JPS593918A - Manufacture of complementary semiconductor device - Google Patents

Manufacture of complementary semiconductor device

Info

Publication number
JPS593918A
JPS593918A JP11206082A JP11206082A JPS593918A JP S593918 A JPS593918 A JP S593918A JP 11206082 A JP11206082 A JP 11206082A JP 11206082 A JP11206082 A JP 11206082A JP S593918 A JPS593918 A JP S593918A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
conductivity type
impurity
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11206082A
Other languages
Japanese (ja)
Inventor
Yoji Yasuda
安田 洋史
Hiroshi Nozawa
野沢 博
Kazuhiko Hashimoto
一彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11206082A priority Critical patent/JPS593918A/en
Publication of JPS593918A publication Critical patent/JPS593918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/06Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
    • H01L21/08Preparation of the foundation plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To eliminate parasitic capacitance caused by overlap and attain the high speed, by a method wherein an insulation film having width corresponding to lateral diffusion length of impurity to be ion-implanted is formed to end at gate electrode side on active region to be ion-implanted. CONSTITUTION:When As<+> ion is implanted in P type well region 22, a first remaining CVD-SiO2 film 28 having width equal to lateral diffusion length LA of arsenic is formed to end at side of a gate electrode 272, thereby the gate electrode 272 and N<+> type source and drain regions 30, 31 are not overlapped. When B<+> ion is implanted in N type silicon substrate 21, first and second remaining CVD-SiO2 films 28', 32' having width equal to lateral diffusion length LB are formed to end at side of a gate electrode 271, thereby the gate electrode 271 and P<+> type source and drain regions 34, 35 are not overlapped.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型半導体装置の製造方法に関するO 〔発明の技術的背景〕 従来、MOS)ランジスタは一般的にM1図、(a)及
び(b)に示す如き方法にエリ製造されている。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method of manufacturing a complementary semiconductor device. It is manufactured by the method shown in ).

まず、例えばP型シリコン基板(X子領域)1上に薄い
熱酸化膜?形成した後、全面に例えば不純物ドープ多結
晶シリコンケ堆積する。次に、これら多結晶シリコン及
び熱酸比換r順次バターニングしてP型シリコン基板(
素子領域)1上にゲート酸化M2に介してゲート電極3
を形成する(第1図(a)図示)0次いで、前記ゲート
電極s2マスクとしてP艮シリコン基板(素子領域)1
にN型不純物rイオン注入する。つづいて、アニールr
行ってNp不純物km気的に活性とし、N をソース、
ドレイン領域−15r形成する(第1図(b)図示)。
First, for example, a thin thermal oxide film on a P-type silicon substrate (X region) 1? After forming, for example, impurity-doped polycrystalline silicon is deposited on the entire surface. Next, these polycrystalline silicon and thermal acid ratio r are sequentially buttered to form a P-type silicon substrate (
A gate electrode 3 is formed on the device region) 1 via a gate oxide M2.
(as shown in FIG. 1(a)) Next, as a mask for the gate electrode s2, a silicon substrate (device region) 1 is formed.
N-type impurity r ions are implanted. Next, annealing
The Np impurity km was made gaseously active, and the N was used as the source.
A drain region -15r is formed (as shown in FIG. 1(b)).

上述した方法では、ゲート電極3とN+型ソース1.ド
レイン領域4.5とがN型不純物の横長さ、第1図(b
)中のり、2いう)だけオーバーラツプして形成され、
このオーバーラツプ領域に寄生容量が分布するため、デ
バイスの高速化?追求する際の障害になっていた。
In the method described above, the gate electrode 3 and the N+ type source 1. The horizontal length of the drain region 4.5 and the N-type impurity are shown in FIG.
) is formed by overlapping only 2),
Does the distribution of parasitic capacitance in this overlap region increase device speed? It was an obstacle in my pursuit.

そこで、上記欠点?解消するために第2図(a)〜(d
)に示す如き方法が採用さルている。
So, what are the above drawbacks? In order to solve the problem, see Figure 2 (a) to (d).
) has been adopted.

まず、例えばP型シリコン基板(素子領域)11上にゲ
ート酸化膜12’y介して例えば多結晶シリコンからな
るゲート電極13ケ形成する(第2図(a)図示)0次
に、全面にN型不純物の横方向の拡散長しに等しい幅の
CVD −8to、膜14?堆積する(第2図(b)図
示)。次いで、非等方性エツチングである反応性イオン
エツチング(RIE) vcx リ、=ノcVD−8i
02膜14ケエッチング除去し、前記ゲート電極13ケ
形成に幅りの残存CVD−8102膜14′ケ形成する
(第2図(c)図示)0 次いで、前記ゲート電極13及びその側端部の残存CV
D−8IO□膜14′?マスクとして前記P型シリコン
基板11にN型不純物?イオン注入する。つづいて、ア
ニール會行ってN型不純物?電気的に活性とし、N+ 
型ソース、ドレイン領域15 ’+116 ’f、形成
する(第2図(d)図示)。
First, 13 gate electrodes made of, for example, polycrystalline silicon are formed on, for example, a P-type silicon substrate (device region) 11 via a gate oxide film 12'y (as shown in FIG. 2(a)).Next, N CVD -8to, film 14? with a width equal to the lateral diffusion length of the type impurity. (as shown in FIG. 2(b)). Next, reactive ion etching (RIE), which is an anisotropic etching, is performed.
The remaining CVD-8102 film 14' is removed by etching, and a wide remaining CVD-8102 film 14' is formed on the gate electrode 13 (as shown in FIG. 2(c)). Residual CV
D-8IO□ membrane 14'? An N-type impurity is added to the P-type silicon substrate 11 as a mask. Implant ions. Next, we went to an annealing meeting to find out whether it was an N-type impurity. electrically active, N+
Type source and drain regions 15'+116'f are formed (as shown in FIG. 2(d)).

上述した方法にLバば、予めゲート電極13側端部にN
型不純物の横方向の拡散長しに等しい幅の残存C’VD
−810.膜14′が形成さえもているので、第2図(
d)図示の工程でイオン注入されfcN型不純物?アニ
ールに工っで拡散させてもゲート電極13とN”  W
ソース、ドレイン領域15.16がオーバーラツプする
ことはない。
In the method described above, N is applied to the edge of the gate electrode 13 in advance.
Residual C'VD with width equal to lateral diffusion length of type impurity
-810. Since the membrane 14' has even been formed, as shown in FIG.
d) Is the fcN type impurity ion-implanted in the illustrated process? Even if it is annealed and diffused, the gate electrode 13 and N”W
The source and drain regions 15 and 16 do not overlap.

したがって、寄生容量は発生せず、デバイスの高速化倉
達成することができる。
Therefore, no parasitic capacitance is generated, and high-speed device operation can be achieved.

ところで、上述した方、法?相補型半導体装置の製造に
適用し↓うとすると以下のような問題点が生じる。。
By the way, the person mentioned above, the law? When applied to the manufacture of complementary semiconductor devices, the following problems arise. .

すなわち、PチャネルMO8)ランジスタ形成のために
P型不純物として例えばボロンに用い、NチャネルMO
8)7ンジスタ形成のためにN型不純物として例えば砒
素音用いた場合、ボロンの拡散係数は砒素の拡散係数の
約2倍であるため、ボロンの横方向の拡散長は砒素の横
方向の拡散長の約2倍となる。したがって、各ゲート電
極の側端部に形成する絶縁膜の厚さ?、ボロンの横方向
の拡散長にあわせると、耐 型ンース、ドレイン領域が
ゲート電極の端部まで達しないで形成され、しきい値電
圧以上の電圧ケ印加してもNチャネルMO8)ランジス
タが動作しない。一方、絶縁膜の幅?砒素の横方向の拡
散長にあわせると、P+壓ソース、ドレイン領域とゲー
ト電極にオーバーラツプ領域が形成され、寄生容量が発
生する。
That is, for example, boron is used as a P-type impurity to form a P-channel MO transistor, and an N-channel MO
8) When using arsenic as an N-type impurity to form a 7-transistor, the diffusion coefficient of boron is approximately twice that of arsenic, so the lateral diffusion length of boron is equal to the lateral diffusion length of arsenic. It is about twice the length. Therefore, what is the thickness of the insulating film formed on the side edges of each gate electrode? , when matched with the lateral diffusion length of boron, the drain region is formed without reaching the edge of the gate electrode, and the N-channel MO transistor does not operate even if a voltage higher than the threshold voltage is applied. do not. On the other hand, the width of the insulating film? When adjusted to the lateral diffusion length of arsenic, an overlap region is formed between the P+ source and drain regions and the gate electrode, and a parasitic capacitance is generated.

〔発明の目的〕[Purpose of the invention]

本発明は、Pチャネル、NチャネルのMOSトランジス
タのいずれにおいてもゲート電極とソース、ドレイン領
域間のオーバーラツプにもとづく寄生容量?なくするこ
とにエリ、高速化を達成し得る相補型半導体装置の製造
方法ケ提供すること?目的とするものである。
The present invention deals with parasitic capacitance based on the overlap between the gate electrode and the source and drain regions in both P-channel and N-channel MOS transistors. What is the purpose of providing a method for manufacturing a complementary semiconductor device that can achieve faster speeds? This is the purpose.

〔発明の概要〕[Summary of the invention]

本発明の相補型半導体装置の製造方法は、第1及び第2
導電型の夫々の活性領域に逆導電型の不純物?イオン注
入する前に、少なくともイオン注入されるべき活性領域
上のゲート電極側端部に、イオン注入される不純物の横
方向の拡散長に対応した幅の絶縁膜紫形成することに↓
す、第1及び第2導電型のいずれの活性領域においても
不純物拡散層とゲート電極がオーバーラツプしない工う
にし、寄生容ikなくそうとするものである。
The method for manufacturing a complementary semiconductor device of the present invention includes first and second
Is there an impurity of the opposite conductivity type in each active region of the conductivity type? Before ion implantation, an insulating film with a width corresponding to the lateral diffusion length of the impurity to be ion-implanted is formed at least on the gate electrode side edge of the active region where ions are to be implanted.↓
The purpose is to prevent the impurity diffusion layer and the gate electrode from overlapping in either the first or second conductivity type active regions, thereby eliminating parasitic capacitance.

〔発明の実施例〕[Embodiments of the invention]

以下ζ本発明の実施例?第3図(a)〜(h)及び第4
図(a) 、 (b) k参照して説明する。
The following is an example of the present invention? Figures 3 (a) to (h) and 4
This will be explained with reference to Figures (a) and (b).

実施例1 まず、N型シリコン基板21にP型ウェル領域22ケ形
成した後、通常の選択酸化法とフィールド反転防止領域
へのイオン注入にエリフィールド酸化膜23及びその下
のN−型及びP−型フィールド反転防止領域24.25
’z形成した。次に、N型シリコン基板21及びP型ウ
ェル領域22の素子領域表面に薄い熱酸化膜ゲ州7成し
た後、全面に不純物ドープ多結晶シリコン?堆積した。
Embodiment 1 First, 22 P-type well regions are formed on an N-type silicon substrate 21, and then an Elifield oxide film 23 and the N-type and P well regions thereunder are formed using the usual selective oxidation method and ion implantation into the field inversion prevention region. - Type field inversion prevention area 24.25
'z formed. Next, after forming a thin thermal oxide film 7 on the surface of the element region of the N-type silicon substrate 21 and the P-type well region 22, an impurity-doped polycrystalline silicon film is formed on the entire surface. Deposited.

つづいて、これら多結晶シリコン及び熱酸化膜?順次パ
ターニングして前記N型、シリコン基板21上及びP型
ウェル領域22上に夫々ゲート酸化膜26Hz26xk
介してゲート電極27..272紫形成した(第3図(
a)図示)0 次いで、全面に砒素の横方向の拡散長しム に等しい膜
厚の第1のCVD−8in2膜28〒堆積した(第3図
(b)図示)0つづいて、非等方性エツチングである反
応性イオンエツチングRIEにエリ、この第1のCVD
−310,膜28ケエッチングして前記ゲート電極27
..27.側端部に幅LA  ノ第1の残存CVD−8
I Os MW 2”+”’を形成した(第3図(C)
図示)0つづいて、少なくとも前記N型シリコン基板2
ノ上ケ覆う↓うにホトレジストパターン29紫形成した
後、この不トレジストハターン29及び前記P型ウェル
領域22−トのゲート電極27.とこのゲート電極27
2側端部に形成された第1の残存CVD−8102膜2
8′?マスクとしてAs  7iイオン注入し几(第3
図(d)図示)○ 次いで、前記ホトレジストパターン29?除去した後、
アニール全行いN+型ソース、ドレイン領域30.31
’f形成した。つづいて、全面にボロンの横方向の拡散
長と砒素の横方向の拡散長との差に等しい膜厚の第2の
CVD−8IO2膜32ケ堆積した(第3図(e)図示
)。つづいて、RIEにエリコノ第2 (D CVD−
8l(h膜32ケエツチングして、前記ゲート′邂極2
7.,27゜側端部に形成された前記第1の残存CVD
−8io2膜28′・・・に重ねて第2の残存CVD−
810,膜32′ ・・紫形成した。これら第1及び第
2の残存CVr)−8IO!膜28′・・・132′・
・・の幅7合わせるとボロンの横方向の拡散長LB  
と等しくなる(第3図(f)図示)。つづいて、少なく
とも前記P型ウェル領域22上?覆う工うにホトレジス
トパターン33?形成した後、このホトレジストパター
ン33及び前記N型シリコン基板2ノ上のゲート電極2
7.とこのゲート電極271側端部に形成された第1.
第2の残存CVD−810,膜28 ’ −、32’ 
=−’fz−yスクトし’C’3”kイオン注入した(
第3図(g)図示)。
Next, what about these polycrystalline silicon and thermal oxide films? Gate oxide films of 26Hz26xk are formed on the N-type, silicon substrate 21 and P-type well regions 22 by sequential patterning.
via the gate electrode 27. .. 272 purple was formed (Fig. 3 (
a) As shown in Figure 3) Next, a first CVD-8in2 film 28 with a thickness equal to the lateral diffusion length of arsenic was deposited on the entire surface (as shown in Figure 3(b)). This first CVD is similar to reactive ion etching RIE, which is a reactive etching process.
-310, the film 28 is etched and the gate electrode 27 is
.. .. 27. First remaining CVD-8 of width LA at the side end
I Os MW 2"+"' was formed (Fig. 3(C)
(Illustrated) 0 Continuing, at least the N-type silicon substrate 2
After forming a photoresist pattern 29 to cover the upper surface, this non-resist pattern 29 and the gate electrode 27 of the P-type well region 22 are formed. This gate electrode 27
First residual CVD-8102 film 2 formed on the second side edge
8'? As a mask, As 7i ions were implanted (3rd stage).
(D) (Illustrated) Next, the photoresist pattern 29? After removing
Fully annealed N+ type source and drain regions 30.31
'f formed. Subsequently, 32 second CVD-8IO2 films having a thickness equal to the difference between the lateral diffusion length of boron and arsenic were deposited on the entire surface (as shown in FIG. 3(e)). Next, Eriko No. 2 (D CVD-
8L (H film 32 is etched to form the gate electrode 2).
7. , the first remaining CVD formed at the 27° side end.
-Second residual CVD layer overlaid on the 8io2 film 28'...
810, film 32'...purple color formed. These first and second remaining CVr)-8IO! Membrane 28'...132'.
When combined with the width 7 of..., the horizontal diffusion length LB of boron
(as shown in FIG. 3(f)). Next, at least on the P-type well region 22? Covering sea urchin photoresist pattern 33? After forming the photoresist pattern 33 and the gate electrode 2 on the N-type silicon substrate 2,
7. The first .
Second remaining CVD-810, membrane 28'-, 32'
=-'fz-y sct and 'C'3''k ion implantation (
Figure 3 (g) diagram).

次いで、前記ホトレジストパターン33?除去した後、
アニール?行い戸 型ソース、ドレイン領域34.35
’;(形成した。つづいて、全ffi K第3 +7)
 CVD−810!膜36ケ堆積した後、コンタクトホ
ール37.・・・ケ開孔し次。つづいて、全面にA/=
膜?膜着蒸着後、バターニングし°CA、a 配線38
.・・・音形成して相補型半導体装置r製造した(第3
図(h)図示)。
Next, the photoresist pattern 33? After removing
Anil? Gate type source, drain region 34.35
'; (formed.Continued, all ffi K 3rd +7)
CVD-810! After depositing 36 films, contact holes 37. ...After drilling the hole. Next, A/= on the entire surface.
film? After film deposition, buttering °CA, a Wiring 38
.. ...Complementary semiconductor device r was manufactured by sound formation (3rd
Figure (h) shown).

しかして、上述した製造方法によれば、第3図(、)図
示の工程でP型ウェル領域22にAa  fイオン注入
する際にはゲート電極272側端部に砒素の横方向の拡
散長り人 に等しい幅の第1の残存CVD−810,膜
28′が形成されているので、第3図(e)図示の工程
でアニールを行ってN+ 型ソース、ドレイン領域30
.31’l(形成しても、ゲート電極27.とN+ 、
 Hソース、ドレイン領域30.31とはオーバーラツ
プしない。一方、第3図(g)図示の工程でNuシリコ
ン基板21にBiイオン注入する際にはゲート電極27
11Llll端部にボロンの横方向の拡散長LB  に
等しい幅の第1及び第2の残存CVD−810,[2B
’  、32’が形成されているので、第3図(g)図
示の工程でアニール7行ってP 型ノース、ドレイ/領
域34.:Il’7形成しても、ゲート電極27.とP
+ 型ソース。
According to the manufacturing method described above, when Aa f ions are implanted into the P-type well region 22 in the step shown in FIG. Since the first residual CVD-810 film 28' with a width equal to the width of 100 nm has been formed, annealing is performed in the step shown in FIG.
.. 31'l (even if formed, the gate electrode 27. and N+,
There is no overlap with the H source and drain regions 30 and 31. On the other hand, when Bi ions are implanted into the Nu silicon substrate 21 in the step shown in FIG. 3(g), the gate electrode 27
First and second residual CVD-810, [2B
', 32' are formed, so annealing 7 is performed in the process shown in FIG. : Even if Il'7 is formed, the gate electrode 27. and P
+ type source.

ドレイン領域34.35とはオーバーラツプしない。し
皮がって、N型シリコン基板21及びP型つェル領v、
22のいずれにおいても ゲート電極とソース・ドレイ
ン領域のオーバーラツプにもとづく 寄生容量は発生せ
ず、高速化した相補型半導体装置r製造することができ
る〇まm1拡散係数の小さい砒素のイオン注入及びアニ
ールに↓るN+ 型ソース、ドレイン領域30.31の
形成を先に行い、拡散係数の大きイd(1:I :、/
 (Dイオン注入及びアニールK エルP”壓ソース、
ドレイン領域34.35の形成r後で行うので、P+ 
型ソース。ドレイン領域3イ。
There is no overlap with drain regions 34 and 35. Accordingly, an N-type silicon substrate 21 and a P-type well region v,
In any of 22, no parasitic capacitance is generated due to the overlap between the gate electrode and the source/drain region, and high-speed complementary semiconductor devices can be manufactured. ↓The N+ type source and drain regions 30 and 31 are formed first, and the diffusion coefficient is large d(1:I:,/
(D ion implantation and annealing K L P” source,
Since this is performed after the formation of the drain regions 34 and 35, P+
type source. Drain region 3a.

35形成後の熱工程が少なく、ゲート電極とソース、ド
レイン領域がオーバーシップしにくい。
There are few heat steps after forming the gate electrode and the source and drain regions are less likely to overlap.

実施例2 M3図(a)〜(e)図示の工程にエリ、フィールド酸
化膜23で分離されたN型シリコン基板21及びP型ウ
ェル領域22上に夫々ゲー)[化膜2J*262に介し
て形成されたゲート電極27、.27□側端部に砒素の
横方向の拡散長り人ニ等シイ幅の残存CVD−8101
pli 2 B ’ ・”紮形成した後、前記P型ウェ
ル領域22へのAs+のイオン注入及びアニールにエリ
耐 型ソース、ドレイ/領域30.31’(形成し、更
に全面にボロンの横方向の拡散長LB  と砒素の横方
向の拡散長L/、  との差に等しい膜厚の第2のCV
D−8tO2膜32?堆積しfCoこの時点で、ゲート
亘極271側端部において、前記残存CVI))−8j
O□膜28′と第2 +7) CVD−8to、膜32
と?合わせた幅はボロンの横方向の拡散長LB  と等
しくなっている。
Embodiment 2 M3 Figures (a) to (e) In the steps shown in the drawings, a silicon substrate 21 and a well region 22 of the N type and the P type well region 22 separated by the field oxide film 23 were respectively coated with a silicon nitride layer (G) through the oxide film 2J*262. Gate electrodes 27, . 27 □ Lateral diffusion of arsenic on the side edge with a similar width remaining CVD-8101
pli 2 B'・"After forming the pores, As+ ions are implanted into the P-type well region 22 and annealing is performed to form the E-type source, drain/region 30. A second CV with a film thickness equal to the difference between the diffusion length LB and the lateral diffusion length L/ of arsenic.
D-8tO2 membrane 32? At this point, the remaining CVI is deposited at the end of the gate electrode 271) -8j
O□ film 28' and 2nd +7) CVD-8to, film 32
and? The combined width is equal to the lateral diffusion length LB of boron.

つづいて、少なくとも前記P型ウェル領域22にX&う
工うにホトツレストパターン39ケ形成した後、このホ
トレジストパターン39ケマスクとしてB をイオン注
入した(第4図(a)図示)。この際、ゲート電極27
10i11端部における前記残存CVD−8IO,膜2
8′及び第2のCVD−8IO,膜32もマスクとして
作用する。
Subsequently, 39 photoresist patterns were formed in at least the P-type well region 22 with an X-shaped pattern, and then B 2 was ion-implanted into the photoresist patterns 39 as a mask (as shown in FIG. 4(a)). At this time, the gate electrode 27
The remaining CVD-8IO at the 10i11 end, film 2
8' and the second CVD-8IO, film 32 also acts as a mask.

次いで、前記ホトレジストパターン39ケ除去した後、
アニールケ行いP+ 型ソース、ドレイン領域40.4
1’(形成した。つづいて、前記第2の絶縁膜32にコ
ンタクトホール42.・・・?開孔し、全面にAt膜r
蒸着した後、パターニングしてAt配線43.・・・?
形成して相補型半導体装置?製造した(第4図(b)図
示)。
Next, after removing the 39 photoresist patterns,
Annealed P+ type source and drain regions 40.4
1' (formed.Continuously, a contact hole 42...? is formed in the second insulating film 32, and an At film r is formed on the entire surface.
After vapor deposition, patterning is performed to form At wiring 43. ...?
Forming a complementary semiconductor device? was manufactured (as shown in FIG. 4(b)).

しかして、上述した製造方法でも、上記実施例1と同様
な効果ケ得ることができる。
Therefore, the same effects as in Example 1 can be obtained even with the above-mentioned manufacturing method.

なお、本発明において使用される不純物は上記実施例の
如く、砒素とボロンに限らず、他の不純物でもよく、絶
縁膜もCVD−810,膜に限らず他の絶縁膜でもよい
ことは勿論である。
Note that the impurities used in the present invention are not limited to arsenic and boron as in the above embodiments, but may be other impurities, and the insulating film is not limited to CVD-810, but it goes without saying that other insulating films may be used. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Pチャネル、Nチャネルのλ10Sト
ランジスタのいずれにおいてもゲート電極とソース、ド
レイン領域間のオーバー2ツブにもとづく寄生容量?な
くすることに↓り高速化を達成し得る相補型半導体装置
の製造方法?提供できるものである。
According to the present invention, in both P-channel and N-channel λ10S transistors, there is a parasitic capacitance based on the over two-tube between the gate electrode and the source and drain regions. Is there a method for manufacturing complementary semiconductor devices that can achieve faster speeds by eliminating them? This is something that can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来のN?ヤネルMO8)
ランジスタの製造方法を工程順に示す断面図、第2図(
a)〜(d)は従来のNチャネルMO8)ランジスタの
他の製造方法を工程順に示す断面図、第3図(a)〜(
h)は本発明の実施例1における相補型半導体装置の製
造方法を工程順に示す断面図、第4図(a) j(b)
は本発明の実施例2における相補型半導体装置の製造方
法?工程順に示す断面図である。 21・・・N型シリコン基板、22°°・P型りエル領
域、23・・・フィールド酸化膜、24.25・・・N
″″凰及びP”″壓フィールド反転防止領域、26、.
26.・・・ゲート酸化膜、I#、、21゜・・・ゲー
ト電極、28・・・第1のcvn−sto、膜、2 g
 ’−°°第1の残存CVD−810,膜、so。 3I・・・N 型ソース。ドレイン領域、32川第21
Z)CVD−8in、膜、!’2’−11g2の残存C
VD−8iQ、膜、34.35−P  型ノース。 1”Vイ:/領域、36−M 3 c7) cvD−s
 102 i、37・°・コンタクトホール、38・・
・AtWeM、39°°°ホトレジストパターン、40
.47・・・P 型ソース、ドレイン領域、42・・・
コンタクトホール、43・・・A/−配線。 出願人代理人 弁理士  鈴 江 武 彦第 1 =、
図 第2図 第3図 第3図
Figures 1(a) and (b) show the conventional N? Yanel MO8)
Figure 2 is a sectional view showing the manufacturing method of transistors in order of process.
a) to (d) are cross-sectional views showing another manufacturing method of a conventional N-channel MO8) transistor in order of steps;
h) is a cross-sectional view showing the manufacturing method of a complementary semiconductor device according to the first embodiment of the present invention in the order of steps; FIGS. 4(a) and 4(b)
Is the method for manufacturing a complementary semiconductor device in Example 2 of the present invention? It is sectional drawing shown in order of a process. 21...N-type silicon substrate, 22°/P-type reel region, 23...Field oxide film, 24.25...N
""凰 and P""壓 field inversion prevention area, 26, .
26. ... Gate oxide film, I#, 21° ... Gate electrode, 28 ... First CVN-STO, film, 2 g
'-°° 1st residual CVD-810, membrane, so. 3I...N type source. Drain area, 32nd river 21st
Z) CVD-8in, film,! '2'-11g2 residual C
VD-8iQ, membrane, 34.35-P type north. 1”Vi:/area, 36-M 3 c7) cvD-s
102 i, 37・°・contact hole, 38・・
・AtWeM, 39°°° photoresist pattern, 40
.. 47...P type source, drain region, 42...
Contact hole, 43...A/- wiring. Applicant's agent Patent attorney Takehiko Suzue 1 =,
Figure 2 Figure 3 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)第1及び第2導電型の活性領域ケ有する半導体基
体の夫々の活性領域上にゲート絶縁膜?介してゲート電
極音形成し、少なくとも各ゲート電極ケマスクとして利
用し、夫々の活性領域に逆導電型の不純物?イオン注入
してソース、ドレイン領域音形成する相補型半導体装置
の製造方法において、夫々の活性領域に逆導電型の不純
物?イオン注入する前に、少なくともイオン注入される
べき活性領域上のゲート電極側端部に、イオン注入され
る不純物の横方向の拡散長に対応した幅の絶縁膜を形成
すること?特徴とする相補型半導体装置の製造方法。
(1) Is there a gate insulating film on each active region of a semiconductor substrate having active regions of first and second conductivity types? At least each gate electrode is used as a mask to form an impurity of opposite conductivity type in each active region. In the manufacturing method of complementary semiconductor devices in which ions are implanted to form source and drain regions, do impurities of opposite conductivity types enter each active region? Before ion implantation, is it necessary to form an insulating film having a width corresponding to the lateral diffusion length of the impurity to be ion-implanted, at least at the end of the gate electrode side above the active region to be ion-implanted? A method for manufacturing a complementary semiconductor device characterized by:
(2)拡散係数の小さい第1導を型不純物及び拡散係数
の大きい第2導電型不純物金少なくともゲート電ikマ
スクとして夫々逆導電型の活性領域にイオン注入してソ
ース、ドレイン領域音形成する際、ゲート電極ケ含む半
導体基体全面に第1の絶縁膜?堆積し、非等方性エツチ
ングにエリ各ゲート電極側端部に前記第1導電型不純物
の横方向の拡散長に対応した幅の絶縁膜葡残存させて第
2導電型の活性領域に第1導箪型不純物ケイオン注入し
第1導電壓ソース、ドレイン領域音形成し、更に、全面
に第2の絶縁膜?堆積し、非等方性エツチングにエリ少
なくとも第1導電型の活性領域上のゲート電極側端部に
前記残存絶縁膜と合わせて前記第2導電壓不純物の横方
向の拡散長に対応した幅の絶縁膜?残存させて第1導電
型の活性領域に第2導電型不純物ケイオン注入し第2導
を型ソース、ドレイン領域音形成することケ特徴とする
特許請求の範囲第1項記載の相補型半導体装置の製造方
法。
(2) When forming the source and drain regions by ion-implanting the first conductivity with a small diffusion coefficient into the active region of the opposite conductivity type as a type impurity and the second conductivity type impurity gold with a high diffusion coefficient at least as a gate electrode mask. , a first insulating film over the entire surface of the semiconductor substrate including the gate electrode? The insulating film is deposited and anisotropically etched to leave an insulating film with a width corresponding to the lateral diffusion length of the impurity of the first conductivity type at the edge of each gate electrode, and to form a first insulating film in the active region of the second conductivity type. A conductive type impurity silicon ion is implanted to form a first conductive source and drain region, and then a second insulating film is formed on the entire surface. The second conductive impurity is deposited and anisotropically etched at least at the edge of the gate electrode side on the active region of the first conductivity type, with a width corresponding to the lateral diffusion length of the second conductive impurity, together with the remaining insulating film. Insulating film? A complementary semiconductor device according to claim 1, characterized in that impurity silicon ions of the second conductivity type are implanted into the active region of the first conductivity type to form the second conductivity type source and drain regions. Production method.
(3)拡散係数の小さい第1導電型不純物及び拡散係数
の大きい第2導電型不純物?少なくともゲート電極?マ
スクとして夫々逆導電型の活性領域にイオン注入してソ
ース、ドレイン領域音形成する際、ゲート電極を含む半
導体基体全面に第1の絶縁膜?堆積し、非等方性エツチ
ングにエリ各ゲート電極側端部に前記第1導電型不純物
の横方向の拡散長に対応した幅の絶縁膜を残存させて第
2導電型の活性領域に第1導電型不純物全イオン注入し
血1導電屋ソース、ドレイン領域音形成し、更に、全面
に第1導電型の活性領域上のゲート電極側端部で前記残
存絶縁膜と合わせて前記第2導電型不純物の横方向の拡
散長に対応した幅となるように第2の絶縁膜?堆積し第
1導電型の活性領域に第2導電型不純物?イオン注入し
第2導電型ソース、ドレイン領域音形成すること?特徴
とする特許請求の範囲第1項記載の相補型半導体装置の
製造方法。
(3) A first conductivity type impurity with a small diffusion coefficient and a second conductivity type impurity with a large diffusion coefficient? At least the gate electrode? When forming source and drain regions by implanting ions into active regions of opposite conductivity types as a mask, a first insulating film is applied over the entire surface of the semiconductor substrate including the gate electrode. The insulating film is deposited and anisotropically etched to leave an insulating film having a width corresponding to the lateral diffusion length of the impurity of the first conductivity type at the end of each gate electrode, and to form the first insulating film in the active region of the second conductivity type. All conductive type impurity ions are implanted to form a conductive source and drain region, and then the second conductive type is added to the remaining insulating film at the gate electrode side edge on the active region of the first conductive type over the entire surface. The second insulating film has a width corresponding to the lateral diffusion length of the impurity. A second conductivity type impurity is deposited in the first conductivity type active region? Is it possible to implant ions to form the second conductivity type source and drain regions? A method for manufacturing a complementary semiconductor device according to claim 1.
JP11206082A 1982-06-29 1982-06-29 Manufacture of complementary semiconductor device Pending JPS593918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11206082A JPS593918A (en) 1982-06-29 1982-06-29 Manufacture of complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11206082A JPS593918A (en) 1982-06-29 1982-06-29 Manufacture of complementary semiconductor device

Publications (1)

Publication Number Publication Date
JPS593918A true JPS593918A (en) 1984-01-10

Family

ID=14577031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11206082A Pending JPS593918A (en) 1982-06-29 1982-06-29 Manufacture of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS593918A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226055A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JPS63296379A (en) * 1987-05-28 1988-12-02 Sharp Corp Manufacture of complementary thin-film transistor
JPH01283956A (en) * 1988-05-11 1989-11-15 Matsushita Electric Ind Co Ltd Semiconductor device and preparation thereof
US5093276A (en) * 1984-12-11 1992-03-03 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production
JPH06268165A (en) * 1991-02-27 1994-09-22 Samsung Electron Co Ltd Preparation of semiconductor transistor and its structure
JP2002222866A (en) * 2001-01-24 2002-08-09 Mitsubishi Electric Corp Method for fabricating semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093276A (en) * 1984-12-11 1992-03-03 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production
JPS63226055A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JPS63296379A (en) * 1987-05-28 1988-12-02 Sharp Corp Manufacture of complementary thin-film transistor
JPH065753B2 (en) * 1987-05-28 1994-01-19 シャープ株式会社 Method of manufacturing complementary thin film transistor
JPH01283956A (en) * 1988-05-11 1989-11-15 Matsushita Electric Ind Co Ltd Semiconductor device and preparation thereof
JPH06268165A (en) * 1991-02-27 1994-09-22 Samsung Electron Co Ltd Preparation of semiconductor transistor and its structure
JP2002222866A (en) * 2001-01-24 2002-08-09 Mitsubishi Electric Corp Method for fabricating semiconductor device

Similar Documents

Publication Publication Date Title
KR910006700B1 (en) The method of manufacturing of mos type semiconductor device
TWI818928B (en) Method for fabricating semiconductor device
JPH09232445A (en) Semiconductor device and its manufacture
JPH0348459A (en) Semiconductor device and manufacture thereof
JPS593918A (en) Manufacture of complementary semiconductor device
JPH07120705B2 (en) Method for manufacturing semiconductor device having element isolation region
JPS6251216A (en) Manufacture of semiconductor device
JPS59197161A (en) Manufacture of semiconductor device
KR100408000B1 (en) Method for Forming Semiconductor Device
JPS6333868A (en) Manufacture of mis field-effect transistor
JPH04271166A (en) Complementary mos integrated circuit and manufacture thereof
JPH05335503A (en) Manufacture of semiconductor device
JP2940557B2 (en) Method for manufacturing semiconductor device
JPS62244163A (en) Semiconductor device
JPH11150266A (en) Semiconductor device and manufacture thereof
JPH04101433A (en) Manufacture of semiconductor device
JPH03120835A (en) Manufacture of insulated gate field effect transistor
JPH0521455A (en) Manufacture of semiconductor integrated circuit device
JPH01125977A (en) Mos semiconductor device
JPH0527995B2 (en)
JPS5951152B2 (en) Manufacturing method of semiconductor device
JPH0621373A (en) Manufacture of semiconductor device
JPH06196553A (en) Semiconductor device
JPH03211772A (en) Manufacture of mos transistor
JPS61251164A (en) Manufacture of bi-mis integrated circuit