JPS5923049B2 - Insulating ceramics for high frequency circuit boards - Google Patents

Insulating ceramics for high frequency circuit boards

Info

Publication number
JPS5923049B2
JPS5923049B2 JP51160631A JP16063176A JPS5923049B2 JP S5923049 B2 JPS5923049 B2 JP S5923049B2 JP 51160631 A JP51160631 A JP 51160631A JP 16063176 A JP16063176 A JP 16063176A JP S5923049 B2 JPS5923049 B2 JP S5923049B2
Authority
JP
Japan
Prior art keywords
weight
high frequency
dielectric loss
circuit boards
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51160631A
Other languages
Japanese (ja)
Other versions
JPS5384199A (en
Inventor
薫 橋本
紘一 丹羽
正敏 藤森
恭平 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51160631A priority Critical patent/JPS5923049B2/en
Publication of JPS5384199A publication Critical patent/JPS5384199A/en
Publication of JPS5923049B2 publication Critical patent/JPS5923049B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は電子管のベースステムあるいは回路基板などに
使用する絶縁セラミックスに関し、特に高周波領域にお
いて誘電積重の小さい絶縁セラミックスを提供するとこ
ろに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to insulating ceramics used for base stems of electron tubes, circuit boards, etc., and particularly to providing insulating ceramics with a small dielectric stack in a high frequency region.

電子管用ベースステムあるいは回路基板などに使用する
セラミック材料の電気特性を実用的に評、価する場合に
基本となる特性の1つに誘電積重がある。誘電積重εと
誘電正接[anδの積、ε・tanδ、であられされる
量で、とくに高周波領域における材料の絶縁性を評価す
るために重要な因子である。そして誘電積重の小さい材
料ほど高周o波絶縁性がすぐれていることになる。さら
に誘電積重の大きい材料ほど電力の損失が多く、その結
果生ずる発熱も増大する。したがつて高周波絶縁材料に
対しては誘電積重が小さいことが必要である。5 以上
のような理由によつて、従来電子管のベースステム等に
使用されてきた材料として、マイクロ波領域における誘
電積重の小さいフォルステライト2Mg0−SiO2基
板が用いられてきた。
Dielectric stacking is one of the basic characteristics when practically evaluating and evaluating the electrical properties of ceramic materials used for electron tube base stems or circuit boards. It is a quantity expressed by the product of dielectric stack ε and dielectric loss tangent [and δ, ε·tan δ, and is an important factor for evaluating the insulation properties of materials, especially in a high frequency region. The smaller the dielectric stack, the better the high-frequency O-wave insulation. Additionally, materials with larger dielectric stacks experience more power loss and, as a result, more heat generation. Therefore, it is necessary for high frequency insulating materials to have a small dielectric stack. 5. For the reasons mentioned above, a forsterite 2Mg0-SiO2 substrate, which has a small dielectric stack in the microwave region, has been used as a material for the base stem of an electron tube.

しかしながら電子機器の高性能化にともない、マイク・
o 口波領域よりもさらに高い周波数例えば、ギガヘル
ツ帯で動作させる電子管が要求されるようになつた。と
ころがマイクロ波領域以上の周波数では、フォルステラ
イトの誘電積重は周波数の増大につれて大きくなる。し
たがつてフォルステライトの!5絶縁性は低下し、出力
に悪影響を及ぼすという欠点を有している。本発明の目
的はこのような欠点を取り除き、マイクロ波より高い周
波数領域においても誘電積重の小さいセラミック材料を
提供するものである。■o 上記目的を達成するために
、本発明の絶縁セラミックは、50重量%〜90重量%
のマグネシアMgOと、30重量%以下のシリカSiO
2と、10重量%〜40重量%のアルミナAl2O3と
を焼結せしめて成るものである。
However, as electronic devices become more sophisticated, microphones and
o Electron tubes that operate at frequencies even higher than the mouth wave region, for example in the gigahertz band, are now required. However, at frequencies above the microwave range, the dielectric stacking of forsterite increases as the frequency increases. Therefore, forsterite! 5. This has the disadvantage that the insulation properties deteriorate and the output is adversely affected. The object of the present invention is to eliminate these drawbacks and provide a ceramic material with a small dielectric stack even in the frequency range higher than microwaves. ■o In order to achieve the above object, the insulating ceramic of the present invention has a content of 50% to 90% by weight.
of magnesia MgO and 30% by weight or less of silica SiO
2 and 10% to 40% by weight of alumina Al2O3 are sintered.

15以下実施例により本発明を詳述する。The present invention will be explained in detail with reference to 15 Examples below.

この3成分系セラミックスは次の工程により製造される
This three-component ceramic is manufactured by the following steps.

1上述の如き組成となるよう、マグネシア、シリカ、ア
ルミナの各粉末をボールミル装置で混合する。
1 Magnesia, silica, and alumina powders are mixed in a ball mill to obtain the composition as described above.

2混合粉末を1300℃、1時間で熱処理する。The mixed powder of 2 was heat treated at 1300°C for 1 hour.

3熱処理された粉末100部に、バインダーとなるポリ
ビニルブチラール8部と、可塑剤であるフタル酸ジ一n
−ブチル10部と、分散剤であるソルビタントリオルレ
ート1部と、溶剤であるブチルアルコール8部、メチル
エチルケトンン30部、メチルアルコール12部とを、
ポリエチレンポツト中でアルミナボールを用いて120
時間ボールミリングする。
3. To 100 parts of the heat-treated powder, 8 parts of polyvinyl butyral as a binder and di-phthalate as a plasticizer.
- 10 parts of butyl, 1 part of sorbitan triollate as a dispersant, 8 parts of butyl alcohol as a solvent, 30 parts of methyl ethyl ketone, and 12 parts of methyl alcohol,
120 using alumina balls in a polyethylene pot.
Time ball milling.

4ボールミルされて得られる泥しようを、ドクターブレ
ード法により成形し、セラミツク生シートを作成する。
The slurry obtained by 4-ball milling is shaped by the doctor blade method to create a raw ceramic sheet.

5セラミツク生シートを所定形状に打抜き大気中にて1
300℃、1時間予備焼成をして、バインダー溶剤等を
蒸発させる。
5 Punch out a raw ceramic sheet into a predetermined shape and hold it in the atmosphere.
Preliminary firing is performed at 300° C. for 1 hour to evaporate the binder solvent and the like.

5次に水素雰囲気中で、1550℃2時間本焼成を施し
て、絶縁セラミツク板を得る。
Fifth, main firing is performed at 1550° C. for 2 hours in a hydrogen atmosphere to obtain an insulating ceramic plate.

こうして得られた3成分系セラミツクつまりMgO−S
iO2−Al2O3系セラミツクの各成分比を変えたも
のについが、周波数106Hz及び1010Hzで誘電
率、誘電正接を測定し、該電損率を算出したものを第1
図に表にて示す。
The thus obtained ternary ceramic, namely MgO-S
For iO2-Al2O3 ceramics with different component ratios, the dielectric constant and dielectric loss tangent were measured at frequencies of 106 Hz and 1010 Hz, and the electric loss factor was calculated.
It is shown in the table in the figure.

第2図、第3図は、第1図に示した各資料の組成の誘電
損率の分布図であり、第2図は、周波数106Hzにお
ける、第3図は周波数1010Hzにおける誘電損率の
分布図である。
Figures 2 and 3 are distribution diagrams of dielectric loss factors for the compositions of each material shown in Figure 1. Figure 2 shows the distribution of dielectric loss factors at a frequency of 106 Hz, and Figure 3 shows the distribution of dielectric loss factors at a frequency of 1010 Hz. It is a diagram.

即ち、第1図A,bより、アルミナの含有量の増加に応
じて誘電損率は増加し、特に含有量が40重量%を越え
ると、特に10GHz以上の帯域で急激に増加する事及
びシリカの含有量の増加に従つて誘電率が減少、誘電正
接が増加するが、特に30重量%〜40重量%で急激に
誘電損率が増加する事が判る。
That is, from Figure 1A and b, the dielectric loss factor increases as the content of alumina increases, and especially when the content exceeds 40% by weight, it increases rapidly especially in the band of 10 GHz or higher. As the content increases, the dielectric constant decreases and the dielectric loss tangent increases, and it can be seen that the dielectric loss factor increases particularly at 30% to 40% by weight.

また第2図、第3図を参照すると、周波数106Hzに
おいて(第2図)マグネシアの含有量が50重量%以下
になると、急激に誘電損率が大きくなることが判る。
Further, referring to FIGS. 2 and 3, it can be seen that at a frequency of 106 Hz (FIG. 2), when the magnesia content becomes 50% by weight or less, the dielectric loss factor suddenly increases.

また周波数1010Hz帯の場合にはアルミナ40重量
%、シリカ60重量%、マグネシア40重量%で誘電損
率は21程度となり、これら周波数帯にとつて、これら
セラミツク′スを使用して効果は認められるが、106
Hz帯において高いため広帯域に渡つて特性の一定なセ
ラミツクスに対しては不向である事が判る。
In addition, in the case of the frequency band of 1010 Hz, the dielectric loss factor is about 21 with 40% by weight of alumina, 60% by weight of silica, and 40% by weight of magnesia, and the effect of using these ceramics is recognized for these frequency bands. But 106
It can be seen that since it is high in the Hz band, it is not suitable for ceramics whose characteristics are constant over a wide band.

また、1010Hz(第3図)においてアルミナはIO
重量%を越えると、誘電損率が大きくなり、且つ10重
量%とO重量%との間より誘電損率が大きくなる。更に
マグネシアは第2図、第3図とも誘電損率は極めて小さ
なものであるが、非常に酸に弱いため、電子管のステム
或は回路基板には不向きである。
Also, at 1010Hz (Figure 3), alumina is IO
When the weight percentage is exceeded, the dielectric loss factor becomes large, and the dielectric loss factor becomes larger than between 10 weight percent and O weight percent. Furthermore, although magnesia has an extremely small dielectric loss factor in both FIGS. 2 and 3, it is extremely susceptible to acids and is therefore unsuitable for use in electron tube stems or circuit boards.

以上第1図〜第3図から得られる広帯域に渡つて特性の
均一なセラミツクスは、その組成が、シリカO〜30重
量%、アルミナ10重量%〜40重量%、マグネシア5
0重量%〜90重量%のものである。
The ceramics with uniform characteristics over a wide range obtained from FIGS. 1 to 3 above have a composition of silica O to 30% by weight, alumina 10% to 40% by weight, magnesia 5% by weight,
It is 0% to 90% by weight.

この範囲内に存在する組成のセラミツクスは、第1図A
,bには各資料番号に”が、第2図、第3図には黒枠で
囲まれて示されている。これら各組成のセラミツクスの
内、資料番号2,3,5,10,12,17,22,2
3の周波数誘電損率特性がまた比較例として、資料番号
14,19とフオルステライト[F]の周波数誘電損率
特性が第4図及び第5図に示される。同図によれば、第
2図、第3図に黒枠で包囲される範囲或はそれら近傍の
誘電損率は、フオルステライト或は、黒枠範囲外のもの
に較べ極めて周波数の変化に対して均一であることが判
る。
Ceramics with compositions within this range are shown in Figure 1A.
, b, each document number is shown surrounded by a black frame in FIGS. 2 and 3. Among these ceramics of each composition, document numbers 2, 3, 5, 10, 12, 17, 22, 2
As a comparative example, the frequency dielectric loss factor characteristics of Material Nos. 14 and 19 and forsterite [F] are shown in FIGS. 4 and 5. According to the figure, the dielectric loss factor in the range surrounded by the black frame in Figures 2 and 3 or in the vicinity thereof is extremely uniform against changes in frequency compared to forsterite or those outside the black frame range. It turns out that.

以上記載した様に本発明によれば、周波数が高くなつて
も誘電損率が低く、しかも周波数変化の少ない絶縁セラ
ミツクスが実現される。尚、本発明において、限定され
る各酸化物の含有量の範囲かられずかに外れている場合
は、本発明と同等の効果を有するものであるから範囲内
に有るものであることは明らかである。
As described above, according to the present invention, it is possible to realize insulating ceramics that have a low dielectric loss factor even when the frequency becomes high, and have little change in frequency. In addition, in the present invention, if the content of each oxide is slightly outside the limited range, it is clear that it is within the range because it has the same effect as the present invention. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の絶縁セラミツクを含む三成分系セラミ
ツクスの特性を示す表、第2図、第3図は誘電損率の分
布状態説明図、第4図、第5図は、本発明の実施例及び
比較例の周波数誘電損率特性である。 図中1〜33及び1〜1は各々同一の資料番号を示し、
F,[F]はフオルステライトを示す。
Figure 1 is a table showing the characteristics of three-component ceramics including the insulating ceramic of the present invention, Figures 2 and 3 are diagrams explaining the distribution of dielectric loss factors, and Figures 4 and 5 are It is a frequency dielectric loss factor characteristic of an Example and a comparative example. In the figure, 1 to 33 and 1 to 1 each indicate the same document number,
F and [F] indicate forsterite.

Claims (1)

【特許請求の範囲】[Claims] 1 本質的にマグネシア、シリカ、アルミナの三成分か
ら成る絶縁セラミックスで、50重量%〜90重量%の
マグネシア(MgO)と、30重量%以下のシリカSi
O_2と、10重量%〜40重量%のアルミナAl_2
O_3とを焼結せしめて成り、10^6〜10^1^0
Hzの高周波領域に於て誘電損率が21×10^−^4
以下であることを特徴とする高周波回路基板用絶縁セラ
ミックス。
1 An insulating ceramic consisting essentially of three components: magnesia, silica, and alumina, with 50% to 90% by weight of magnesia (MgO) and 30% by weight or less of silica (Si).
O_2 and 10wt% to 40wt% alumina Al_2
It is made by sintering O_3, 10^6 ~ 10^1^0
The dielectric loss factor in the high frequency region of Hz is 21×10^-^4
An insulating ceramic for high frequency circuit boards, characterized by the following:
JP51160631A 1976-12-29 1976-12-29 Insulating ceramics for high frequency circuit boards Expired JPS5923049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51160631A JPS5923049B2 (en) 1976-12-29 1976-12-29 Insulating ceramics for high frequency circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51160631A JPS5923049B2 (en) 1976-12-29 1976-12-29 Insulating ceramics for high frequency circuit boards

Publications (2)

Publication Number Publication Date
JPS5384199A JPS5384199A (en) 1978-07-25
JPS5923049B2 true JPS5923049B2 (en) 1984-05-30

Family

ID=15719095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51160631A Expired JPS5923049B2 (en) 1976-12-29 1976-12-29 Insulating ceramics for high frequency circuit boards

Country Status (1)

Country Link
JP (1) JPS5923049B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139709A (en) * 1979-04-18 1980-10-31 Fujitsu Ltd Method of fabricating mullite substrate
JPS6037530B2 (en) * 1980-05-29 1985-08-27 松下電器産業株式会社 Method for manufacturing magnetic recording media
DE3623152A1 (en) * 1985-07-13 1987-01-22 Murata Manufacturing Co DIELECTRIC CERAMIC COMPOSITION FOR HIGH FREQUENCIES

Also Published As

Publication number Publication date
JPS5384199A (en) 1978-07-25

Similar Documents

Publication Publication Date Title
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2002193662A (en) Dielectric ceramic and its manufacturing method
JP5812035B2 (en) Dielectric ceramic composition, dielectric ceramic and electronic component
JPS5923049B2 (en) Insulating ceramics for high frequency circuit boards
JPH0137807B2 (en)
JP3436770B2 (en) Method for producing microwave dielectric porcelain composition
JP5315544B2 (en) Dielectric porcelain composition and electronic component using the same
JPH0542762B2 (en)
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3339989B2 (en) Low dielectric loss material
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JPH06191929A (en) Alumina-based sintered compact
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH05226137A (en) Oxide magnetic body material and its manufacture
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JP4618856B2 (en) Low temperature fired porcelain
JP2006273617A (en) Dielectric ceramic composition
JP3481767B2 (en) Dielectric porcelain composition
JP2008254950A (en) Dielectric ceramic composition
JP3225838B2 (en) High frequency dielectric composition
JPH06215627A (en) Low-temperature sintered porcelain composition for high-frequency
JP2000256837A (en) BaxSr1-xTiO3-alpha SPUTTERING TARGET AND ITS PRODUCTION
JPH06215629A (en) Low-temperature sintered porcelain composition for high-frequency
JP4006655B2 (en) Dielectric porcelain composition for microwave