KR100265837B1 - Method for forming barrier metal layer of semiconductor device - Google Patents

Method for forming barrier metal layer of semiconductor device Download PDF

Info

Publication number
KR100265837B1
KR100265837B1 KR1019970029090A KR19970029090A KR100265837B1 KR 100265837 B1 KR100265837 B1 KR 100265837B1 KR 1019970029090 A KR1019970029090 A KR 1019970029090A KR 19970029090 A KR19970029090 A KR 19970029090A KR 100265837 B1 KR100265837 B1 KR 100265837B1
Authority
KR
South Korea
Prior art keywords
film
layer
tin
silicon substrate
barrier metal
Prior art date
Application number
KR1019970029090A
Other languages
Korean (ko)
Other versions
KR19990004930A (en
Inventor
박민규
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970029090A priority Critical patent/KR100265837B1/en
Publication of KR19990004930A publication Critical patent/KR19990004930A/en
Application granted granted Critical
Publication of KR100265837B1 publication Critical patent/KR100265837B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: A method for forming a barrier metal layer is to prevent a cracking of a Ti layer, which serves as the barrier metal layer for preventing interdiffusion between a silicon substrate and an aluminum interconnect, thereby improving reliability of a semiconductor device. CONSTITUTION: An interlayer dielectric(11) is formed to cover a lower structure of a semiconductor substrate(10). The interlayer dielectric is selectively etched to form a contact hole(12) for exposing the silicon substrate. A Ti layer(13) is deposited on the silicon substrate through the contact hole. The silicon substrate is cooled to a temperature of 0 to 23 deg.C. A TiN layer(14) is deposited on the Ti layer. The Ti layer and the TiN layer are deposited by a sputtering process. The Ti layer is formed in thickness of 300 to 500 angstroms. The TiN layer is formed in thickness of 700 to 1000 angstrom. The Ti layer and the TiN layer are formed in temperature of 300 deg.C.

Description

반도체 장치의 장벽금속막 형성 방법{Method for forming barrier metal layer of semiconductor device}Method for forming barrier metal layer of semiconductor device

본 발명은 반도체 소자 제조 분야에 관한 것으로 특히, 장벽금속막으로 이용되는 Ti막의 균열을 방지할 수 있는 장벽금속막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of semiconductor device manufacturing, and more particularly, to a method of forming a barrier metal film capable of preventing cracking of a Ti film used as a barrier metal film.

실리콘 기판을 사용하는 반도체 소자의 전기적 연결을 위하여 Al막을 금속 배선막으로 사용하는데, 알루미늄막 증착 후의 열처리 과정에서 접합 파괴(junction spiking) 문제가 발생한다.An Al film is used as a metal wiring film for the electrical connection of a semiconductor device using a silicon substrate, and a junction spiking problem occurs in the heat treatment process after the deposition of the aluminum film.

접합 파괴는 Si과 Al이 상호 확산됨으로 인하여 접합이 파괴되는 현상으로서 이를 방지하기 위하여 Al에 수 %의 Si을 첨가하여 Al로의 실리콘 확산을 억제하거나 Si과 Al 사이에 확산 방지 역할을 하는 장벽금속막을 형성하는 것이 일반적이다.Bond breakage is a phenomenon in which junction breakage is caused by the mutual diffusion of Si and Al. In order to prevent this, several percent of Si is added to Al to suppress the diffusion of silicon into Al or a barrier metal film that serves to prevent diffusion between Si and Al. It is common to form.

장벽금속막이란 접합 파괴 방지를 위해 Al과 실리콘 접합 사이에 증착되는 확산 방지용 금속막으로서, Al 및 Si과의 반응성이 없고 고온 안정성이 우수해야하며 Al, Si 등의 확산 억제 능력이 높고 실리콘과의 저항성 접촉(ohmic contact)을 갖는 금속이어야 한다. 현재 가장 일반적으로 사용되는 금속으로서는 TiW과 TiN이 사용된다. TiW은 W에 10 % 내외의 Ti이 혼합되어 있는 타겟(target)을 사용하여 증착되며, TiN은 Ti 타겟을 Ar 및 N2분위기에서 스퍼터링(sputtering) 증착하여 TiN을 형성시키는 반응성(reactive) 스퍼터링 증착법에 의해 증착된다. 증착된 TiN은 Ti와 N 간의 화학당량비가 장벽 특성에 영향을 주며 1:1일 경우 가장 바람직하다. TiN 없이 Ti만을 사용할 때 Al과 Ti가 350 ℃부터 반응하여 Al3Ti 화합물을 형성하고, 400 ℃ 이상에서는 Si이 확산되어 Al5Ti7Si2화합물을 형성하여 접촉 불량을 일으킨다. 또한, Ti막이 얇아야 실리콘의 소모를 줄일 수 있기 때문에 안정된 저항성 접촉을 할 수 있으며 계면의 특성을 향상시킬 수 있다.The barrier metal film is a diffusion preventing metal film deposited between Al and silicon junctions in order to prevent the fracture of the junction. The barrier metal film should have no reactivity with Al and Si, and be excellent in high temperature stability. It must be a metal with an ohmic contact. Currently, TiW and TiN are used as the most commonly used metals. TiW is deposited using a target mixed with about 10% of Ti in W. TiN is a reactive sputtering deposition method in which TiN is formed by sputtering deposition of Ti target in Ar and N 2 atmospheres. Is deposited by. The deposited TiN is most preferable when the chemical equivalence ratio between Ti and N affects the barrier properties and is 1: 1. When only Ti is used without TiN, Al and Ti react to form an Al 3 Ti compound at 350 ° C., and at 400 ° C. or more, Si diffuses to form an Al 5 Ti 7 Si 2 compound, causing contact failure. In addition, since the Ti film is thin, the consumption of silicon can be reduced, thereby making stable ohmic contact and improving the interface characteristics.

종래의 Ti/TiN 장벽금속막은 300 ℃ 고온에서 Ar 가스 및 3.0 Kw의 RF 전력을 인가하여 스퍼터링 방법으로 Ti를 약 300 Å 증착하고, TiN을 약 300℃에서 증착한다. 이때 Ti막 증착 챔버(chamber)에서 TiN막 증착 챔버로 기판을 이동하는 동안 기판의 온도 강하를 막기 위하여 중간 지점을 TiN 증착 온도인 250 내지 300 ℃로 기판 온도를 유지하였다.In the conventional Ti / TiN barrier metal film, Ti is deposited at about 300 Pa by a sputtering method by applying Ar gas and 3.0 Kw of RF power at a high temperature of 300 ° C., and TiN is deposited at about 300 ° C. At this time, in order to prevent the temperature drop of the substrate while moving the substrate from the Ti film deposition chamber (Chamber) to the TiN film deposition chamber, the substrate temperature was maintained at a TiN deposition temperature of 250 to 300 ℃.

상기와 같이 이루어지는 종래 기술은 Ti 막을 고온에서 유지함으로써 그레인(grain) 크기가 증가하여 Ti막의 면저항이 낮아지고, 열처리에 의한 스트레스(stress) 증가로 Ti막에 균열이 발생하고 파편이 증가되어 Ti막 손실이 일어난다. 따라서, 알루미늄(Al)과 실리콘 기판과의 장벽 역할을 제대로 수행하지 못하게 되는 단점이 발생한다.In the prior art, the Ti film is maintained at a high temperature, the grain size is increased, the sheet resistance of the Ti film is lowered, and the Ti film is cracked and the fragments are increased due to the stress caused by heat treatment. Loss occurs. Therefore, a disadvantage arises in that it does not function properly as a barrier between aluminum (Al) and a silicon substrate.

상기와 같은 문제점을 해결하기 위하여 안출된 본 발명은 Ti 막의 균열을 방지할 수 있는 반도체 장치의 장벽금속막 형성 방법을 제공하는데 그 목적이 있다.The present invention devised to solve the above problems is to provide a method of forming a barrier metal film of a semiconductor device that can prevent the crack of the Ti film.

도1은 본 발명의 일실시예에 따른 반도체 장치의 장벽금속막 형성 공정 단면도.1 is a cross-sectional view of a barrier metal film forming process of a semiconductor device according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 설명* Description of the main parts of the drawing

10: 실리콘 기판 11: 층간절연막10: silicon substrate 11: interlayer insulating film

12: 콘택홀 13: Ti막12: contact hole 13: Ti film

14: TiN 막 15: Al 막14: TiN film 15: Al film

상기 목적을 달성하기 위한 본 발명은, 실리콘 기판 상에 형성된 하부구조를 덮는 층간절연막을 선택적으로 식각하여 상기 실리콘 기판을 노출시키는 콘택홀을 형성하는 단계; 상기 콘택홀을 통하여 상기 실리콘 기판과 접하는 티타늄(Ti)막을 증착하는 단계; 상기 실리콘 기판을 0 ℃ 내지 23 ℃ 온도 범위에서 냉각시키는 단계; 및 상기 티타늄막 상에 티타늄나이트라이드(TiN)막을 증착하는 단계를 포함하는 반도체 장치 제조 방법을 제공한다.According to an aspect of the present invention, there is provided a method of forming a contact hole exposing a silicon substrate by selectively etching an interlayer insulating layer covering a substructure formed on the silicon substrate; Depositing a titanium (Ti) film in contact with the silicon substrate through the contact hole; Cooling the silicon substrate at a temperature ranging from 0 ° C. to 23 ° C .; And depositing a titanium nitride (TiN) film on the titanium film.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 살펴본다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도1에 도시한 바와 같이 소정의 하부층 형성이 완료된 실리콘 기판(10)을 덮는 층간절연막(11)을 선택적으로 식각하여 상기 실리콘 기판(10)을 노출시키는 콘택홀(12)을 형성한 후, 약 300 ℃ 온도, Ar 20 sccm, 1.7×107torr 챔버 압력에서 약 3.0 Kw RF 전력을 인가하여 스퍼터링 방법으로 300 내지 500 Å의 Ti 막(13)을 증착한다. 이후 TiN 막을 증착하기 전 단계로서, Ti막과 TiN막 간의 접착력 개선 및 고온에 의한 Ti 막의 스트레스 변화를 줄이기 위해 0 내지 23 ℃의 상온에서 기판 냉각을 실시한다.First, as shown in FIG. 1, the interlayer insulating layer 11 covering the silicon substrate 10 having the predetermined lower layer formation is selectively etched to form a contact hole 12 exposing the silicon substrate 10. At 300 ° C., Ar 20 sccm, and 1.7 × 10 7 torr chamber pressure, applying about 3.0 Kw RF power to deposit 300-500 kW Ti film 13 by sputtering. Then, as a step before depositing the TiN film, the substrate is cooled at a room temperature of 0 to 23 ° C. to improve the adhesion between the Ti film and the TiN film and to reduce the stress change of the Ti film due to the high temperature.

다음으로, 약 300 ℃ 온도, N220 sccm, Ar 25 sccm 정도의 가스와 1 ∼ 2×107torr의 챔버 압력에서 5.0 Kw의 RF 전력을 인가하여 스퍼터링 방법으로 700 내지 1000 Å의 TiN막(15)을 증착한다.Next, a TiN film of 700 to 1000 kPa was applied by sputtering by applying RF power of 5.0 Kw at a temperature of about 300 ° C., N 2 20 sccm, Ar 25 sccm, and a chamber pressure of 1-2 × 10 7 torr. 15) Deposit.

이후 약 250 ℃ 온도에서 약 11 Kw의 RF 전력으로 900 내지 1000Å의 알루미늄막(15)을 증착한다.Thereafter, an aluminum film 15 of 900 to 1000 mW is deposited at an RF power of about 11 Kw at about 250 ° C.

다음의 표1 및 표2는 종래의 Ti막을 증착한 후 TiN막을 증착하기 위하여 챔버를 이동하는 동안에 기판 온도를 약 300 ℃로 유지하는 경우와, 본 발명에 따라 기판 온도를 약 0 ℃로 유지하는 경우의 스트레스 및 면저항을 비교한 것이다.Tables 1 and 2 below show that the substrate temperature is maintained at about 300 ° C. during the movement of the chamber to deposit the TiN film after the deposition of the conventional Ti film, and the substrate temperature is maintained at about 0 ° C. according to the present invention. The stress and sheet resistance of the case were compared.

membrane Ti 스트레스(dyne/㎠)Ti stress (dyne / ㎠) TiN 스트레스(dyne/㎠)TiN stress (dyne / ㎠) 온도회수Temperature recovery 300 ℃300 ℃ 0 ℃0 ℃ 300 ℃300 ℃ 0 ℃0 ℃ 1One -2.74 × 109 -2.74 × 10 9 -3.11 × 109 -3.11 × 10 9 -1.38 × 109 -1.38 × 10 9 -1.52 × 109 -1.52 × 10 9 22 -5.42 × 109 -5.42 × 10 9 -6.89 × 109 -6.89 × 10 9 -1.45 × 109 -1.45 × 10 9 -1.53 × 109 -1.53 × 10 9 44 -7.39 × 109 -7.39 × 10 9 -8.67 × 109 -8.67 × 10 9 -7.41 × 109 -7.41 × 10 9 -7.85 × 109 -7.85 × 10 9

membrane Ti 막의 표면 저항(??㎠), 변동율Surface resistance (?? ㎠), variation rate of Ti film TiN 막의 표면 저항(??㎠), 변동율Surface resistance (?? ㎠), variation rate of TiN film 온도회수Temperature recovery 300 ℃300 ℃ 0 ℃0 ℃ 300 ℃300 ℃ 0 ℃0 ℃ 1One 38.6, 2.26%38.6, 2.26% 38.3, 2,21%38.3, 2,21% 10.2, 4.53%10.2, 4.53% 11.2, 3.34%11.2, 3.34% 22 42.4, 1.88%42.4, 1.88% 40.8, 1.68%40.8, 1.68% 10.9, 3.77%10.9, 3.77% 11.7, 3.67%11.7, 3.67% 44 40.4, 1.61%40.4, 1.61% 39.9, 1.51%39.9, 1.51% 11.5, 1.88%11.5, 1.88% 11.5, 1.17%11.5, 1.17%

표1에 나타난 결과와 같이 Ti막 증착과 TiN막 증착 사이에 기판 온도를 0 ℃로 유지함으로써 Ti 막의 스트레스가 감소하여 Ti막의 균열 발생이 방지된다. 또한, 표2의 결과로 알 수 있듯이 Ti 막의 면저항 변동율이 감소하여 이후에 증착되는 TiN막의 면저항 변동율도 비교적 양호하다. 참고로, 상기 면저항의 변동율은 Ti막 및 TiN막의 여러 부분에서 면저항을 측정하여 최고값과 최저값을 제외한 나머지 측정값의 평균을 구하고, 최고값과 최저값의 차이를 평균값의 2배되는 값으로 나누고 그 백분율로 구한 것이다.As shown in Table 1, by maintaining the substrate temperature at 0 ° C between the deposition of the Ti film and the deposition of the TiN film, the stress of the Ti film is reduced and the cracking of the Ti film is prevented. In addition, as can be seen from the results of Table 2, the sheet resistance variation rate of the Ti film is decreased, so that the sheet resistance variation rate of the TiN film deposited thereafter is relatively good. For reference, the variation rate of the sheet resistance is obtained by measuring the sheet resistance at various parts of the Ti film and the TiN film, obtaining an average of the remaining measured values except for the highest value and the lowest value, and dividing the difference between the highest value and the lowest value by twice the average value. It is obtained as a percentage.

본 발명에서는 Ti막 증착 단계와 TiN막 증착 단계 사이에서 기판을 0 ℃ 내지 23℃로 냉각시킴으로써 Ti막의 면저항 변동율을 줄일 수 있다. 또한, TiN막의 면저항 변동율도 양호한 것으로 보아 Ti막 상에 형성되는 TiN막에 대한 Ti막의 영향이 줄어들어 TiN막의 특성을 유지할 수 있음을 알 수 있고, Ti막 증착 후 기판을 고온으로 유지하여 발생하는 Ti막의 스트레스 변화에 의한 균열을 방지하여 Al-Si 접합 파괴 발생 및 기판 접촉 지역의 전류손실, 실리콘 기판과 계면의 특성을 향상시킬 수 있다.In the present invention, the sheet resistance variation rate of the Ti film can be reduced by cooling the substrate to 0 ° C to 23 ° C between the Ti film deposition step and the TiN film deposition step. In addition, since the TiN film has a good sheet resistance variation rate, it can be seen that the influence of the Ti film on the TiN film formed on the Ti film is reduced, thereby maintaining the properties of the TiN film. It is possible to prevent cracking due to the stress change of the film, thereby improving Al-Si junction breakdown, current loss in the contact area of the substrate, and improving the characteristics of the silicon substrate and the interface.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the technical field of the present invention without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같이 이루어지는 본 발명은 Ti막의 장벽금속막으로서의 특성을 향상시켜 소자의 신뢰성을 향상시킬 수 있다.According to the present invention as described above, the reliability of the device can be improved by improving the characteristics of the Ti film as a barrier metal film.

Claims (6)

실리콘 기판 상에 형성된 하부구조를 덮는 층간절연막을 선택적으로 식각하여 상기 실리콘 기판을 노출시키는 콘택홀을 형성하는 단계;Selectively etching the interlayer insulating film covering the underlying structure formed on the silicon substrate to form a contact hole exposing the silicon substrate; 상기 콘택홀을 통하여 상기 실리콘 기판과 접하는 티타늄(Ti)막을 증착하는 단계;Depositing a titanium (Ti) film in contact with the silicon substrate through the contact hole; 상기 실리콘 기판을 0 ℃ 내지 23 ℃ 온도 범위에서 냉각시키는 단계; 및Cooling the silicon substrate at a temperature ranging from 0 ° C. to 23 ° C .; And 상기 티타늄막 상에 티타늄나이트라이드(TiN)막을 증착하는 단계Depositing a titanium nitride (TiN) film on the titanium film; 를 포함하는 반도체 장치 제조 방법.A semiconductor device manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 티타늄막 및 티타늄나이트라이드막을 각각 스퍼터링 방법으로 증착하는 것을 특징으로 하는 반도체 장치 제조 방법.And depositing the titanium film and the titanium nitride film by a sputtering method, respectively. 제 1 항에 있어서,The method of claim 1, 상기 티타늄막을 300 내지 500 Å의 두께로 형성하는 것을 특징으로 하는 반도체 장치 제조 방법A method of manufacturing a semiconductor device, wherein the titanium film is formed to a thickness of 300 to 500 kPa. 제 1 항에 있어서,The method of claim 1, 상기 티타늄나이트라이드막을 700 내지 1000 Å의 두께로 형성하는 것을 특징으로 하는 반도체 장치 제조 방법.The titanium nitride film is formed in a thickness of 700 to 1000 GPa. 제 2 항에 있어서,The method of claim 2, 상기 티타늄막을 300 ℃ 온도 조건에서 형성하는 것을 특징으로 하는 반도체 장치 제조 방법.And forming the titanium film at a temperature of 300 ° C. 제 2 항에 있어서,The method of claim 2, 상기 TiN막을 300 ℃ 온도 조건에서 형성하는 것을 특징으로 하는 반도체 장치 제조 방법.And the TiN film is formed at a temperature of 300 ° C.
KR1019970029090A 1997-06-30 1997-06-30 Method for forming barrier metal layer of semiconductor device KR100265837B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970029090A KR100265837B1 (en) 1997-06-30 1997-06-30 Method for forming barrier metal layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970029090A KR100265837B1 (en) 1997-06-30 1997-06-30 Method for forming barrier metal layer of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990004930A KR19990004930A (en) 1999-01-25
KR100265837B1 true KR100265837B1 (en) 2000-09-15

Family

ID=19512266

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970029090A KR100265837B1 (en) 1997-06-30 1997-06-30 Method for forming barrier metal layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR100265837B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950015651A (en) * 1993-11-11 1995-06-17 김주용 Method of forming diffusion preventing metal layer of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950015651A (en) * 1993-11-11 1995-06-17 김주용 Method of forming diffusion preventing metal layer of semiconductor device

Also Published As

Publication number Publication date
KR19990004930A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
US6359160B1 (en) MOCVD molybdenum nitride diffusion barrier for CU metallization
US5904576A (en) Method of forming wiring structure
KR100265837B1 (en) Method for forming barrier metal layer of semiconductor device
KR100652317B1 (en) Method for manufacturing metal pad of the semiconductor device
KR100307827B1 (en) Metal wiring contact formation method of semiconductor device
KR100499401B1 (en) Method for forming metal interconnection layer of semiconductor device
US6624073B2 (en) Optimized TaCN thin film diffusion barrier for copper metallization
KR950005259B1 (en) Fabricating method of semiconductor device
KR100399066B1 (en) Method for aluminium-alloy in semiconductor device
US6566263B1 (en) Method of forming an HDP CVD oxide layer over a metal line structure for high aspect ratio design rule
KR100338114B1 (en) Method for forming metal film in semiconductor device
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
KR100215830B1 (en) Forming method for metal wiring
KR19990006108A (en) Barrier Metal Deposition Method
KR20010003789A (en) Method of forming an inter-layer insulating film in a semiconductor device
KR19990055213A (en) Method of forming barrier metal film in semiconductor device
KR100332131B1 (en) Method for forming metal film in semiconductor device
KR19980060584A (en) Metal wiring formation method
JPH1187508A (en) Method of forming metal wiring of semiconductor device
KR970004771B1 (en) Method of forming the metal wiring on the semiconductor device
KR20010011307A (en) Method for forming metal wire using zirconiumdiboride layer as diffusion barrier
KR100728965B1 (en) Method of manufacturing semiconductor device
KR100219053B1 (en) Forming method for metal film of semiconductor device
KR100248803B1 (en) Method of forming barrier metal in semiconductor device
KR19980057055A (en) Barrier Metals for Semiconductor Metallization and Forming Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080527

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee