膜3を堆積して、ソースとドレ
イン領域の第2半導体膜3をエツチングで残し、ビーム
アニールによりソース領域4とドレインw4+A5とを
形成する工程である。第2半導体膜3の例は、Nチャネ
ルTPTを製作する場合には、N型の不純物を添加し、
PチャネルTPTを製作する場合には、P型の不純物を
添加する。ここでは、NチャネルTPTについて説明す
る。堆積方法は、各種CVD、スパッタ法があるが、プ
ラズマCVD法でN1のa−5iを堆積する方法を説明
する。堆積温度は、室温から約300℃の間で、原料ガ
スば、シラン(SiHn)に0,1%から1%のホスフ
イン(PH3)を添加して、0.02.t+mから0.
1 μmの間で堆積する。又、P”a−3iの場合には
、SiH4にジボラン(B2H6)を添加して堆積する
。次にフォトリソ技術により、ソースとドレイン部分の
み残して他をエツチングして除去する。エツチング方法
は、ドライでもウェットでも良いが、4フツ化メタン(
CF4)と酸素(0□)の混合ガスによるプラズマエッ
チで容易にできる。このエツチングにおいて、第2半導
体膜3と再結晶半導体膜21の一部をエツチングして、
ソース領域4とドレイン領域5の膜厚がチャネル領域6
の膜厚よりも2倍以上厚くなるようにする。そして、ビ
ームエネルギー11により、ソース領域4とドレイン領
域5をアニールして、低抵抗化して再結晶低抵抗半導体
膜22を形成し、ソースとドレイン部分のコンタクトを
良好にする。このアニール時に再結晶半導体膜21の温
度分布は、第3図(al、 (b)に示すようになる。
In FIG. 1(b), a resistivity of 0.0.
This is a step of depositing the second semiconductor film 3 with a thickness of 1Ω or less, leaving the second semiconductor film 3 in the source and drain regions by etching, and forming the source region 4 and drain w4+A5 by beam annealing. As an example of the second semiconductor film 3, when manufacturing an N-channel TPT, an N-type impurity is added,
When manufacturing a P-channel TPT, P-type impurities are added. Here, N-channel TPT will be explained. Although there are various deposition methods such as CVD and sputtering methods, a method of depositing N1 a-5i using plasma CVD method will be described. The deposition temperature was between room temperature and about 300°C, and 0.1% to 1% of phosphine (PH3) was added to the raw material gas, silane (SiHn). 0 from t+m.
Deposit between 1 μm. In the case of P"a-3i, diborane (B2H6) is added to SiH4 and deposited. Next, using photolithography, only the source and drain portions are left and the rest is etched away. The etching method is as follows: Dry or wet is fine, but tetrafluoromethane (
This can be easily done by plasma etching using a mixed gas of CF4) and oxygen (0□). In this etching, a part of the second semiconductor film 3 and the recrystallized semiconductor film 21 are etched,
The film thickness of the source region 4 and drain region 5 is the same as that of the channel region 6.
The film thickness should be at least twice as thick as the film thickness. Then, the source region 4 and drain region 5 are annealed with beam energy 11 to lower their resistance, form a recrystallized low-resistance semiconductor film 22, and improve contact between the source and drain portions. During this annealing, the temperature distribution of the recrystallized semiconductor film 21 becomes as shown in FIGS. 3(al) and (b).

膜厚の厚いソース領域4とドレイン領域5は、ビームの
吸収が大きく、選択的に溶融させることができる。
The thick source region 4 and drain region 5 absorb a large amount of the beam and can be selectively melted.

第1図(C1は、フォトリソ技術により、再結晶低抵抗
半導体膜22にエツチングして素子分離を行い、ゲート
絶縁膜7を堆積する工程である。エツチング方法は、前
述のプラズマエツチングにより容易にできる。ゲート絶
縁膜7は、各種CVD法、スパッタ法などで、シリコン
酸化膜(SiOx)やシIJ Dン窒化膜(SiNx)
などが堆積できる。ここでは、SiO’xをプラズマC
VD法で堆積する方法について説明する。堆積温度は室
温から300℃の間で、原料ガスはSiH4とNtOを
おもに使う。膜厚は500人から3000人の間で堆積
する。
FIG. 1 (C1 is a step in which the recrystallized low-resistance semiconductor film 22 is etched by photolithography to perform element isolation, and the gate insulating film 7 is deposited. The etching method can be easily performed by the plasma etching described above. The gate insulating film 7 is formed by forming a silicon oxide film (SiOx) or a silicon nitride film (SiNx) by various CVD methods, sputtering methods, etc.
etc. can be deposited. Here, SiO'x is plasma C
A method of depositing by VD method will be explained. The deposition temperature is between room temperature and 300° C., and raw material gases mainly use SiH4 and NtO. The film thickness is deposited between 500 and 3000.

第1図Tdlは、ソースとドレイン部分のコンタクトホ
ールをフォトリソ技術で形成した後、ゲート電極8、ソ
ース電極9、ドレイン電極10を形成する工程である。
FIG. 1 Tdl is a step of forming a gate electrode 8, a source electrode 9, and a drain electrode 10 after forming contact holes for the source and drain portions by photolithography.

各電極の堆積方法は、スパッタ法や蒸着法などがあり、
材料もA j! −5i、Mo−5i、W−3iなどの
金属シリサイドがある。−例としては、マグネトロンス
パッタ法でA A−5tを0.5 μmから1μmの間
で堆積する方法がある。
Deposition methods for each electrode include sputtering and vapor deposition.
The ingredients are also Aj! There are metal silicides such as -5i, Mo-5i, and W-3i. - An example is the method of depositing AA-5t between 0.5 μm and 1 μm by magnetron sputtering.

第4図は、本発明の第2実施例の工程の一部を示す断面
図であり、工程は第1図fblに対応する。
FIG. 4 is a sectional view showing a part of the process of the second embodiment of the present invention, and the process corresponds to FIG. 1 fbl.

ソースとドレインになる第2半導体膜3の膜厚を再結晶
半導体膜21と同じか、それ以上にすることで、再結晶
半導体膜21をエツチングすることなく、膜厚比が2倍
以上になる。続いてエネルギービーム11によるアニー
ルでソース領域4とドレイン領域5とを選択的に溶融さ
せることができる。
By making the thickness of the second semiconductor film 3 that becomes the source and drain the same as or greater than that of the recrystallized semiconductor film 21, the film thickness ratio can be doubled or more without etching the recrystallized semiconductor film 21. . Subsequently, source region 4 and drain region 5 can be selectively melted by annealing using energy beam 11.

〔発明の効果〕〔Effect of the invention〕

この発明は、前述したようにTPT製作時に、ソース領
域とドレイン領域の膜厚をチャネル領域の膜厚よりも大
きくすることで、ビームアニール時に、ドレイン領域と
ソース領域のみ選択的に溶融させて、コンタクトを改善
する。
As described above, this invention makes the film thickness of the source region and drain region larger than the film thickness of the channel region during TPT fabrication, so that only the drain region and the source region are selectively melted during beam annealing. Improve your contacts.

このため、TPTのリーク電流、耐圧の特性が改善され
る。
Therefore, the leakage current and breakdown voltage characteristics of the TPT are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜Td+は本発明の第1実施例の工程を示
す断面図、第2図ia)〜fdlは従来の方法を説明す
る断面図、第3図(al、 (blはビームアニール時
の再結晶半導体膜の温度分布を示す説明図、第4図は本
発明の第2実施例の工程の一部を示す断面図である。 1・・・絶縁基板   2・・・第1半導体膜3・・・
第2半導体膜 4・・・ソース領域5・・・ドレイン領
域 6・・・チャネル領域7・・・ゲート絶縁膜 8・
・・ゲート電極9・・・ソース電極  10・・・ドレ
イン電極11・・・ビームエネルギー 21・・・再結晶半導体膜 22・・・再結晶低抵抗半導体膜 以上
1(a) to Td+ are sectional views showing the steps of the first embodiment of the present invention, FIG. 2 ia) to fdl are sectional views explaining the conventional method, and FIG. An explanatory diagram showing the temperature distribution of the recrystallized semiconductor film during annealing, and FIG. 4 are cross-sectional views showing a part of the process of the second embodiment of the present invention. 1... Insulating substrate 2... First Semiconductor film 3...
Second semiconductor film 4... Source region 5... Drain region 6... Channel region 7... Gate insulating film 8.
... Gate electrode 9 ... Source electrode 10 ... Drain electrode 11 ... Beam energy 21 ... Recrystallized semiconductor film 22 ... Recrystallized low resistance semiconductor film or higher

Claims (2)

【特許請求の範囲】[Claims] (1)(a)絶縁基板上に非晶質または多結晶の第1半
導体膜を堆積した後、エネルギービームで前記第1半導
体膜をアニールして再結晶半導体膜にする工程と、 (b)前記再結晶半導体膜上に比抵抗0.1Ωcm以下
の第2半導体膜を堆積してパターニングする際、前記再
結晶半導体膜をオーバーエッチする工程と、 (c)エネルギービームによりソースとドレイン領域の
前記第2半導体膜をアニールして、溶融させ、ソースと
ドレイン領域全体を低抵抗化して再結晶低抵抗半導体膜
を形成し、この再結晶低抵抗半導体膜の上にゲート絶縁
膜を全面に堆積する工程と、 (d)ソースとドレイン領域にフォトリソ技術でコンタ
クトホールを形成して、ゲート電極、ソース電極、ドレ
イン電極を製作する工程とからなる薄膜半導体装置の製
造方法。
(1) (a) Depositing an amorphous or polycrystalline first semiconductor film on an insulating substrate, and then annealing the first semiconductor film with an energy beam to form a recrystallized semiconductor film; (b) (c) over-etching the recrystallized semiconductor film when depositing and patterning a second semiconductor film having a resistivity of 0.1 Ωcm or less on the recrystallized semiconductor film; (c) etching the source and drain regions with an energy beam; The second semiconductor film is annealed and melted to lower the resistance of the entire source and drain regions to form a recrystallized low resistance semiconductor film, and a gate insulating film is deposited on the entire surface of the recrystallized low resistance semiconductor film. (d) forming contact holes in the source and drain regions by photolithography to fabricate a gate electrode, a source electrode, and a drain electrode.
(2)ソースとドレイン領域に形成された再結晶低抵抗
半導体膜の膜厚が、チャネル領域の再結晶半導体膜の2
倍以上ある特許請求の範囲第1項記載の薄膜半導体装置
の製造方法。
(2) The thickness of the recrystallized low-resistance semiconductor film formed in the source and drain regions is 2 times that of the recrystallized semiconductor film in the channel region.
A method for manufacturing a thin film semiconductor device according to claim 1, which is more than twice as large.
JP3369887A 1987-02-17 1987-02-17 Manufacture of thin film semiconductor device Pending JPS63200572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3369887A JPS63200572A (en) 1987-02-17 1987-02-17 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3369887A JPS63200572A (en) 1987-02-17 1987-02-17 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS63200572A true JPS63200572A (en) 1988-08-18

Family

ID=12393635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3369887A Pending JPS63200572A (en) 1987-02-17 1987-02-17 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS63200572A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334434A (en) * 1989-06-30 1991-02-14 Hitachi Ltd Thin film semiconductor device and manufacture thereof
JPH03154383A (en) * 1989-11-11 1991-07-02 Takehide Shirato Semiconductor device
JPH05102483A (en) * 1991-10-09 1993-04-23 Sharp Corp Film transistor and its manufacturing method
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US6093935A (en) * 1993-02-05 2000-07-25 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6458200B1 (en) 1990-06-01 2002-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
KR100351274B1 (en) * 1998-12-12 2002-12-26 엘지 오티스 엘리베이터 유한회사 Emergency stop device of elevator
KR100382455B1 (en) * 1995-06-29 2003-07-18 엘지.필립스 엘시디 주식회사 Method for manufacturing thin film transistor
US6683350B1 (en) 1993-02-05 2004-01-27 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
US6815269B2 (en) 2002-05-08 2004-11-09 Nec Lcd Technologies, Ltd. Thin-film transistor and method for manufacturing the same
JP2011181957A (en) * 2011-05-23 2011-09-15 Seiko Epson Corp Method of manufacturing semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334434A (en) * 1989-06-30 1991-02-14 Hitachi Ltd Thin film semiconductor device and manufacture thereof
JPH03154383A (en) * 1989-11-11 1991-07-02 Takehide Shirato Semiconductor device
US6458200B1 (en) 1990-06-01 2002-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US7018874B2 (en) 1990-06-01 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US6740547B2 (en) 1990-06-01 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US6717180B2 (en) 1991-02-22 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
JPH05102483A (en) * 1991-10-09 1993-04-23 Sharp Corp Film transistor and its manufacturing method
US6683350B1 (en) 1993-02-05 2004-01-27 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
US6093935A (en) * 1993-02-05 2000-07-25 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
US7011993B2 (en) 1993-02-05 2006-03-14 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
US7394130B2 (en) 1993-02-05 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
KR100382455B1 (en) * 1995-06-29 2003-07-18 엘지.필립스 엘시디 주식회사 Method for manufacturing thin film transistor
KR100351274B1 (en) * 1998-12-12 2002-12-26 엘지 오티스 엘리베이터 유한회사 Emergency stop device of elevator
US6815269B2 (en) 2002-05-08 2004-11-09 Nec Lcd Technologies, Ltd. Thin-film transistor and method for manufacturing the same
JP2011181957A (en) * 2011-05-23 2011-09-15 Seiko Epson Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5512494A (en) Method for manufacturing a thin film transistor having a forward staggered structure
JP3535205B2 (en) Method for manufacturing thin film transistor
JP3402380B2 (en) Semiconductor circuit and manufacturing method thereof
JPS63200572A (en) Manufacture of thin film semiconductor device
JPH03292741A (en) Manufacture of thin film semiconductor device
JP2502789B2 (en) Method for manufacturing thin film transistor
JP3901460B2 (en) Thin film transistor manufacturing method
JP3575698B2 (en) Method for manufacturing polycrystalline semiconductor device
JP2917388B2 (en) Method for manufacturing semiconductor device
JPS6159873A (en) Thin film field effect transistor and manufacture thereof
JPS63250178A (en) Manufacture of thin film semiconductor device
JPH0766415A (en) Manufacture of semiconductor device and thin-film transistor
JPS63292682A (en) Manufacture of thin film semiconductor device
JP3535465B2 (en) Method for manufacturing semiconductor device
JP2720473B2 (en) Thin film transistor and method of manufacturing the same
JPS61131413A (en) Formation of semiconductor thin film
KR100271493B1 (en) Method of manufacturing thin film transistor
JP3325664B2 (en) Thin film transistor and method of manufacturing the same
JP2501451B2 (en) Thin film transistor and manufacturing method thereof
JPH04206837A (en) Manufacture of semiconductor device
JPH03255675A (en) Photosensor and image sensor provided therewith
JPH04286335A (en) Manufacture of thin film semiconductor device
JPH0661489A (en) Manufacture of thin-film transistor
JP3016486B2 (en) Thin film transistor
JP2994700B2 (en) Method for manufacturing polycrystalline silicon thin film and semiconductor device