JPS594105A - 電圧非直線抵抗体 - Google Patents
電圧非直線抵抗体Info
- Publication number
- JPS594105A JPS594105A JP57113294A JP11329482A JPS594105A JP S594105 A JPS594105 A JP S594105A JP 57113294 A JP57113294 A JP 57113294A JP 11329482 A JP11329482 A JP 11329482A JP S594105 A JPS594105 A JP S594105A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- nonlinear resistor
- voltage nonlinear
- resistor
- atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
本発明は、電圧非直線抵抗体、さらに詳しくは過電圧保
護用素子として用いられる酸化亜鉛(ZnO)を主成分
とした電圧非直線抵抗体に関する。
護用素子として用いられる酸化亜鉛(ZnO)を主成分
とした電圧非直線抵抗体に関する。
従来、電子機器、電気機器の過電圧保護を目的として、
それぞれシリコンカーバイト(SiC) 、セレン(S
e)、シリコン(Sl)又はZnOを主成分としたバリ
スタが利用されている。中でもZnOを主成分としたバ
リスタは、一般に制限電圧が低く、電圧非直線指数が大
きいなどの特徴を有しているため、半導体素子のような
過電流耐量の小さいもので構成される機器の過電圧に対
する保護に適しているので、 SiCよりなるバリスタ
などに代って広く利用されるようlこなった。
それぞれシリコンカーバイト(SiC) 、セレン(S
e)、シリコン(Sl)又はZnOを主成分としたバリ
スタが利用されている。中でもZnOを主成分としたバ
リスタは、一般に制限電圧が低く、電圧非直線指数が大
きいなどの特徴を有しているため、半導体素子のような
過電流耐量の小さいもので構成される機器の過電圧に対
する保護に適しているので、 SiCよりなるバリスタ
などに代って広く利用されるようlこなった。
またZnOを主成分とし、副成分として希土類元素、コ
バル)(Co)およびマグネシウム(Mg)又はカルシ
ウム(Ca)を元素又は化合物の形で添加して焼成する
ことにより製造される電圧非直線抵抗体が電圧非直線性
に優れていることが知られている。しかし、このような
電圧非直線抵抗体においては、長波尾のサージ電流耐量
がやや低いという欠点や課電寿命性能が低いなどという
欠点があり、素子の小型化を行う上で問題があった。
バル)(Co)およびマグネシウム(Mg)又はカルシ
ウム(Ca)を元素又は化合物の形で添加して焼成する
ことにより製造される電圧非直線抵抗体が電圧非直線性
に優れていることが知られている。しかし、このような
電圧非直線抵抗体においては、長波尾のサージ電流耐量
がやや低いという欠点や課電寿命性能が低いなどという
欠点があり、素子の小型化を行う上で問題があった。
本発明は長波尾サージによる素子の破壊機構を究明し、
さらに破壊防止を行うことを実現し、同時に課電寿命特
性をも向上させた、小形で高長波尾サージ電流耐量かつ
課電寿命特性の優れた電圧非直線抵抗体を提供すること
を目的としている。
さらに破壊防止を行うことを実現し、同時に課電寿命特
性をも向上させた、小形で高長波尾サージ電流耐量かつ
課電寿命特性の優れた電圧非直線抵抗体を提供すること
を目的としている。
ここに本発明者は、ZnOを主成分とし、副成分として
希土類元素、コバルトおよびマグネシウム又はカルシウ
ムを添加してなる従来技術の電圧非直線抵抗体において
、大電流の長波尾サージが印加されると、素子表面に備
えられた電極の外周部において電界集中による電流集中
が発生し、かかる電流集中が素子の破壊をもたらす事実
を見出した。また抵抗体内部においては、局部的な不均
質部が存在している事実を確認し、直流電流通電時にこ
の不均質部への電流集中が発生し、特性劣化をもたらす
ことを見出した。
希土類元素、コバルトおよびマグネシウム又はカルシウ
ムを添加してなる従来技術の電圧非直線抵抗体において
、大電流の長波尾サージが印加されると、素子表面に備
えられた電極の外周部において電界集中による電流集中
が発生し、かかる電流集中が素子の破壊をもたらす事実
を見出した。また抵抗体内部においては、局部的な不均
質部が存在している事実を確認し、直流電流通電時にこ
の不均質部への電流集中が発生し、特性劣化をもたらす
ことを見出した。
このような問題点を解決すべく研究を進めた結果、副成
分として更に硼素およびアルミニウム、ガリウム、イン
ジウムの中から少くとも一種を添加することにより、素
子外周部が内部よりやや高抵抗化する事実、さらにこれ
が電極外周部での電流集中を防止し長波尾サージ電流耐
量が向上する事実をも見出した。一方抵抗体内部におけ
る不均質部も同時に消滅し、課電寿命の大巾な向上がな
された電圧非直線抵抗体が得られることを見出し、本発
明を完成した。
分として更に硼素およびアルミニウム、ガリウム、イン
ジウムの中から少くとも一種を添加することにより、素
子外周部が内部よりやや高抵抗化する事実、さらにこれ
が電極外周部での電流集中を防止し長波尾サージ電流耐
量が向上する事実をも見出した。一方抵抗体内部におけ
る不均質部も同時に消滅し、課電寿命の大巾な向上がな
された電圧非直線抵抗体が得られることを見出し、本発
明を完成した。
しかして本発明によれば、ZnOを主成分とし、副成分
として希土類元素、コバルト、マグネシウムおよびカル
シウムの少くとも一方を含む電圧非直線抵抗体において
、更に副成分として硼素およびアルミニウム、ガリウム
、インジウムの中から少くとも一種を添加したことを特
徴とする電圧非直線抵抗体が提供される。
として希土類元素、コバルト、マグネシウムおよびカル
シウムの少くとも一方を含む電圧非直線抵抗体において
、更に副成分として硼素およびアルミニウム、ガリウム
、インジウムの中から少くとも一種を添加したことを特
徴とする電圧非直線抵抗体が提供される。
ここで原子チとは、所定の電圧非直線抵抗体を製造する
ために配合された原料組成物中の各成分金属元素の原子
数の総和に対する添加金属元素の原子数の百分率を意味
する。
ために配合された原料組成物中の各成分金属元素の原子
数の総和に対する添加金属元素の原子数の百分率を意味
する。
本発明に従う電圧非直線抵抗体は、一般lこはZnOと
添加成分の金属又は化合物との混合物を酸素含有雰囲気
のもとて高温で焼成し、焼結させることによって製造さ
れる。
添加成分の金属又は化合物との混合物を酸素含有雰囲気
のもとて高温で焼成し、焼結させることによって製造さ
れる。
通常、添加成分は金属酸化物の形で添加されるが、焼成
過程で酸化物になり得る化合物、例えば炭酸塩、水酸化
物、弗化物およびその溶液なども用いることができ或い
は単体元素の形で用いて焼成過程で酸化物にすることも
できる。
過程で酸化物になり得る化合物、例えば炭酸塩、水酸化
物、弗化物およびその溶液なども用いることができ或い
は単体元素の形で用いて焼成過程で酸化物にすることも
できる。
特に好ましい方法によれば、本発明の電圧非直線抵抗体
は、ZnO粉末に添加成分金属又は化合物の粉末を十分
に混合し、焼成前に空気中で500〜1000°0で数
時間仮焼し、仮焼物を十分に粉砕し、所定の形状に成形
し、次いで空気中で110ff”−1400°C程度の
温度で数時間焼成することにより製造される。1100
°Cより低い焼成温度では焼結が不十分で特性が不安定
である。また1400°Cより高い温度では、均質な焼
結体を得ることが困難となり、電圧非直線性が低下し、
特性の制御などの再現性に難点があり、実用に供する製
品を得がたい。
は、ZnO粉末に添加成分金属又は化合物の粉末を十分
に混合し、焼成前に空気中で500〜1000°0で数
時間仮焼し、仮焼物を十分に粉砕し、所定の形状に成形
し、次いで空気中で110ff”−1400°C程度の
温度で数時間焼成することにより製造される。1100
°Cより低い焼成温度では焼結が不十分で特性が不安定
である。また1400°Cより高い温度では、均質な焼
結体を得ることが困難となり、電圧非直線性が低下し、
特性の制御などの再現性に難点があり、実用に供する製
品を得がたい。
ここで本発明をさらに例示するために実施例を示す。
実施例
ZnO粉末にPI so■、 Co 104 、MgO
,B*Os 。
,B*Os 。
Al 、0.粉末を後記の第1表に記載の所定の原子係
に相当する量で添加し、十分に混合した後、500〜1
000℃で数時間仮焼した。次いで仮焼物を十分に粉砕
し、バインダーを加えて直径175− 閣の円板状に加圧成型し、1100〜】400°Cで空
気中で1時間焼成して焼結体を得た。この様にして得ら
れた焼結体を厚さ2mの試料に研磨し、その両面に電極
を焼付けて素子を作り、その電気的特性を測定した。
に相当する量で添加し、十分に混合した後、500〜1
000℃で数時間仮焼した。次いで仮焼物を十分に粉砕
し、バインダーを加えて直径175− 閣の円板状に加圧成型し、1100〜】400°Cで空
気中で1時間焼成して焼結体を得た。この様にして得ら
れた焼結体を厚さ2mの試料に研磨し、その両面に電極
を焼付けて素子を作り、その電気的特性を測定した。
電気的特性としては25°Cにおいて素子に1mAの電
流を流した時の電極間電圧V I m A、1mA〜]
QmAでの非直線指数α並びに長波尾サージ電流耐量と
して2m5ec、 100Aの矩形波電流を20回印加
し前後のV l m Aの変化の平均値を求めた。又課
電寿命特性としては、直流20mAを5分間通電し、前
後のV、μA(1A八通電時の電圧)の変化を求めた。
流を流した時の電極間電圧V I m A、1mA〜]
QmAでの非直線指数α並びに長波尾サージ電流耐量と
して2m5ec、 100Aの矩形波電流を20回印加
し前後のV l m Aの変化の平均値を求めた。又課
電寿命特性としては、直流20mAを5分間通電し、前
後のV、μA(1A八通電時の電圧)の変化を求めた。
非直線指数αは、素子電流Iの電圧Vに対する変化を次
式に近似した時に得られる。
式に近似した時に得られる。
I −(−)”
に
こで、Cは電流密度がl m A/cr&のときの素子
の厚さ当りの電圧である。
の厚さ当りの電圧である。
抵抗体の配合組成を種々変えたときの電気的 6−
特性の測定結果をも併わせで第1表に示す。第1表に示
した配合組成は、配合された原料中の各成分金属元素の
原子数の総和に対する添加元素の原子数の比から算出さ
れる原子チで示されている。
した配合組成は、配合された原料中の各成分金属元素の
原子数の総和に対する添加元素の原子数の比から算出さ
れる原子チで示されている。
第 1 表
第1表のつづき
試料Na IはZnOにPr、Co、Mgのみを添加し
て製造した従来の磁器に相当し、その長波尾サージ電流
耐量特性は−100,0%、課電寿命特性は−19,6
%、非直線指数は37である。本発明の目的である長波
尾サージ電流耐量が良好である、即ち−100,0%よ
り0%に近く、課電寿命特性が向上した、即ち−19,
6%より0%lこ近い試料は第1表より尚3〜7.Nα
1o〜13.Nα] 5〜18 、 Na21〜26
、 Na28〜31である。この中試料階26は非直線
指数αが低く実用に供さない。
て製造した従来の磁器に相当し、その長波尾サージ電流
耐量特性は−100,0%、課電寿命特性は−19,6
%、非直線指数は37である。本発明の目的である長波
尾サージ電流耐量が良好である、即ち−100,0%よ
り0%に近く、課電寿命特性が向上した、即ち−19,
6%より0%lこ近い試料は第1表より尚3〜7.Nα
1o〜13.Nα] 5〜18 、 Na21〜26
、 Na28〜31である。この中試料階26は非直線
指数αが低く実用に供さない。
従って、P rは0.08〜5.0原子俤、Coは0.
1〜10.0原子チ、Mgは0.01〜5.0原子係、
Bは0.0005〜0.1原子俤の範囲内で添加する必
要がある。
1〜10.0原子チ、Mgは0.01〜5.0原子係、
Bは0.0005〜0.1原子俤の範囲内で添加する必
要がある。
第1表から明らかなように、副成分としてのPr、Co
、Mg系にBおよび八1を添加することにより、長波尾
サージ電流耐量と課電寿命特性が大巾に改良される。こ
れはZnOにPr、Co、Mg。
、Mg系にBおよび八1を添加することにより、長波尾
サージ電流耐量と課電寿命特性が大巾に改良される。こ
れはZnOにPr、Co、Mg。
B、 AIが共存して初めて達成されるものである。
これらの副成分を単独に添加すると電圧非直線性は極め
て悪く、はジオ−ミッタな特性しか得られず実用に供す
ることができない。
て悪く、はジオ−ミッタな特性しか得られず実用に供す
ることができない。
第1表においては、希土類元素としてPrについてのみ
例示したが、Pr以外の希土類元素あるいは2種類以上
の希土類元素についても、BおよびAIの添加による効
果はPr単独の場合と同様、優れた非直線性を失わずに
長波尾サージ電流耐量と課電寿命特性の大巾な改良が見
出された。これらの結果を第2表に示す。
例示したが、Pr以外の希土類元素あるいは2種類以上
の希土類元素についても、BおよびAIの添加による効
果はPr単独の場合と同様、優れた非直線性を失わずに
長波尾サージ電流耐量と課電寿命特性の大巾な改良が見
出された。これらの結果を第2表に示す。
第 2 表
第3表および第4表は、Mgの代わりにCaを添加して
製造した場合の抵抗体の特性を示す。
製造した場合の抵抗体の特性を示す。
第3.4表より、この場合も希土類元素は0ff8〜5
〔)原子チ、Coは0.1〜10.0原子チ、Caは0
.(l 1〜5.0 原子%、Bは5 x 10−’
〜1 x 10−’i子饅、AIはI X 10−’〜
5 X 10−”原子価の範囲内で添加する必要がある
ことが明らかである。
〔)原子チ、Coは0.1〜10.0原子チ、Caは0
.(l 1〜5.0 原子%、Bは5 x 10−’
〜1 x 10−’i子饅、AIはI X 10−’〜
5 X 10−”原子価の範囲内で添加する必要がある
ことが明らかである。
第 3 表
−11−
第 4 表
さらにMgおよびCaの両者を共存させて添加した場合
の抵抗体の特性を第5表に示す。第5表により、Mgお
よびCaが共存しても単独の場合と同様の効果が得られ
ることが明らかである。
の抵抗体の特性を第5表に示す。第5表により、Mgお
よびCaが共存しても単独の場合と同様の効果が得られ
ることが明らかである。
またAIのかわりにガリウム又はインジウムを用いた場
合も第1〜5表と同じ効果か得られた。
合も第1〜5表と同じ効果か得られた。
第 5 表
上述したようlこ、本発明の電圧非直線抵抗体は、良好
な電圧非直線性を保持した上で、長波尾サージ電流耐量
とfi!寿命が大巾に向上し、従ってバリスタとして極
めて有効に使用することができる。
な電圧非直線性を保持した上で、長波尾サージ電流耐量
とfi!寿命が大巾に向上し、従ってバリスタとして極
めて有効に使用することができる。
−13−
Claims (1)
- 酸化亜鉛を主成分とし、これに副成分として少くとも一
種の希土類元素を総量で0.08〜5.0原子%、コハ
ルトヲ0,1〜10.0原子チ、マグネシウムおよびカ
ルシウムの少くとも一方を総量で001〜5.0原子チ
、硼素を5 X 10−’ 〜I X 10’−’原子
elJおよびアルミニウム、ガリウム、インジウムの中
から少くとも一種を総量でlXl0−’〜5 X 10
1原子チの範囲で添加し焼成してなることを特徴とする
電圧非直線抵抗体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113294A JPS594105A (ja) | 1982-06-30 | 1982-06-30 | 電圧非直線抵抗体 |
US06/509,080 US4477793A (en) | 1982-06-30 | 1983-06-29 | Zinc oxide non-linear resistor |
DE3323579A DE3323579C2 (de) | 1982-06-30 | 1983-06-30 | Spannungsabhängiger nicht-linearer Zinkoxid-Widerstand |
DE3348471A DE3348471C2 (de) | 1982-06-30 | 1983-06-30 | Spannungsabhängiger nicht-linearer Zinkoxid-Widerstand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113294A JPS594105A (ja) | 1982-06-30 | 1982-06-30 | 電圧非直線抵抗体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS594105A true JPS594105A (ja) | 1984-01-10 |
JPH0125203B2 JPH0125203B2 (ja) | 1989-05-16 |
Family
ID=14608542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57113294A Granted JPS594105A (ja) | 1982-06-30 | 1982-06-30 | 電圧非直線抵抗体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS594105A (ja) |
-
1982
- 1982-06-30 JP JP57113294A patent/JPS594105A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0125203B2 (ja) | 1989-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0142613B2 (ja) | ||
JPS644651B2 (ja) | ||
JPH0584641B2 (ja) | ||
JPS594105A (ja) | 電圧非直線抵抗体 | |
JPS594104A (ja) | 電圧非直線抵抗体 | |
JPS5982704A (ja) | 電圧非直線抵抗体 | |
JPH0125202B2 (ja) | ||
JPH0125204B2 (ja) | ||
JPH0574608A (ja) | 電圧非直線抵抗体の製造方法 | |
JPS644643B2 (ja) | ||
JPS644652B2 (ja) | ||
JPS6046006A (ja) | 電圧非直線抵抗体 | |
JPS6330763B2 (ja) | ||
JPS644648B2 (ja) | ||
JPS6046005A (ja) | 電圧非直線抵抗体 | |
JPS6214924B2 (ja) | ||
JPS644646B2 (ja) | ||
JPS6330761B2 (ja) | ||
JPS6330762B2 (ja) | ||
JPS644647B2 (ja) | ||
JPS6321324B2 (ja) | ||
JPH03261101A (ja) | 酸化亜鉛電圧非直線抵抗体の製造方法 | |
JPS6321326B2 (ja) | ||
JPS6321327B2 (ja) | ||
JPS6321325B2 (ja) |