JPS6251243A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6251243A
JPS6251243A JP19140685A JP19140685A JPS6251243A JP S6251243 A JPS6251243 A JP S6251243A JP 19140685 A JP19140685 A JP 19140685A JP 19140685 A JP19140685 A JP 19140685A JP S6251243 A JPS6251243 A JP S6251243A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating film
film
temperature range
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19140685A
Other languages
Japanese (ja)
Other versions
JPH0244143B2 (en
Inventor
Masaki Hotta
堀田 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19140685A priority Critical patent/JPH0244143B2/en
Publication of JPS6251243A publication Critical patent/JPS6251243A/en
Publication of JPH0244143B2 publication Critical patent/JPH0244143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain a semiconductor device including multilayer interocnnections, which can prevent yield of hillocks effectively, by forming a first interlayer insulating film, flattening the film, and forming a second interlayer insulating film at two steps in a temperature range, in which hillocks are not yielded, and a high temperature range thereafter. CONSTITUTION:A first wiring layer 2 is formed on a semiconductor substrate 1 aftet the formation of elements thereon in a specified pattern. A first layer interlayer insulating film 4 is formed on the layer 2. Then, the interlayer insulat ing film 4 is flattened. A second interlayer insulating film is formed at two steps in a temperature range, in which hillocks are not yielded, and a high temperature range thereafer. For example, the silicon oxide film 4 and a silicon nitride film 5 are formed. Etch back is performed by an RIE method, and the flattened silicon oxide film 4'' is obtained. A silicon oxide film 11 is formed thereon to a thickness of about 3,000Angstrom in a temperature range of 200-250 deg.C by using a plasma CVD method. A silicon oxide film 12 is formed thereon similarly at a temperature of about 300 deg.C by the plasma CVD method. The total thickness of about 1.5mum is obtained. A second aluminum wiring layer 13 is formed thereon.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関するもので、特に層
間絶縁膜の形成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to the formation of an interlayer insulating film.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置の高集積化に伴い素子形成後の配線は一層の
みでは足りず多層配線が通常用いられる。
As semiconductor devices become more highly integrated, a single layer of wiring after element formation is no longer sufficient, and multilayer wiring is usually used.

この多層配線は第2図の工程別素子断面図に示されるJ
:うにまず素子形成後の半導体基板1」二に第1層目の
アルミニラ配線層2をアルミニウムの蒸着およびエツチ
ングににるパターニングで形成し、その周囲に200〜
250℃の比較的低温でプラズマCVD法により厚さ約
3000人のシリコン酸化膜3を形成する(第2図(a
))。
This multilayer wiring is shown in the cross-sectional diagram of each step of the device in
First, after forming the semiconductor substrate 1, a first layer of aluminum wiring layer 2 is formed by patterning by vapor deposition and etching of aluminum, and around it, a layer of 200~
A silicon oxide film 3 with a thickness of approximately 3000 wafers is formed by plasma CVD at a relatively low temperature of 250°C (see Fig. 2(a)).
)).

次にこの上に同様にプラズマCVD法により約300℃
の温度でシリコン酸化膜1を形成し、先に形成されたシ
リコン酸化膜3と含わけて約1μmの厚さになるJ:う
にする(第2図(b))。
Next, apply the plasma CVD method on top of this at about 300°C.
A silicon oxide film 1 is formed at a temperature of about 1 μm including the previously formed silicon oxide film 3 (FIG. 2(b)).

次にこの上にシリコン窒化膜(S i3 N4 ) 5
をCVD法により形成しく第2図(C))、ざらにこれ
を反応性イオンエツチング(RTE)によりエッチバッ
クづ”るど、平to化されたシリコン酸化膜4′が得ら
れる(第2図(d))。
Next, on top of this is a silicon nitride film (S i3 N4) 5
A silicon oxide film 4' is formed by the CVD method (Fig. 2 (C)), and then roughly etched back by reactive ion etching (RTE) to obtain a flat silicon oxide film 4' (Fig. 2 (C)). (d)).

次に再度シリコン酸化膜6をプラズマCVD法で形成し
、その上に上層の第2の配線層7をアルミニウム熱着お
よびフォトエツチングにJ:るパターニングによって形
成する(第2図(e))。
Next, a silicon oxide film 6 is formed again by the plasma CVD method, and an upper second wiring layer 7 is formed thereon by aluminum thermal bonding and patterning by photoetching (FIG. 2(e)).

このように第1の配線1」−のシリコン酸化膜を2段階
で形成しているのはヒロック防雨のためである。
The reason why the silicon oxide film of the first wiring 1'' is formed in two steps is to prevent rain from hillocks.

すなわち、アルミニウムの配線層を形成後層間絶縁のた
めのシリコン酸化膜を従来性われているJ:うに300
℃前後の比較的高温で形成すると、アルミニウムの結晶
再配列に伴い表面に応力集中が起って盛り上るヒロック
とよばれる突起が発生し、第3図に示されるJ:うにヒ
ロック8はシリコン酸化膜4巾を成長して上層に形成さ
れたアルミニウム配線層7に達してショー1−を発生さ
せて歩留りを低下させ、ショー1〜に至らない場合にも
信頼性を低下させる。
That is, after forming an aluminum wiring layer, a silicon oxide film for interlayer insulation was conventionally used.
When formed at a relatively high temperature of around °C, stress concentration occurs on the surface due to crystal rearrangement of aluminum and protrusions called hillocks are generated. When the film is grown to a width of 4 and reaches the aluminum wiring layer 7 formed in the upper layer, a show 1- is generated and the yield is reduced, and even if the film does not reach the show 1-, the reliability is reduced.

ヒ「1ツクの発生を抑制づ−るためには応力集中が生じ
ないように層間絶縁膜の形成温度を低下させればよいが
、この場合下層の第1アルミニウム配線層の断差部での
被覆性が悪化し、上層の第2アルミニウム配線層を形成
した際に断線を招くという問題があり、また低tMAで
形成した層間絶縁膜は膜質が良好でなく、絶縁性の低下
、エツチングの不均一性等の欠陥を招く。
In order to suppress the occurrence of stress, it is possible to lower the formation temperature of the interlayer insulating film so that stress concentration does not occur. There is a problem that the coverage deteriorates, leading to disconnection when the upper second aluminum wiring layer is formed, and the interlayer insulating film formed with a low tMA has poor film quality, resulting in decreased insulation and etching failure. This results in defects such as uniformity.

ヒロックの発生を抑制する他の方法どしてはアルミニウ
ム層の表面にチタン等の高融点金属あるいはTi3i等
の高融点金属珪化物を形成する方法がある。しかしこの
方法ではまず高融点金属層の形成等、■程が増加する上
、エツチングに困難が伴い、さらにアルミニウム配線側
面には高融点金属等が存在しないことから側面にお【ノ
るヒロック成長を抑えることができず、微細化」:の要
求に対しては有効ではない。
Another method for suppressing the occurrence of hillocks is to form a high melting point metal such as titanium or a high melting point metal silicide such as Ti3i on the surface of the aluminum layer. However, with this method, the process of forming a high melting point metal layer increases, etching is difficult, and since there is no high melting point metal on the side surface of the aluminum wiring, hillocks may grow on the side surface. It is not effective to meet the requirements of "miniaturization".

このような観点から最初に述べた方法が採用されるがこ
の方法にも問題がある。
From this point of view, the first method mentioned above is adopted, but this method also has its problems.

すなわち、第1のアルミニウム配線層上に形成されたシ
リコン酸化膜4を平坦化する際シリコン酸化膜4の厚さ
が所期の厚さよりも薄かったどき、あるいはRIEによ
るエツチング吊が多ずぎたときには第4図に示すように
アルミニウム配線層2の表面が露出してしまう場合があ
る。この状態で通常の比較的高温の条件で第2のシリコ
ン酸化膜を形成すると第3図に示す状態となり、ヒロッ
ク8が発生Jる。
That is, when the silicon oxide film 4 formed on the first aluminum wiring layer is planarized, the thickness of the silicon oxide film 4 is thinner than the expected thickness, or when there is too much etching by RIE. As shown in FIG. 4, the surface of the aluminum wiring layer 2 may be exposed. If a second silicon oxide film is formed in this state under normal relatively high temperature conditions, the state shown in FIG. 3 will occur, and hillocks 8 will occur.

〔発明の目的〕[Purpose of the invention]

本発明はこのJ:うな問題を解決するためなされたもの
で、ヒロックの発生を有効に防止できる多層配線を含む
半導体装置の製造方法を提供することを目的とする。
The present invention has been made to solve this problem, and it is an object of the present invention to provide a method for manufacturing a semiconductor device including multilayer wiring, which can effectively prevent the occurrence of hillocks.

〔発明の概要〕[Summary of the invention]

上記目的達成のため、本発明にJ:れば素子形成後第1
の配線層を形成し、その上に第1の層間絶縁膜を形成し
てエッヂバックによる平坦化処理を行なった後第2の層
間絶縁膜をヒロックの発生しない温度範囲およびその後
のより高温の渇rti範囲の2段階で形成し、さらにそ
の上に第2の配線層を形成するようにしている。このに
うに第2の層間絶縁膜を2段階で形成することにより、
エッチバック時に第1の配線層表面が露出してもヒロッ
クの発生を有効に防止することができる。
In order to achieve the above object, the present invention provides J: first step after device formation.
After forming a first interlayer insulating film thereon and performing a flattening process by edge back, the second interlayer insulating film is heated in a temperature range where hillocks do not occur and then at a higher temperature. The wiring layer is formed in two stages within the rti range, and a second wiring layer is further formed thereon. By forming the second interlayer insulating film on this in two steps,
Even if the surface of the first wiring layer is exposed during etchback, hillocks can be effectively prevented from occurring.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明の一実施例を詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明にかかる半導体装『ノの製造方法を示す
工程別断面図であって、素子形成後の半導体基板1上に
多層配線を形成する様子を示Jものである。
FIG. 1 is a step-by-step sectional view illustrating a method for manufacturing a semiconductor device according to the present invention, and shows how multilayer wiring is formed on a semiconductor substrate 1 after device formation.

この方法においてはエッヂバック工程までは従来と同様
である。すなわち、素子形成後の半導体基板1上に第1
のアルミニウム配線層2を形成してその周囲に厚さ約3
000へのシリコン酸化膜3を200〜250℃の温度
範囲でプラズマCVD法により形成しく第1図(a))
。その上にシリコン酸化膜4を約300℃の温度でプラ
ズマCVD法にJ:り全体が約1μmになるにうにしく
第1図(b))、さらにシリコン窒化膜5をCVD法に
より形成して(第1図(C))、  。
This method is the same as the conventional method up to the edge back step. That is, the first
An aluminum wiring layer 2 is formed around the aluminum wiring layer 2 with a thickness of approximately 3.
A silicon oxide film 3 on the surface of 000 is formed by plasma CVD in a temperature range of 200 to 250°C (Fig. 1(a)).
. On top of that, a silicon oxide film 4 is formed by plasma CVD at a temperature of about 300° C. to a total thickness of about 1 μm (Fig. 1(b)), and a silicon nitride film 5 is further formed by CVD. (Figure 1 (C)).

RIE法によりエッヂバックを行うと、平1D化された
シリコン酸化膜4″が得られる(第1図(d))。この
とき、第1層のアルミニウム配線層の表面には通常はシ
リコン酸化膜が残存するのであるが、ここでは極端な場
合として形成されたシリコン・酸化膜4の厚さが不足で
あるかRIEによるエツチング量が過大であるための第
1層のアルミニウム配線層2の表面が全面的に露出した
状      。
When edge-back is performed by the RIE method, a flat 1D silicon oxide film 4'' is obtained (Fig. 1(d)).At this time, there is usually a silicon oxide film on the surface of the first layer of aluminum interconnection layer. However, in extreme cases, the surface of the first aluminum wiring layer 2 may be damaged due to insufficient thickness of the silicon/oxide film 4 formed or excessive amount of etching by RIE. Fully exposed.

態となっているものどじて以下の説明を行なう。The following is an explanation of the situation.

この上にシリコン酸化膜11をプラズマCVD法を用い
、200〜250℃の温度範囲で厚さ約3000八に形
成する(第1図(e))。
A silicon oxide film 11 is formed thereon to a thickness of about 3,000 mm using a plasma CVD method at a temperature range of 200 to 250 DEG C. (FIG. 1(e)).

次にこの上に同様iこプラズマCV D法により約30
0℃の温度でシリコン酸化膜12を形成し、先に形成さ
れたシリコン酸化膜11を含め合計的1.5μmの厚さ
になるようにし、その上にアルミニウムの蒸着およびパ
ターニングにより第2のアルミニウム配線層13が形成
される。
Next, approximately 30% of
A silicon oxide film 12 is formed at a temperature of 0° C. to a total thickness of 1.5 μm including the previously formed silicon oxide film 11, and a second aluminum film is formed on it by vapor deposition and patterning of aluminum. A wiring layer 13 is formed.

このにうにエッチバック後に再度シリコン酸化膜を形成
する際に、始めはヒロックの発生しにくい比較的低湿で
、続いてこれよりも高温で厚く形成するようにしている
ので、実施例のように第1のアルミニウム配線の表面が
露出してしまった場合等においてもヒロックが発生しに
くくなる。
When forming the silicon oxide film again after this etch-back, the film is first formed at a relatively low humidity where hillocks are less likely to occur, and then at a higher temperature to form a thicker layer. Even when the surface of the aluminum wiring No. 1 is exposed, hillocks are less likely to occur.

以上の実施例においてはシリコン酸化膜の形成にあたっ
て、初期とその後で温度範囲を切換える=  7 − ようにしているが、記載した厚さの膜厚が得られるよう
な温度上背曲線を選択して連続的イ【温度変化を行うよ
うにしてもよい。
In the above embodiments, when forming a silicon oxide film, the temperature range is switched between the initial stage and the subsequent stage, but the temperature rise curve is selected so that the film thickness as described above can be obtained. Continuous temperature changes may also be performed.

また、エッヂバック工程においては、実施例ではシリコ
ン窒化膜を使用しているが、これに限ることなくRIE
で酸化膜と同様のエツチングレートでエツチングされる
ものであればJ:り、例えばレジスト等を使用すること
ができる。
In addition, in the edge back process, although a silicon nitride film is used in the embodiment, the RIE film is not limited to this.
For example, a resist or the like can be used as long as it can be etched at the same etching rate as the oxide film.

なお、上述した温度変化は同一工程内での変化であり実
質的な工程の増加はない。
Note that the temperature change described above is a change within the same process, and there is no substantial increase in the number of processes.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば層間絶縁膜の平坦化処理後
に形成される層間絶縁膜をヒl]ツクの発生しない温度
範囲およびその後のより高温のrQ麿範囲の2段階で形
成し、その上に上層の配線層を設けるようにしているの
で、平坦化処理時に下層配線層が露出してもヒロックの
発生を防止しつつ良好な膜質を有する層間絶縁膜が得ら
れ、歩留りおよび信頼性の高い多層配線構造を得ること
ができる。
As described above, according to the present invention, the interlayer insulating film formed after the planarization treatment of the interlayer insulating film is formed in two stages: the temperature range where no sagging occurs and the subsequent higher temperature rQ range. Since the upper wiring layer is provided on top, even if the lower wiring layer is exposed during the planarization process, the formation of hillocks can be prevented and an interlayer insulating film with good film quality can be obtained, improving yield and reliability. A high multilayer wiring structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程別断面図、第2図
は従来の方法を示1工程別断面図、第3図おJ:び第4
図は従来方法の問題点をポリ説明図である。 1・・・基板、2,7・・・アルミニウム配線層、3゜
6.11・・・低温で形成された酸化膜、4,6゜12
・・・高温で形成された酸化膜。
Fig. 1 is a cross-sectional view of each step showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of each step of a conventional method, and Figs.
The figure is a diagram explaining the problems of the conventional method. 1...Substrate, 2,7...Aluminum wiring layer, 3゜6.11...Oxide film formed at low temperature, 4.6゜12
...An oxide film formed at high temperatures.

Claims (1)

【特許請求の範囲】 1、素子形成後の半導体基板上に第1の配線層を所定の
パターンで形成する工程と、 この第1の配線層上に第1の層間絶縁膜を形成する工程
と、 この層間絶縁膜を平坦化処理する工程と、 この上に第2の層間絶縁膜をヒロックの発生しない温度
範囲およびその後のより高温の温度範囲の2段階で形成
する工程と、 を備えた半導体装置の製造方法。 2、層間絶縁膜がシリコン酸化膜である特許請求の範囲
第1項記載の半導体装置の製造方法。 3、層間絶縁膜がプラズマCVD法で形成される特許請
求の範囲第2項記載の半導体装置の製造方法。 4、第1の層間絶縁膜がヒロックの発生しない温度範囲
およびその後のより高温の温度範囲の2段階で形成され
る特許請求の範囲第3項記載の半導体装置の製造方法。 5、平坦化処理が反応性イオンエッチングによるエッチ
バックにより行われる特許請求の範囲第1項記載の半導
体装置の製造方法。 6、第1および第2の配線層がパターニングされたアル
ミニウム層である特許請求の範囲第1項記載の半導体装
置の製造方法。 7、第2の層間絶縁膜の形成が連続的な温度上昇下で行
われる特許請求の範囲第1項記載の半導体装置の製造方
法。
[Claims] 1. A step of forming a first wiring layer in a predetermined pattern on a semiconductor substrate after forming an element, and a step of forming a first interlayer insulating film on the first wiring layer. , a step of flattening the interlayer insulating film, and a step of forming a second interlayer insulating film thereon in two stages: in a temperature range where hillocks do not occur and then in a higher temperature range. Method of manufacturing the device. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film is a silicon oxide film. 3. The method of manufacturing a semiconductor device according to claim 2, wherein the interlayer insulating film is formed by plasma CVD. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the first interlayer insulating film is formed in two steps: a temperature range in which hillocks do not occur and a subsequent temperature range at a higher temperature. 5. The method of manufacturing a semiconductor device according to claim 1, wherein the planarization process is performed by etch-back using reactive ion etching. 6. The method of manufacturing a semiconductor device according to claim 1, wherein the first and second wiring layers are patterned aluminum layers. 7. The method of manufacturing a semiconductor device according to claim 1, wherein the formation of the second interlayer insulating film is performed under continuous temperature rise.
JP19140685A 1985-08-30 1985-08-30 HANDOTAISOCHINOSEIZOHOHO Expired - Lifetime JPH0244143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19140685A JPH0244143B2 (en) 1985-08-30 1985-08-30 HANDOTAISOCHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19140685A JPH0244143B2 (en) 1985-08-30 1985-08-30 HANDOTAISOCHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6251243A true JPS6251243A (en) 1987-03-05
JPH0244143B2 JPH0244143B2 (en) 1990-10-02

Family

ID=16274071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19140685A Expired - Lifetime JPH0244143B2 (en) 1985-08-30 1985-08-30 HANDOTAISOCHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0244143B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106968A (en) * 1988-10-17 1990-04-19 Hitachi Ltd Semiconductor integrated circuit device and forming method thereof
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013338A (en) * 1986-09-09 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JPH02106968A (en) * 1988-10-17 1990-04-19 Hitachi Ltd Semiconductor integrated circuit device and forming method thereof

Also Published As

Publication number Publication date
JPH0244143B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
JP3128811B2 (en) Method for manufacturing semiconductor device
JP2623659B2 (en) Method for manufacturing MIS transistor
JPS6251243A (en) Manufacture of semiconductor device
JP2674406B2 (en) Method for manufacturing semiconductor device
JPS62277750A (en) Formation of multilayer interconnection
JPS63302537A (en) Manufacture of integrated circuit
JPS62137853A (en) Formation of multilayer interconnection
JP2819640B2 (en) Semiconductor device
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
JPH0642481B2 (en) Manufacturing method of semiconductor device
KR100332131B1 (en) Method for forming metal film in semiconductor device
JPS61239646A (en) Formation of multilayer interconnection
JP2991388B2 (en) Method for manufacturing semiconductor device
JPS62296443A (en) Semiconductor device and manufacture thereof
JP3149169B2 (en) Method for manufacturing semiconductor device
JPH035656B2 (en)
JPS60115234A (en) Preparation of semiconductor device
JPH01207931A (en) Manufacture of semiconductor device
JPH05226479A (en) Manufacture of semiconductor device
JPS59215747A (en) Manufacture of semiconductor device
JPH0817928A (en) Manufacture of semiconductor device
JPS63111644A (en) Manufacture of semiconductor device
JPH05160126A (en) Formation of multilayer wiring
JPH01298744A (en) Manufacture of semiconductor device
JPH01200651A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term