JPS5948923A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5948923A JPS5948923A JP15887982A JP15887982A JPS5948923A JP S5948923 A JPS5948923 A JP S5948923A JP 15887982 A JP15887982 A JP 15887982A JP 15887982 A JP15887982 A JP 15887982A JP S5948923 A JPS5948923 A JP S5948923A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode wiring
- wiring
- electrode
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 claims abstract description 33
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000010936 titanium Substances 0.000 claims abstract description 20
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 230000006837 decompression Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000001020 plasma etching Methods 0.000 abstract 1
- 238000007796 conventional method Methods 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 6
- 238000002048 anodisation reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002161 passivation Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- KELHQGOVULCJSG-UHFFFAOYSA-N n,n-dimethyl-1-(5-methylfuran-2-yl)ethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=C(C)O1 KELHQGOVULCJSG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、半導体装置の製造方法に関し、さらに詳し
くは平坦かつ微細な電極配線を形成するに好適な窒化チ
タニウムを主拐とiイ)電極配線の新規な形成方法に関
するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device using titanium nitride, which is suitable for forming flat and fine electrode wiring. This invention relates to a novel method for forming .
半導体装置の製造においてHHlAl、Au などを用
いて半導体基板の絶縁膜上に置棚配線を形1j5jして
いるが、この電極配線パクーンは集積度が高まるに伴な
い益々微細化するとともに、通常電極配線パターン上[
プらにパッシベーション膜を被覆したり中間絶縁j摸を
介して多層配線を行ったりするために平坦化し々ければ
ならス(い。すなわち、電極配線面の凹凸が激しいとそ
の段差部vcおいて、バンンベーションIE2がン(す
<]Cつたりクラックが入ったり等パッシベーション膜
のステ、ツブカバレッジが悪く斤ったり、また上層の多
層配線が断ti;91切ソtを起こして断線する確率が
高く歌ったりするからである。従って電極配線パターン
は微細化寸Z)とともにできる凹凸のない一11′坦な
而として形成する必要がある。In the manufacture of semiconductor devices, HHlAl, Au, etc. are used to form shelf wiring on the insulating film of the semiconductor substrate, but as the degree of integration increases, these electrode wiring patterns are becoming increasingly finer and On the wiring pattern [
In order to cover the surface with a passivation film or to perform multilayer wiring through an intermediate insulator, flattening is often required. , the passivation IE2 may break or crack, the passivation film may have poor coverage, or the upper multi-layer wiring may break due to disconnection. Therefore, the electrode wiring pattern must be formed as a flat pattern without any unevenness caused by the miniaturization dimension Z).
従来、′!1(導体装置の置棚配線の形成方法とし7て
、一般に次の2方法が採用されているが、平坦な電極配
線として夫々下記するような問題点があった。Conventionally, ′! 1 (The following two methods are generally adopted as methods for forming shelf wiring for conductor devices, but each method has the following problems as flat electrode wiring.
第1図(へ、第一の従来方法として、エツチング法又は
リフトオフ法と呼ばれる方法で形成された電極配線構造
を示したものである。第1図の構造は、ご1′樽休基板
1上に破粒された絶縁膜2の所定部分に電極形成用の開
口部3f:設けた後、基板全面にA1等の電極配線材f
ilを蒸着し、しかる後に蒸着膜の不要部分をエツチン
グ又はリフトオフをし7て選択的に電極配線パターン2
残すという方法により形成される。Fig. 1 shows an electrode wiring structure formed by a method called an etching method or a lift-off method as the first conventional method. After providing an opening 3f for forming an electrode in a predetermined portion of the insulating film 2 broken into particles, an electrode wiring material f such as A1 is formed on the entire surface of the substrate.
After that, unnecessary parts of the deposited film are etched or lifted off to selectively form the electrode wiring pattern 2.
It is formed by the method of leaving.
し力・しながら、この第一の従来方法では、後述する理
由によって蒸着膜厚ば1.5μ7718度が必要であり
、従って絶縁j換2と絶縁j摸上に凸状に形成された電
極配線4との段差も1.5μ?n程度となり、パッシベ
ーション膜形成の障害になるほどに極めて大きなもので
ある。上記した蒸着膜厚が1.5μm程度必要である理
由は、第2図に蒸着膜厚の部分的バラツキを図示したよ
うに、蒸着粒子の入射方向が主として矢印方向であると
き、開1]部6のJiT部21や底面の角部22で蒸着
膜厚が極端に薄くなる現象が生じ、この現象を補償する
ために、蒸着膜厚を1.5胛程匿に厚くしたり或は開1
]BB 5の側壁26の傾角θを小さくしたりする必要
があるからである。However, in this first conventional method, a vapor deposition film thickness of 1.5μ7718 degrees is required for the reason described later, and therefore the insulation layer 2 and the electrode wiring formed in a convex shape on the insulation layer 2 are Is the level difference between 4 and 4 1.5μ? It is about n, which is so large that it becomes an obstacle to the formation of a passivation film. The reason why the above-described thickness of the deposited film is required to be about 1.5 μm is that when the incident direction of the deposited particles is mainly in the direction of the arrow, as shown in Figure 2, which shows the partial variation in the thickness of the deposited film, the opening 1] A phenomenon occurs in which the deposited film thickness becomes extremely thin at the JiT part 21 and the corner part 22 of the bottom surface of No.
] This is because it is necessary to reduce the inclination angle θ of the side wall 26 of the BB 5.
第6図u2、電極配線面をより51工坦にするlとめV
ζ考案された第°二の従来方法すなわち陽極化J&法に
よる構造を図示したものである。この陽極化成法におい
ては、先ず基板1に絶縁膜2及び開171部6を設はブ
ヒ後、A1の電極層線構造を基板全面にir−着させる
が、そこまでの工程は第1図のξ)、−の従来方法と同
様である。次に基板全riTiに形成し7jAI蒸着膜
に対して、電極配線パターン4ン、残(プでそれ以外の
A1蒸着膜を陽極酸化し、こ)′シラ酸化アルミニウム
層5に変ルさすることによってCE 3図の構造が完成
する。以上第二の従来方法によノtば、約1.5胛厚の
A1層は約1.8μ〃L厚の酸化アルミニウム層に陽極
化成されるので、電極配線面の凹凸は0.3μ7n程度
となって、前gQ第一の従来力θ、(エツチング法pの
1.5μ7n程度に比べて平坦度は改善されている。Figure 6 u2, l stop V to make the electrode wiring surface more flat
This is a diagram illustrating a structure based on the second conventional method devised, that is, the anodization J& method. In this anodization method, first, the insulating film 2 and the opening 171 part 6 are formed on the substrate 1, and then the electrode layer line structure of A1 is IR-deposited on the entire surface of the substrate.The steps up to that point are shown in FIG. ξ), - is similar to the conventional method. Next, an electrode wiring pattern 4 is formed on the entire riTi substrate, and the remaining A1 vapor deposited film is anodized with a 7j Al vapor deposited film, and then transformed into an aluminum silica layer 5. The structure shown in Figure CE3 is completed. According to the second conventional method, the A1 layer with a thickness of about 1.5 mm is anodized into an aluminum oxide layer with a thickness of about 1.8 μL, so the unevenness on the electrode wiring surface is about 0.3 μ7 nm. Therefore, the flatness is improved compared to the conventional force θ of the first gQ (approximately 1.5μ7n of the etching method p).
(−かしながら、この第二の従来方法の問題点として、
■陽極化成した酸化アルミニウム層5がAl配線4間の
絶縁層となっているが、陽極化成による酸化アルミニウ
ム層はピンホール発生率が高く゛また絶R破壊耐圧も低
いため配線間短絡が起き易いこと、
■A1の陽極化I′Jy、はマスク端部がらA1層横力
向へ酸化アルミニウムの食い込みが大きく、A1層4の
膜厚が厚いためにその食い込み量が無視できず、従って
微π111な電極配線パターンの形成には適さないこと
等の点が挙けらnる。(-However, the problem with this second conventional method is that: 1) The anodized aluminum oxide layer 5 serves as an insulating layer between the Al wirings 4; short-circuit between wirings is likely to occur due to the high R breakdown voltage and low breakdown voltage; ■The anodization of A1 I'Jy has a large penetration of aluminum oxide from the edge of the mask in the direction of the lateral force of the A1 layer; The film thickness is so thick that the amount of intrusion cannot be ignored, and therefore, it is not suitable for forming a fine π111 electrode wiring pattern.
以」Eδf3−及び第二の従来方法に用いられる電極配
線材イ;IとしてAt材について説明したが、最近はA
I以外の4.(別が種々用いられている。そのうぢて、
蟹化チタニウム材は融点が高く化学的安定性にすぐれる
とともにプロ、り性が良いこともあってη−目されてい
る。しがし、なから、窒化チタニウムの電極配線形成方
法に@記第−の従来方法による方法が知られているだけ
であって、前記第二の従来方法のように電極配線面をY
担化する有効な方法は知られていない。Hereinafter, At material was explained as "Eδf3-" and the electrode wiring material I used in the second conventional method, but recently A
4 other than I. (Various different words are used.
Crab titanium material has a high melting point and excellent chemical stability, and is also highly rated for its excellent resilience. However, the only known method for forming electrode wiring on titanium nitride is the conventional method described in the previous section, and unlike the second conventional method, the electrode wiring surface is
No effective method for loading is known.
この発明の目的は、上記従来方法に比較して電極配線面
がより平坦な窒化チタニウムの電イセ配線層を形成して
、パッシベーション膜のクラック、ピンホール等の欠陥
を極力抑え或は上層の多層配線の断線を除土できる新規
な半導体装置の製造方法を提供することである。またこ
の発明の別の1」的に、薄い配線電極層の形成ができ、
従って微π111な電極配線パターン形成を可能にする
新規なl/ノ、7体装置の製造方法を提供することであ
る。さらに別のその目的は、前記したような優れたさ〃
化チタニウム電極配線材を蒸着法よりもイf易Vこ形成
てきる新規な半導体装置の製造方法を提供することでも
ある。The purpose of the present invention is to form a titanium nitride electrode wiring layer with a flatter electrode wiring surface compared to the conventional method described above, to minimize defects such as cracks and pinholes in the passivation film, or to suppress defects such as cracks and pinholes in the upper layer. It is an object of the present invention to provide a novel method for manufacturing a semiconductor device that can eliminate disconnections in wiring. Another aspect of the present invention is that a thin wiring electrode layer can be formed,
Therefore, it is an object of the present invention to provide a novel method for manufacturing a 7-body device that enables the formation of fine π111 electrode wiring patterns. Yet another purpose is to achieve the above-mentioned excellence.
Another object of the present invention is to provide a novel method for manufacturing a semiconductor device, which allows formation of a titanium oxide electrode wiring material more easily than by vapor deposition.
この発明は、蒙化チタニウム主イ/]の電極層かJjを
形成するのに、半導体基板上に窒化シリコン(S13N
4)とチタニウム(Ti)全それぞれ付着させ、接触し
てイ」着した513N4とTi ’(r−1000℃程
度に加熱して、次式の反応により窒化チタニウム(Ti
N ) ’に生成させることを利用したものである。This invention uses silicon nitride (S13N) on a semiconductor substrate to form an electrode layer mainly made of titanium monoxide.
4) and titanium (Ti) were respectively deposited, and the 513N4 and Ti' (deposited in contact with each other) were heated to about r-1000℃, and titanium nitride (Ti) was deposited by the following reaction.
N)'.
Si;3N4+ 4Ti 4TiN+ 38
i従ってTiN ’rスパッタリングさせTiN’に基
板上に付着させる従来のTiN電極配線形成と異なって
いる。′またその従来のTiNTQ;極配線にかいては
電極配線層がTiNであるのに対して、本発明において
はSi、Ti、5i−Ti合金等が主材TiNとともに
電極配線材料を構成している。Si; 3N4+ 4Ti 4TiN+ 38
This is therefore different from the conventional TiN electrode wiring formation in which TiN' is deposited on the substrate by sputtering. 'Also, in the conventional TiNTQ electrode wiring layer, the electrode wiring layer is TiN, whereas in the present invention, Si, Ti, 5i-Ti alloy, etc. constitute the electrode wiring material together with the main material TiN. There is.
この発明において原拐料の一つであるSi3N4の付着
は、スパッタリング法などPVD法でも付着してもよい
けれども、減圧CVD法やプラズマCVD法などC’V
D法で利着させることができ、またC’VD法で付着さ
せるのが好ましい。C’VD S 13N、iJ摸は、
従来方法におけるAl蒸着膜の膜厚(15μ??L8度
9よりもはるかに薄い膜厚でも第2図で説明した開口部
の肩部や底面角部の欠陥がなく付着できる。その結果T
iN主材の電極配線層の層厚を0.2μm程度°まで極
めて薄いものC(することができ、従って微細なパター
ンを形成することもAI蒸着j良にJ:る従来方法に比
べて容易となる。In this invention, Si3N4, which is one of the raw materials, may be deposited by a PVD method such as a sputtering method;
It can be deposited by the D method, and is preferably deposited by the C'VD method. C'VD S 13N, iJ model is
Even if the film thickness of the Al vapor deposition film in the conventional method is much thinner than the film thickness of 15 μ?
The layer thickness of the iN-based electrode wiring layer can be made extremely thin to about 0.2 μm, making it easier to form fine patterns than with the conventional method of AI vapor deposition. becomes.
また半導体基板全面にSi3N4膜を形成し、この51
3N4膜上にTiのパターンを選択料ス′」させてTi
N生成生成反応性うと、T1パターン下のS i、*N
411!’aはTiN電極配線となるとともにT1〕く
ターンが付着していないところのS i 3N、I膜ば
si、、N、の°まま残る。In addition, a Si3N4 film is formed on the entire surface of the semiconductor substrate, and this 51
A pattern of Ti is selectively sprayed onto the 3N4 film.
N generation generation reactive layer, S i under T1 pattern, *N
411! 'a becomes the TiN electrode wiring, and the Si 3N, I film si, , N, where T1] is not attached remains as it is.
その結果この場合の配線間の絶縁層は絶縁層の良好々S
131’J4によって構成され、従来の陽極酸化法の
酸化アルミニウム絶縁層にふ・ける配線間短絡の問題は
iQ’(消できるとともに、”riN電極配線層とSi
3N4配線間絶縁層とが最初刺着させた同−Si、、N
4層内に形成さfするため電極配線層が極めて一5V坦
になるという利点が生ずる。As a result, the insulation layer between the wirings in this case has a good insulation layer.
131'J4, the problem of short circuits between wirings that occur in the aluminum oxide insulating layer of the conventional anodic oxidation method can be eliminated (iQ'), and the riN electrode wiring layer and Si
3N4 inter-wiring insulating layer was first attached to the same -Si,,N
Since the electrode wiring layer is formed in four layers, there is an advantage that the electrode wiring layer becomes extremely flat at -5V.
以下に本発明の一実施例2第4図及び第5図を参照して
説明する。Embodiment 2 of the present invention will be described below with reference to FIGS. 4 and 5.
第4図は、813N4とTiとが半導体基板上にイ:]
−1,4着された状態街示した断面図である。この状態
は、半容体素子を形成し−fc、−’l’尋体基板1上
にSiO2のような絶縁j模2(T−設ii−、その絶
縁膜2の所定部分に電極形成用の開口部6を開口させ、
次に半導体基板」−全面に減圧プラズマCVD法により
2000λ膜厚のSi3N4膜41を被核し、さらにこ
のSi3N。In Figure 4, 813N4 and Ti are placed on a semiconductor substrate.]
- It is a cross-sectional view showing the state of 1st and 4th arrival. In this state, a half-capacitor element is formed, an insulating film 2 such as SiO2 (T-set ii-) is formed on a thin body substrate 1, and a predetermined portion of the insulating film 2 is coated with an electrode for forming an electrode. Open the opening 6,
Next, a Si3N4 film 41 with a thickness of 2000λ is coated on the entire surface of the semiconductor substrate by low pressure plasma CVD, and then the Si3N film 41 is deposited on the entire surface of the semiconductor substrate.
j摸41上全面に蒸着法により 2000^膜厚のTi
膜を被覆し、このTi l換を電極配線パターンの通り
にPEP技術により所望のTiパターン42を残したも
のである。A Ti film with a thickness of 2000^ was deposited on the entire surface of the J-shape 41 by vapor deposition.
A desired Ti pattern 42 was left behind by coating the film and applying this Ti 1 conversion to the electrode wiring pattern using PEP technology.
刺着させる513N4膜41の膜厚は、TiN電極配線
の膜厚が01μm程度以上必要であるところ力・ら、そ
itと略同じ1oooA以」二堆石“f−f)tばよい
。171着さぜるSi1.N、の組成は、スパッタリン
グした化学量論的Si;3N4組成のものから、プラズ
マCVD法により過剰S1を含イ1したS]XNy組成
のものや5iI(を含有したS i xN、l−I2組
成のような非化学量論的SiN組成のものであっても使
用できることが確めらソtた。The thickness of the 513N4 film 41 to be stuck should be approximately 1oooA or less, which is approximately the same as the thickness of the TiN electrode wiring, and the thickness of the TiN electrode wiring should be about 01 μm or more.171 The composition of the deposited Si1.N ranges from sputtered stoichiometric Si;3N4 composition to S1]XNy composition containing excess S1 by plasma CVD, and It was confirmed that even non-stoichiometric SiN compositions such as i x N, l-I2 compositions can be used.
また伺危させるT1膜42の膜厚は、513N4膜41
中に拡散反応して、開口部乙において基板上にオーミッ
ク接触が可能な:11を以」、あソLば」、く、Sr:
sNN模膜1の膜厚と略同膜厚のTi l撲42とすれ
ばよい。In addition, the thickness of the T1 film 42, which is at risk, is 513N4 film 41.
Due to the diffusion reaction inside, ohmic contact can be made on the substrate at the opening A.
The film thickness 42 may be approximately the same as the thickness of the sNN mock film 1.
TiO伺着利殖着法以外C’VD法、イオン注入法など
によって刺着させてもよく、S j:、N、1JIr4
の下層に形成するなど(〜でもJ:い。In addition to the TiO adhesion method, the adhesion may be performed by C'VD method, ion implantation method, etc. S j:, N, 1JIr4
For example, it is formed in the lower layer of
第5図は、Si3N4とTiとを加熱して反応さぜ、T
iN主材の電極配線が形成された状態を図示したもので
ある。この状態は、513N4 トT、バクーンを刺着
させた第4図の半導体基板’i1.ooO°Cで窒素雰
囲気中で1時間程度加熱することにより形成される。T
1パターン42下のSi:3N41摸中にばT1が拡散
してゆき、前記反応式のようにTINがalJk、して
TiN主材の電(夕配線51が形h’y:され、)1′
樽休基板1と゛の間では十分なオーミック接触をする。Figure 5 shows that Si3N4 and Ti are heated and reacted.
This is a diagram illustrating a state in which an iN-based electrode wiring is formed. In this state, the semiconductor substrate 'i1. It is formed by heating at OO°C in a nitrogen atmosphere for about 1 hour. T
During the simulation of Si:3N41 under one pattern 42, T1 diffuses, and as shown in the above reaction formula, TIN becomes alJk, and the TiN-based electrode (the wiring 51 is shaped like h'y:)1 ′
Sufficient ohmic contact is made between the barrel board 1 and the board.
反応を起こす加熱条件は、800’C以上であ;a i
J:実用的な速度で反応全進行さぜることがてきる。The heating conditions for causing the reaction are 800'C or higher; a i
J: The entire reaction can proceed at a practical speed.
゛また形成されるTiN主材の電極配線パターン(d]
、短時間の加熱ですむから、横方向への反応の拡がりも
少なく、略T1パターンとロー、J法pこ形成てき微糸
IJI化配線をすることができた。さらに配線間のS
i 3N4J帝41の絶縁破壊電圧は2〜8 X 1’
06”’/anと極めて高く保たれていた。゛Also formed TiN-based electrode wiring pattern (d)
Since only a short heating time is required, there is little spread of the reaction in the lateral direction, and it is possible to form an approximately T1 pattern, a row pattern, a J pattern, and a fine thread IJI wiring. Furthermore, S between the wiring
The breakdown voltage of i 3N4J Tei 41 is 2~8 x 1'
It remained extremely high at 0.06''/an.
本発明によ7し妊′、従来TiNの電極配線はTiNの
スパッタリングによって形成されていたのに対して、基
板」−に付凋さぜた513N、IとTlとの加熱反応に
より形成するという新規な半導体装置の製造方法が提供
される。According to the present invention, whereas TiN electrode wiring was conventionally formed by sputtering TiN, it is now formed by a heating reaction between 513N, I and Tl that are attached to a substrate. A novel method for manufacturing a semiconductor device is provided.
そして、本発明によれは、電極形成用量[1部などの段
差がある場合にもステップカバレッジのよイS13N4
JM カC’%鵜によって形成できるので、上記実施
例のように2000 A膜厚のSi3N4膜と2ooo
、A膜厚のTiパターンによって合計0.4μm膜厚程
世のTiN主祠からなる薄い電極配線層が形成てきる。According to the present invention, step coverage can be achieved even when there is a step such as the electrode formation dose [1 part].
Since it can be formed by JM KaC'%, it is possible to form a Si3N4 film with a thickness of 2000A and a 2000A film as in the above example.
, A thin electrode wiring layer consisting of a TiN main layer with a total thickness of about 0.4 μm is formed by the Ti pattern with a thickness of A.
こ)′シ全従来のA1蒸着膜からなる電極配ね層のjワ
さ15μ7n8度と比較″すれば1部4程度の厚みであ
り、本発明の電極配線層が極めて薄いことがわかり、半
導体素子の微細化に寄与することができる。Comparing this with the thickness of the conventional electrode wiring layer made of A1 vapor-deposited film, which is 15μ7n8 degrees, it is found that the electrode wiring layer of the present invention is extremely thin. It can contribute to miniaturization of elements.
また、本発明によれば、上記実施例において電極配線厚
みは0.4μノn1配線間絶縁層厚みは02μII+で
あり従ってその差が02μI11. l’前DI (i
/7 fきないj=うに、極めて電極配線面の平J1−
11度が高い。こ#’L’i従来の陽極化成法の平坦5
0.311rrrVこ比へても、本発明が平坦度に優れ
た方法であることがわ71)v、本発す]は電極配線面
上にパッンベーンヨンj挽を設けたり、中間絶縁)Mを
介して多層配線全形成しグとすする場合に極めて有利な
段差形状を形成できる方法である。Further, according to the present invention, the thickness of the electrode wiring in the above embodiment is 0.4 μm, and the thickness of the insulating layer between the n1 wires is 02 μII+, so the difference therebetween is 02 μI11. l'before DI (i
/7 fkinj=Uni, extremely flat J1- of the electrode wiring surface
11 degrees is high. #'L'i Conventional anodization method flat 5
Even with this ratio of 0.311 rrrV, it is clear that the present invention is a method with excellent flatness. This is a method that can form a step shape that is extremely advantageous when forming the entire multilayer wiring.
さらVこ、TINは融点が高< (2950℃つ ブロ
ック性など化学的にも安定したj睨である。従って不発
明によtLば配線後の半導体装7の1000’C以上の
熱処理が可能であって、配線後の素子特性の変更(例え
ば電流増幅率の変更)などの熱処理な・することによっ
て半導体装iトLの歩留り全土けることができる。In addition, TIN has a high melting point of <2950°C and is chemically stable, such as blocking properties. Therefore, it is possible to heat-treat the semiconductor device 7 after wiring at a temperature of 1000°C or higher. The overall yield of semiconductor devices can be improved by performing heat treatment such as changing element characteristics (for example, changing current amplification factor) after wiring.
以上のように、本発明は平坦がっ微細化7ζ適するTi
N主材の電極配線を形成する新規な半)、i’i、 1
4;装置製造方法である。As described above, the present invention is suitable for flat and fine-grained Ti.
A new half), i'i, 1 for forming electrode wiring of N-based material
4; Device manufacturing method.
第1図は、従来方法のエツチング法による電極配線構造
を示す断面図、第2図は蒸着法にょるステップカバレッ
ジの欠点を説明する図、第3図は従来方法の陽極化成法
による電極配線構造を示す断面図、第4図は本発明実施
例のSi3N4及びTi伺利殖状態を示す断面図、第5
図は本発明実施例の加熱後の状態を示す断面図である。
1・・・)1部導体基板、2・・・絶縁層、4・・・A
l電極配線、41・・・窒化ケイ素(S13N4)膜、
42・・・チクニウム(Ti)パターン、51・窒化チ
タニウム(TiN)電極配線。
特許出願人 東京芝浦電気株式会社
柳
第1図
第2図
禎3図Figure 1 is a cross-sectional view showing the electrode wiring structure formed by the conventional etching method, Figure 2 is a diagram illustrating the drawback of step coverage by the vapor deposition method, and Figure 3 is the electrode wiring structure formed by the conventional anodization method. FIG. 4 is a cross-sectional view showing the Si3N4 and Ti mixed state of the embodiment of the present invention, and FIG.
The figure is a sectional view showing the state of the embodiment of the present invention after heating. 1...) 1 part conductor substrate, 2... insulating layer, 4... A
l Electrode wiring, 41... silicon nitride (S13N4) film,
42...Ticunium (Ti) pattern, 51. Titanium nitride (TiN) electrode wiring. Patent applicant: Tokyo Shibaura Electric Co., Ltd. Yanagi Figure 1 Figure 2 Tei Figure 3
Claims (1)
する半導体装置の製造方法において、気1化ケイ素とチ
タニウムとを半導体基板上に利殖させた後加熱して反応
させ、窒化チタニウムを主拐とする配線若しくd:電極
を形成することを牛ケ徴とする半導体装置の製造方法。 2 半導体基板」二にCVD技術により利殖させた窒化
ケイ素膜と、該C’VD窒化ケイ素j摸上に選択料ン:
、’、:さぜたチタニウム膜とを加熱して反応さぜ、該
C’VD窒化ケイ素膜からなる絶縁膜の一部に窒化チタ
ニウムを主材とする配線若しくは電イ砿を形成する特許
M’!’i求の範囲第1項記載の製造方法。[Claims] 1. In a method for manufacturing a semiconductor device in which wiring or electrodes are formed using a titanium nitride material, silicon vapor nitride and titanium are grown on a semiconductor substrate and then heated to cause a reaction, thereby forming titanium nitride. A method of manufacturing a semiconductor device whose main feature is to form wiring or electrodes. 2. A silicon nitride film grown by CVD technology on a semiconductor substrate, and a selective material on the C'VD silicon nitride film:
, ',: Patent M in which a titanium nitride film is heated and reacted to form a wiring or an electric wire mainly made of titanium nitride on a part of the insulating film made of the C'VD silicon nitride film. '! The manufacturing method according to item 1 of the scope of requirements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15887982A JPS5948923A (en) | 1982-09-14 | 1982-09-14 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15887982A JPS5948923A (en) | 1982-09-14 | 1982-09-14 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5948923A true JPS5948923A (en) | 1984-03-21 |
Family
ID=15681384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15887982A Pending JPS5948923A (en) | 1982-09-14 | 1982-09-14 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5948923A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427243A (en) * | 1987-03-30 | 1989-01-30 | Ibm | Conductive structure for semiconductor device |
JPH08186109A (en) * | 1994-12-28 | 1996-07-16 | Nec Corp | Semiconductor integrated circuit device |
-
1982
- 1982-09-14 JP JP15887982A patent/JPS5948923A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427243A (en) * | 1987-03-30 | 1989-01-30 | Ibm | Conductive structure for semiconductor device |
JPH08186109A (en) * | 1994-12-28 | 1996-07-16 | Nec Corp | Semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03204967A (en) | Capacitor for ic and manufacture thereof | |
JPS5828736B2 (en) | How to form a flat thin film | |
US5583074A (en) | Semiconductor circuit | |
JPS6284534A (en) | Semiconductor device and manufacture thereof | |
US6114764A (en) | Semiconductor device and process for fabricating the same | |
JPS5948923A (en) | Manufacture of semiconductor device | |
JPH0249471A (en) | Semiconductor device and manufacture thereof | |
JPH11121457A (en) | Manufacture of semiconductor device | |
JPS60262443A (en) | Forming method of multilayer interconnection | |
JPH01303742A (en) | Semiconductor device | |
JPH0437033A (en) | Forming method of bump electrode | |
JP3288010B2 (en) | Method for forming metal wiring of semiconductor device | |
US4990995A (en) | Low reflectance conductor in an integrated circuit | |
JPH06104424A (en) | Schottky barrier type diode and its manufacture | |
JPH05267290A (en) | Semiconductor integrated circuit and manufacture thereof | |
JPS61228655A (en) | Forming method for multilayer interconnection | |
JPH06151355A (en) | Semiconductor device and manufacture thereof | |
JP3305811B2 (en) | Method for producing aluminum-containing coating on substrate | |
JPS6159748A (en) | Semiconductor device | |
JPH0464222A (en) | Manufacture of semiconductor device | |
KR100332131B1 (en) | Method for forming metal film in semiconductor device | |
JPH02140955A (en) | Semiconductor device | |
JPH023930A (en) | Manufacture of multilayer electrode in semiconductor device | |
JPH0442537A (en) | Semiconductor device and manufacture thereof | |
JPH03171732A (en) | Semiconductor device |