JP2006273617A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition Download PDF

Info

Publication number
JP2006273617A
JP2006273617A JP2005091935A JP2005091935A JP2006273617A JP 2006273617 A JP2006273617 A JP 2006273617A JP 2005091935 A JP2005091935 A JP 2005091935A JP 2005091935 A JP2005091935 A JP 2005091935A JP 2006273617 A JP2006273617 A JP 2006273617A
Authority
JP
Japan
Prior art keywords
dielectric
bao
main component
dielectric ceramic
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005091935A
Other languages
Japanese (ja)
Other versions
JP4765367B2 (en
Inventor
Tomohiro Arashi
友宏 嵐
Taiji Miyauchi
泰治 宮内
Naoto Oji
直人 王子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005091935A priority Critical patent/JP4765367B2/en
Publication of JP2006273617A publication Critical patent/JP2006273617A/en
Application granted granted Critical
Publication of JP4765367B2 publication Critical patent/JP4765367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition which can be sintered at a low temperature of ≤900°C and has a relative dielectric constant εr of 30-40, where especially the absolute value of a temperature coefficient of resonance frequency τf is 20 ppm/K and the temperature coefficient of resonance frequency τf is improved. <P>SOLUTION: The dielectric ceramic composition contains BaO, TiO<SB>2</SB>and WO<SB>3</SB>as major components at a specified ratio and ZnO, B<SB>2</SB>O<SB>3</SB>and CuO as supplementary components at a specified ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Ag又はAgを主成分とする合金等の導体を内部導体として使用可能な、低温焼結性を有する誘電体磁器組成物に関する。   The present invention relates to a dielectric ceramic composition having low temperature sinterability, which can use a conductor such as Ag or an alloy containing Ag as a main component as an internal conductor.

近年、自動車電話、携帯電話等の移動体通信分野の成長が極めて著しい。そして、これらの移動体通信では数100MHz〜数GHz程度のいわゆる準マイクロ波と呼ばれる高周波帯が使用されている。そのため、移動体通信機器に用いられる共振器、フィルタ、コンデンサ等の電子デバイスにおいても高周波特性が重要視されるに至っている。   In recent years, the growth of mobile communication fields such as automobile phones and mobile phones has been extremely remarkable. In these mobile communications, a so-called quasi-microwave high frequency band of about several hundred MHz to several GHz is used. Therefore, high-frequency characteristics have become important in electronic devices such as resonators, filters, and capacitors used in mobile communication devices.

また、近年の移動体通信の普及に関しては、サービスの向上の他に通信機器の小型化及び低価格化が重要な因子となっている。そのため、高周波デバイスに関しても小型化および低価格化が要求されるようになってきている。例えば共振器用材質において小型化を実現させるためには使用周波数において比誘電率εrが高く、誘電損失が小さく、かつ共振周波数の温度係数τfの変化が小さい誘電体磁器組成物が要求されてきている。   Moreover, regarding the spread of mobile communications in recent years, in addition to improving services, miniaturization and cost reduction of communication devices are important factors. For this reason, miniaturization and cost reduction are also required for high frequency devices. For example, in order to reduce the size of a resonator material, there has been a demand for a dielectric ceramic composition that has a high relative dielectric constant εr at the operating frequency, a low dielectric loss, and a small change in the temperature coefficient τf of the resonant frequency. .

従来よりBaO−希土類酸化物−TiO系の誘電体磁器組成物は、比誘電率εrが高く、Q値が大きく、さらには共振周波数の温度係数τfの変化が小さいことから広範な研究がなされてきた。 Conventionally, BaO-rare earth oxide-TiO 2 dielectric ceramic compositions have been studied extensively because they have a high relative dielectric constant εr, a large Q value, and a small change in the temperature coefficient τf of the resonance frequency. I came.

特開平6−40767号公報には、主として、BaO−希土類酸化物−TiOを主成分とし、副成分として、B等を添加することで、焼成温度900℃でAg導体との同時焼成を可能ならしめている。しかしながら、得られる比誘電率εrの範囲は、主成分組成の比誘電率εrが主に反映されるために、εr=50〜84と比較的に高い範囲となっている。 In JP-A-6-40767, BaO-rare earth oxide-TiO 2 is mainly used as a main component, and B 2 O 3 or the like is added as a subsidiary component, so that a simultaneous firing with an Ag conductor at a firing temperature of 900 ° C. It is possible to fire. However, the range of the relative dielectric constant εr obtained is a relatively high range of εr = 50 to 84 because the relative dielectric constant εr of the main component composition is mainly reflected.

また、近年、高い比誘電率εr材料であるBaO−希土類酸化物−TiO系を主成分とした材料と、それより比誘電率εrの小さな誘電体材料との異材質同士を同時焼成することで、より高特性のデバイスを形成する技術が注目されている。 Further, in recent years, different materials of a material mainly composed of a BaO-rare earth oxide-TiO 2 system, which is a high relative dielectric constant εr material, and a dielectric material having a smaller relative dielectric constant εr are simultaneously fired. Therefore, a technique for forming a device with higher characteristics is attracting attention.

比誘電率εrの小さな誘電体材料としては、BaO−TiO系を主成分とした材料が多く提案されている。例えば、特開平8−45344号公報には、BaO−TiO系の材料に、GeOやCuOを添加することで、比誘電率εrが34.6〜39.3の特性を備える誘電体磁器組成物が提案されている。しかしながら、当該提案の組成では、焼成温度が1000℃程度と高い。 As a dielectric material having a small relative dielectric constant εr, many materials mainly composed of a BaO—TiO 2 system have been proposed. For example, JP-A-8-45344 discloses a dielectric ceramic having a characteristic of a relative dielectric constant εr of 34.6 to 39.3 by adding GeO 2 or CuO to a BaO—TiO 2 based material. Compositions have been proposed. However, in the proposed composition, the firing temperature is as high as about 1000 ° C.

また、特開平9−315854号公報には、BaO−(Ti・Zr)O系の材料にZnO、B、アルカリ金属含有化合物を添加させることによって、比誘電率εrが20.5〜34.2の範囲内であって、950℃以下の焼成温度で焼成できる誘電体磁器組成物の提案がなされている。しかしながら、この提案では、高い特性を得るために、BaTi9中にBaTi12Zn34結晶を均一に分散させ、さらにZrを固溶させている。そのため、1100℃で6時間の仮焼きを必要としており、製造工程がきわめて複雑となっている。 JP-A-9-315854 discloses that the relative dielectric constant εr is 20.5 by adding ZnO, B 2 O 3 and an alkali metal-containing compound to a BaO— (Ti · Zr) O 2 -based material. A dielectric ceramic composition that can be fired at a firing temperature of 950 ° C. or less within a range of ˜34.2 has been proposed. However, in this proposal, in order to obtain high characteristics, Ba 3 Ti 12 Zn 7 O 34 crystals are uniformly dispersed in BaTi 4 O 9 , and Zr is further dissolved. Therefore, calcining at 1100 ° C. for 6 hours is required, and the manufacturing process is extremely complicated.

さらに、特開平10−167817号公報には、BaO−(Ti・Zr)O系の材料にZnO、B、CuO、アルカリ金属含有化合物を添加させることによって、Q値を向上させ、950℃以下での焼成温度で焼成することができる誘電体磁器組成物の提案がなされている。しかしながら、この提案においては、添加される副成分総和量の規制がなく、しかも全体的に多量の副成分を添加しているために、誘電特性が悪化してしまう傾向にある。 Furthermore, in JP-A-10-167817, the Q value is improved by adding ZnO, B 2 O 3 , CuO, an alkali metal-containing compound to a BaO— (Ti · Zr) O 2 -based material, Dielectric ceramic compositions that can be fired at a firing temperature of 950 ° C. or lower have been proposed. However, in this proposal, there is no restriction on the total amount of subcomponents added, and since a large amount of subcomponents are added as a whole, the dielectric characteristics tend to deteriorate.

特開平6−40767号公報JP-A-6-40767 特開平8−45344号公報JP-A-8-45344 特開平9−315854号公報JP-A-9-315854 特開平10−167817号公報Japanese Patent Laid-Open No. 10-167817

このような実状のもとに本発明は創案されたものであり、その目的は、低温焼成が可能で、特性の良好な誘電体磁器組成物を提供することにある。より具体的には、900℃以下での低温焼結が可能で、比誘電率εrが30〜40の特性を備え、特に、共振周波数の温度係数τfの絶対値が20ppm/Kの特性を備え、共振周波数の温度係数τfが改善された誘電体磁器組成物を提供することにある。   The present invention has been invented under such circumstances, and an object thereof is to provide a dielectric ceramic composition that can be fired at a low temperature and has good characteristics. More specifically, low-temperature sintering at 900 ° C. or lower is possible, the dielectric constant εr has a characteristic of 30 to 40, and in particular, the absolute value of the temperature coefficient τf of the resonance frequency has a characteristic of 20 ppm / K. An object of the present invention is to provide a dielectric ceramic composition having an improved temperature coefficient τf of resonance frequency.

このような課題を解決するために、本発明は、主成分として、組成式(BaO・xTiO・yWO)と表される成分を含み、当該組成式におけるBaOに対するTiOのモル比xが3.5≦x≦4.5の範囲内にあり、BaOに対するWOのモル比yが0.02≦y≦0.2の範囲内にあり、
前記主成分に対して副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を含むとともに、これらの副成分をそれぞれ、aZnO、bB、およびcCuOと表したとき、
前記主成分に対する前記各副成分の重量比率を表わすa、b、およびcがそれぞれ
0.1(重量%)≦a≦8.0(重量%)
0.1(重量%)≦b≦8.0(重量%)、
0.1(重量%)≦c≦6.0(重量%)の範囲内、
にあるように構成される。
In order to solve such a problem, the present invention includes, as a main component, a component represented by a composition formula (BaO.xTiO 2 .yWO 3 ), and a molar ratio x of TiO 2 to BaO in the composition formula is In the range of 3.5 ≦ x ≦ 4.5, the molar ratio y of WO 3 to BaO is in the range of 0.02 ≦ y ≦ 0.2,
When the zinc oxide, boron oxide, and copper oxide are included as subcomponents with respect to the main component, and these subcomponents are expressed as aZnO, bB 2 O 3 , and cCuO, respectively,
A, b, and c representing the weight ratios of the subcomponents to the main component are each 0.1 (wt%) ≦ a ≦ 8.0 (wt%)
0.1 (wt%) ≦ b ≦ 8.0 (wt%),
Within the range of 0.1 (wt%) ≦ c ≦ 6.0 (wt%),
It is configured to be in

また、本発明の好ましい態様として、焼成温度が900℃以下、比誘電率が30〜40の範囲内、Q・f値が10000GHz以上、τf値の絶対値が20ppm/K以下の物性を有してなるように構成される。   As a preferred embodiment of the present invention, the firing temperature is 900 ° C. or lower, the relative dielectric constant is 30 to 40, the Q · f value is 10,000 GHz or more, and the absolute value of τf value is 20 ppm / K or less. It is comprised so that it may become.

本発明は、主成分として、組成式(BaO・xTiO・yWO)と表される成分を含み、当該組成式におけるBaOに対するTiOのモル比xが3.5≦x≦4.5の範囲内にあり、BaOに対するWOのモル比yが0.02≦y≦0.2の範囲内にあり、
前記主成分に対して副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を含むとともに、これらの副成分をそれぞれ、aZnO、bB、およびcCuOと表したとき、
前記主成分に対する前記各副成分の重量比率を表わすa、b、およびcがそれぞれ
0.1(重量%)≦a≦8.0(重量%)
0.1(重量%)≦b≦8.0(重量%)、
0.1(重量%)≦c≦6.0(重量%)の範囲内、
となるように構成されているので、900℃以下での低温焼結が可能で、比誘電率εrが30〜40の特性を備え、特に、共振周波数の温度係数τfの絶対値が20ppm/Kの特性を備え、共振周波数の温度係数τfが改善された誘電体磁器組成物が得られる。
The present invention includes a component represented by a composition formula (BaO.xTiO 2 .yWO 3 ) as a main component, and the molar ratio x of TiO 2 to BaO in the composition formula is 3.5 ≦ x ≦ 4.5. The molar ratio y of WO 3 to BaO is in the range of 0.02 ≦ y ≦ 0.2,
When the zinc oxide, boron oxide, and copper oxide are included as subcomponents with respect to the main component, and these subcomponents are expressed as aZnO, bB 2 O 3 , and cCuO, respectively,
A, b, and c representing the weight ratios of the subcomponents to the main component are each 0.1 (wt%) ≦ a ≦ 8.0 (wt%)
0.1 (wt%) ≦ b ≦ 8.0 (wt%),
Within the range of 0.1 (wt%) ≦ c ≦ 6.0 (wt%),
Therefore, low temperature sintering at 900 ° C. or lower is possible, and the specific dielectric constant εr is 30 to 40. In particular, the absolute value of the temperature coefficient τf of the resonance frequency is 20 ppm / K. Thus, a dielectric ceramic composition with improved temperature coefficient τf of resonance frequency can be obtained.

以下、本発明を実施するための最良の形態を説明する。最初に、本発明の誘電体磁器組成物の構成について説明する。   Hereinafter, the best mode for carrying out the present invention will be described. First, the configuration of the dielectric ceramic composition of the present invention will be described.

〔誘電体磁器組成物の説明〕
本発明の誘電体磁器組成物は、組成式(BaO・xTiO・yWO)と表記される主成分を含んでいる。
[Description of Dielectric Porcelain Composition]
The dielectric ceramic composition of the present invention includes a main component represented by a composition formula (BaO · xTiO 2 · yWO 3 ).

さらに、本発明の誘電体磁器組成物は、この主成分に対して副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を所定量含有している。   Further, the dielectric ceramic composition of the present invention contains a predetermined amount of zinc oxide, boron oxide, and copper oxide as subcomponents with respect to this main component.

以下、本発明の誘電体磁器組成物の主成分組成および副成分組成についてさらに説明する。まず、最初に、主成分組成について説明する。   Hereinafter, the main component composition and subcomponent composition of the dielectric ceramic composition of the present invention will be further described. First, the main component composition will be described.

(主成分組成についての説明)
前述したように本発明の誘電体磁器組成物は、組成式(BaO・xTiO・yWO)と表記される主成分を含み、この組成式においてBaOに対するTiOのモル比xが3.5≦x≦4.5の範囲内(好ましくは3.8≦x≦4.2の範囲内)にあり、BaOに対するWOのモル比yが0.02≦y≦0.2の範囲内(好ましくは0.05≦y≦0.15の範囲内)にあるように構成されている。
(Description of the main component composition)
As described above, the dielectric ceramic composition of the present invention includes the main component represented by the composition formula (BaO.xTiO 2 .yWO 3 ), and in this composition formula, the molar ratio x of TiO 2 to BaO is 3.5. ≦ x ≦ 4.5 (preferably within the range of 3.8 ≦ x ≦ 4.2), and the molar ratio y of WO 3 to BaO is within the range of 0.02 ≦ y ≦ 0.2 ( Preferably, it is configured to be in the range of 0.05 ≦ y ≦ 0.15).

BaOに対するTiOのモル比xの値が3.5未満となると、Q・f値が極端に低下する傾向が生じる。この一方で、xの値が4.5を超えると、誘電損失が大きくなり、Q・f値が下がる傾向が生じるともに、共振周波数の温度係数τfも悪化する傾向が生じる。従って、高周波デバイスの電力損失が大きくなり、温度によって高周波デバイスの共振周波数が変動しやすくなってしまう。 When the value of the molar ratio x of TiO 2 to BaO is less than 3.5, the Q · f value tends to decrease extremely. On the other hand, when the value of x exceeds 4.5, the dielectric loss increases, the Q · f value tends to decrease, and the temperature coefficient τf of the resonance frequency tends to deteriorate. Therefore, the power loss of the high frequency device is increased, and the resonance frequency of the high frequency device is likely to fluctuate depending on the temperature.

また、BaOに対するWOのモル比yの値が0.02未満となると、共振周波数の温度係数τfの改善の効果が小さく、絶対値で20ppm/K以下の特性が得られなくなってしまう。この一方で、yの値が0.2を超えると、誘電損失が大きくなり、Q・f値が下がる傾向が生じるともに、共振周波数の温度係数τfも悪化する傾向が生じる。従って、高周波デバイスの電力損失が大きくなり、温度によって高周波デバイスの共振周波数が変動しやすくなってしまう。 Moreover, when the value of the molar ratio y of WO 3 to BaO is less than 0.02, the effect of improving the temperature coefficient τf of the resonance frequency is small, and a characteristic of 20 ppm / K or less in absolute value cannot be obtained. On the other hand, if the value of y exceeds 0.2, the dielectric loss increases, the Q · f value tends to decrease, and the temperature coefficient τf of the resonance frequency tends to deteriorate. Therefore, the power loss of the high frequency device is increased, and the resonance frequency of the high frequency device is likely to fluctuate depending on the temperature.

(副成分についての説明)
前述したように本発明の誘電体磁器組成物は、副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を含んでいる。
(Explanation about subcomponents)
As described above, the dielectric ceramic composition of the present invention contains zinc oxide, boron oxide, and copper oxide as subcomponents.

そして、これらの副成分をそれぞれ、aZnO、bB、およびcCuOと表した場合、前記主成分に対する前記各副成分の重量比率(重量%)を表わすa、b、およびcがそれぞれ、
0.1(重量%)≦a≦8.0(重量%)
0.1(重量%)≦b≦8.0(重量%)、
0.1(重量%)≦c≦6.0(重量%)となるように構成される。
When these subcomponents are represented as aZnO, bB 2 O 3 , and cCuO, a, b, and c representing the weight ratio (% by weight) of each subcomponent to the main component are
0.1 (% by weight) ≦ a ≦ 8.0 (% by weight)
0.1 (wt%) ≦ b ≦ 8.0 (wt%),
It is comprised so that it may become 0.1 (weight%) <= c <= 6.0 (weight%).

すなわち、主成分に対する亜鉛酸化物の含有割合は、ZnO換算で0.1(重量%)≦a≦8.0(重量%)であることが求められ、好ましくは2.0(重量%)≦a≦6.0(重量%)とされる。主成分に対する亜鉛酸化物の含有割合がZnO換算で0.1(重量%)未満となると、誘電体磁器組成物の低温焼結効果が不充分なものとなる傾向が生じる。この一方で、主成分に対する亜鉛酸化物の含有割合がZnO換算で8.0(重量%)を超えると、誘電損失が大きくなり、Q・f値が下がる傾向が生じてしまう。   That is, the content ratio of zinc oxide with respect to the main component is required to be 0.1 (% by weight) ≦ a ≦ 8.0 (% by weight) in terms of ZnO, and preferably 2.0 (% by weight) ≦ It is set as a <= 6.0 (weight%). When the content ratio of zinc oxide with respect to the main component is less than 0.1 (% by weight) in terms of ZnO, the low-temperature sintering effect of the dielectric ceramic composition tends to be insufficient. On the other hand, when the content ratio of the zinc oxide with respect to the main component exceeds 8.0 (wt%) in terms of ZnO, the dielectric loss increases and the Q · f value tends to decrease.

また、主成分に対するホウ素酸化物の含有割合はB換算で0.1(重量%)≦b≦8.0(重量%)であることが求められ、好ましくは1.5(重量%)≦b≦4.5(重量%)とされる。主成分に対するホウ素酸化物の含有割合がB換算で0.1(重量%)未満となると、誘電体磁器組成物の低温焼結効果が不充分なものとなる傾向が生じる。この一方で、主成分に対するホウ素酸化物の含有割合がB換算で8.0(重量%)を超えると、誘電損失が大きくなり、Q・f値が下がる傾向が生じてしまう。共振周波数の温度係数τfも悪化する傾向にある。 Further, the content ratio of the boron oxide with respect to the main component is required to be 0.1 (wt%) ≦ b ≦ 8.0 (wt%) in terms of B 2 O 3 , and preferably 1.5 (wt%). ) ≦ b ≦ 4.5 (% by weight). When the content ratio of boron oxide with respect to the main component is less than 0.1 (% by weight) in terms of B 2 O 3 , the low-temperature sintering effect of the dielectric ceramic composition tends to be insufficient. On the other hand, when the content ratio of the boron oxide with respect to the main component exceeds 8.0 (weight%) in terms of B 2 O 3 , the dielectric loss increases and the Q · f value tends to decrease. The temperature coefficient τf of the resonance frequency also tends to deteriorate.

また、主成分に対する銅酸化物の含有割合はCuO換算で0.1(重量%)≦c≦6.0(重量%)であることが求められ、好ましくは1.0(重量%)≦c≦3.0(重量%)とされる。主成分に対する銅酸化物の含有割合がCuO換算で0.1(重量%)未満となると誘電体磁器組成物の低温焼結効果が不充分なものとなる傾向が生じる。この一方で、主成分に対する銅酸化物の含有割合がCuO換算で6.0(重量%)を超えると、誘電損失が大きくなり、Q・f値が下がる傾向が生じてしまう。共振周波数の温度係数τfも悪化する傾向にある。   Further, the content ratio of the copper oxide to the main component is required to be 0.1 (% by weight) ≦ c ≦ 6.0 (% by weight) in terms of CuO, and preferably 1.0 (% by weight) ≦ c. ≦ 3.0 (% by weight). When the content ratio of the copper oxide with respect to the main component is less than 0.1 (wt%) in terms of CuO, the low-temperature sintering effect of the dielectric ceramic composition tends to be insufficient. On the other hand, when the content ratio of the copper oxide with respect to the main component exceeds 6.0 (wt%) in terms of CuO, the dielectric loss increases and the Q · f value tends to decrease. The temperature coefficient τf of the resonance frequency also tends to deteriorate.

上述してきたように構成される本発明の誘電体磁器組成物は、後述する実施例の結果からも明らかなように、900℃以下での低温焼結が可能で、比誘電率εrが30〜40の特性を備え、共振周波数の温度係数τfの絶対値が20ppm/K以下の特性を備え、共振周波数とQ値との積であるQ・f値が10000GHz以上の特性を備えている。   The dielectric ceramic composition of the present invention configured as described above can be sintered at a low temperature of 900 ° C. or lower and has a relative dielectric constant εr of 30 to 30 as is apparent from the results of Examples described later. 40, the absolute value of the temperature coefficient τf of the resonance frequency is 20 ppm / K or less, and the Q · f value, which is the product of the resonance frequency and the Q value, is 10,000 GHz or more.

また、本発明における重要な特性である誘電体磁器組成物の誘電損失について、以下説明を加えておく。   The dielectric loss of the dielectric ceramic composition, which is an important characteristic in the present invention, will be described below.

理想的な誘電体に交流を印加すると、電流と電圧は90度の位相差をもつ。しかしながら、交流の周波数が高くなり高周波となると、誘電体の電気分極又は極性分子の配向が高周波の電場の変化に追従できず、あるいは電子又はイオンが伝導することにより電束密度が電場に対して位相の遅れをもち、電流と電圧は90度以外の位相をもつことになる。誘電損失は、前記高周波のエネルギーの一部が熱となって放散する現象である。誘電損失の大きさは、現実の電流と電圧の位相差と理想の電流と電圧の位相差90度との差である損失角度δの正接tanδの逆数Q(Q=1/tanδ)で表わされる。本発明における誘電体磁器組成物の誘電損失の評価では、前記Qと共振周波数の積であるQ・fの値を用いている。誘電損失が小さくなればQ・f値は大きくなり、誘電損失が大きくなればQ・f値は小さくなることになる。誘電損失は高周波デバイスの電力損失を意味するので、Q・f値の大きい誘電体磁器組成物が求められている。   When alternating current is applied to an ideal dielectric, the current and voltage have a phase difference of 90 degrees. However, when the AC frequency increases and the frequency becomes high, the electric polarization of the dielectric or the orientation of the polar molecules cannot follow the change of the electric field of the high frequency, or the electric flux density becomes smaller than the electric field due to conduction of electrons or ions With a phase delay, the current and voltage will have a phase other than 90 degrees. Dielectric loss is a phenomenon in which part of the high frequency energy is dissipated as heat. The magnitude of the dielectric loss is expressed by the reciprocal Q (Q = 1 / tan δ) of the tangent tan δ of the loss angle δ, which is the difference between the phase difference between the actual current and voltage and the phase difference between the ideal current and voltage of 90 degrees. . In the evaluation of the dielectric loss of the dielectric ceramic composition in the present invention, the value of Q · f, which is the product of the Q and the resonance frequency, is used. The Q · f value increases as the dielectric loss decreases, and the Q · f value decreases as the dielectric loss increases. Since dielectric loss means power loss of a high-frequency device, a dielectric ceramic composition having a large Q · f value is required.

また、本発明における重要な特性である誘電体磁器組成物の共振周波数の温度係数τf(ppm/K)について、以下説明を加えておく。   Further, the temperature coefficient τf (ppm / K) of the resonance frequency of the dielectric ceramic composition, which is an important characteristic in the present invention, will be described below.

誘電体磁器組成物の共振周波数の温度係数τf(ppm/K)は下記式(1)で算出される。   The temperature coefficient τf (ppm / K) of the resonance frequency of the dielectric ceramic composition is calculated by the following formula (1).

τf=〔fT−fref/fref(T−Tref)〕×1000000 (ppm/K)…式(1) τf = [f T −f ref / f ref (T−T ref )] × 1000000 (ppm / K) (1)

ここでfTは温度Tにおける共振周波数(kHz)を表し、frefは基準温度Trefにおける共振周波数(kHz)を表す。 Here, f T represents the resonance frequency (kHz) at the temperature T, and f ref represents the resonance frequency (kHz) at the reference temperature T ref .

共振周波数の温度係数τfの絶対値の大きさは、温度変化に対する誘電体磁器組成物の共振周波数の変化量の大きさを意味する。コンデンサ、誘電体フィルタ等の高周波デバイスは温度による共振周波数の変化を小さくする必要があるため、本発明における誘電体磁器組成物の共振周波数の温度係数τfの絶対値を小さくすることが要求されている。   The magnitude of the absolute value of the temperature coefficient τf of the resonance frequency means the magnitude of change in the resonance frequency of the dielectric ceramic composition with respect to temperature change. Since high-frequency devices such as capacitors and dielectric filters need to reduce the change in resonance frequency due to temperature, it is required to reduce the absolute value of the temperature coefficient τf of the resonance frequency of the dielectric ceramic composition in the present invention. Yes.

また、誘電体磁器組成物の低温焼結性の評価は、焼成温度を徐々に下げて焼成し、所望の誘電体高周波特性が測定できるレベルに焼結しているかどうかで判断すればよい。また、誘電体磁器組成物についての誘電特性の評価は、比誘電率、誘電損失及び温度変化による共振周波数の変化(共振周波数の温度係数)に関して、日本工業規格「マイクロ波用ファインセラミックスの誘電特性の試験方法」(JIS R 1627 1996年度))に従って測定して評価すればよい。   The evaluation of the low-temperature sinterability of the dielectric ceramic composition may be made based on whether or not the firing temperature is gradually lowered and firing is performed to a level at which a desired dielectric high-frequency characteristic can be measured. In addition, dielectric properties of dielectric ceramic compositions are evaluated in terms of relative dielectric constant, dielectric loss, and change in resonance frequency due to temperature change (temperature coefficient of resonance frequency). It may be measured and evaluated in accordance with “Test method of (JIS R 1627 1996)”.

〔誘電体磁器組成物の製造方法の説明〕
次に、本発明における誘電体磁器組成物の製造方法について説明する。
[Description of Manufacturing Method of Dielectric Porcelain Composition]
Next, the manufacturing method of the dielectric ceramic composition in the present invention will be described.

本発明の誘電体磁器組成物の製造方法は、バリウム含有原料、チタン含有原料、タングステン含有原料、亜鉛含有原料、ホウ素含有原料、及び銅含有原料を焼成して、BaO−TiO−WO−ZnO−B−CuO系誘電体磁器組成物を製造する方法である。 The method for producing a dielectric ceramic composition of the present invention includes firing a barium-containing raw material, a titanium-containing raw material, a tungsten-containing raw material, a zinc-containing raw material, a boron-containing raw material, and a copper-containing raw material, and BaO—TiO 2 —WO 3 —. This is a method for producing a ZnO—B 2 O 3 —CuO-based dielectric ceramic composition.

本発明の誘電体磁器組成物の製造用原料としては、酸化物及び/又は焼成により酸化物となる化合物が用いられる。焼成により酸化物となる化合物としては、例えば、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。   As a raw material for producing the dielectric ceramic composition of the present invention, an oxide and / or a compound that becomes an oxide by firing is used. Examples of the compound that becomes an oxide upon firing include carbonates, nitrates, oxalates, hydroxides, sulfides, organometallic compounds, and the like.

図1には、本発明に係る誘電体磁器組成物の製造方法の一態様が示されている。
以下、図1に基づいて本発明の誘電体磁器組成物の製造方法を詳細に説明する。
FIG. 1 shows one embodiment of a method for producing a dielectric ceramic composition according to the present invention.
Hereinafter, the method for producing a dielectric ceramic composition of the present invention will be described in detail with reference to FIG.

まず、主成分の原料の一部となる、例えば、炭酸バリウム、酸化チタン及び酸化タングステンを用意するともに、所定量を秤量し混合して、仮焼を行う。   First, for example, barium carbonate, titanium oxide, and tungsten oxide, which are a part of the raw materials of the main component, are prepared, and predetermined amounts are weighed and mixed, and calcined.

上記の混合は、組成式BaO・xTiO・yWOのx及びyを上述した関係組成式を満足する範囲内で混合する。 In the above mixing, x and y in the composition formula BaO.xTiO 2 .yWO 3 are mixed within a range satisfying the above-described relational composition formula.

炭酸バリウム、酸化チタン及び酸化タングステンの混合は、乾式混合、湿式混合等の混合方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた混合方式により行うことができる。混合時間は4〜24時間程度とすればよい。   The mixing of barium carbonate, titanium oxide and tungsten oxide can be performed by a mixing method such as dry mixing or wet mixing, for example, a mixing method using a solvent such as pure water or ethanol in a ball mill. The mixing time may be about 4 to 24 hours.

その後、混合した原料を100℃〜200℃、好ましくは120℃〜140℃で12〜36時間程度乾燥させ、しかる後、仮焼を行う。   Thereafter, the mixed raw materials are dried at 100 ° C. to 200 ° C., preferably 120 ° C. to 140 ° C. for about 12 to 36 hours, and then calcined.

仮焼は、炭酸バリウム、酸化チタン及び酸化タングステンの混合物原料からBaO−TiO−WO系化合物の合成を行う工程であり、仮焼き温度1000℃〜1400℃、好ましくは1050℃〜1250℃で1〜24時間程度行うことが望ましい。 Calcination is a step of synthesizing a BaO—TiO 2 —WO 3 -based compound from a mixture raw material of barium carbonate, titanium oxide and tungsten oxide, and calcining temperature is 1000 ° C. to 1400 ° C., preferably 1050 ° C. to 1250 ° C. It is desirable to carry out for about 1 to 24 hours.

合成されたBaO−TiO−WO系化合物は粉末にするため粉砕して乾燥する。粉砕は乾式粉砕、湿式粉砕等の粉砕方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた粉砕方式により行うことができる。粉砕時間は4〜24時間程度とすればよい。 The synthesized BaO—TiO 2 —WO 3 compound is pulverized and dried to make a powder. The pulverization can be performed by a pulverization method such as dry pulverization and wet pulverization, for example, a pulverization method using a solvent such as pure water or ethanol in a ball mill. The pulverization time may be about 4 to 24 hours.

粉砕した粉末の乾燥は、100℃〜200℃、好ましくは120℃〜140℃の乾燥温度で12〜36時間程度行えばよい。このようにして、BaO−TiO−WO系化合物の粉末を得ることができる。 The pulverized powder may be dried at a drying temperature of 100 ° C. to 200 ° C., preferably 120 ° C. to 140 ° C. for about 12 to 36 hours. In this way, a BaO—TiO 2 —WO 3 compound powder can be obtained.

次いで、前述のBaO−TiO−WO系化合物の粉末と、前述の副成分の組成を満たすように所定の範囲で秤量した亜鉛酸化物、ホウ素酸化物、及び銅酸化物を混合して原料混合粉末とする。 Next, a raw material obtained by mixing the powder of the BaO—TiO 2 —WO 3 compound and the zinc oxide, boron oxide, and copper oxide weighed in a predetermined range so as to satisfy the composition of the subcomponents described above. Mix powder.

混合は、乾式混合、湿式混合等の混合方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた混合方式により行うことができる。混合時間は4〜24時間程度とすればよい。   Mixing can be performed by a mixing method such as dry mixing or wet mixing, for example, a mixing method using a solvent such as pure water or ethanol in a ball mill. The mixing time may be about 4 to 24 hours.

混合が完了した後、原料混合粉末を100℃〜200℃、好ましくは120℃〜140℃で12〜36時間程度乾燥させる。   After mixing is completed, the raw material mixed powder is dried at 100 ° C. to 200 ° C., preferably 120 ° C. to 140 ° C. for about 12 to 36 hours.

次に、原料混合粉末を焼成温度以下の温度、例えば、700℃〜800℃にて1〜10時間程度で再度の仮焼を行う。その後、仮焼をした原料混合粉末を粉砕して乾燥する。粉砕は乾式粉砕、湿式粉砕等の粉砕方式、例えば、ボールミルで純水、エタノール等の溶媒を用いた粉砕方式により行うことができる。粉砕時間は4〜24時間程度とすればよい。粉砕した粉末の乾燥は100℃〜200℃、好ましくは120℃〜140℃の処理温度で12〜36時間程度とすればよい。このように再度の仮焼及び粉砕を行うことにより、主成分と副成分を均一にすることができ、後工程で製造する本実施形態に係る誘電体磁器組成物の材質の均一化を図ることができる。   Next, the raw material mixed powder is calcined again at a temperature equal to or lower than the firing temperature, for example, 700 to 800 ° C. for about 1 to 10 hours. Thereafter, the calcined raw material mixed powder is pulverized and dried. The pulverization can be performed by a pulverization method such as dry pulverization and wet pulverization, for example, a pulverization method using a solvent such as pure water or ethanol in a ball mill. The pulverization time may be about 4 to 24 hours. The pulverized powder may be dried at a processing temperature of 100 ° C. to 200 ° C., preferably 120 ° C. to 140 ° C. for about 12 to 36 hours. By carrying out calcination and pulverization again in this way, the main component and the subcomponent can be made uniform, and the material of the dielectric ceramic composition according to the present embodiment manufactured in a later process is made uniform. Can do.

上述のようにして得られた粉末に対して、ポリビニルアルコール系、アクリル系、エチルセルロース系等の有機バインダーを混合した後、所望の形状に成型を行い、この成型物を焼成して焼結する。成型はシート法や印刷法等の湿式成型の他、プレス成型等の乾式成型でもよく、所望の形状に応じて成型方法を適宜選択することが可能である。また、焼成は、例えば、空気中のような酸素雰囲気にて行うことが望ましく、焼成温度は内部電極として用いるAgまたはAgを主成分とする合金等の導体の融点以下、例えば900℃以下であることが求められる。   The powder obtained as described above is mixed with an organic binder such as polyvinyl alcohol, acrylic or ethyl cellulose, then molded into a desired shape, and the molded product is fired and sintered. The molding may be dry molding such as press molding as well as wet molding such as a sheet method and a printing method, and the molding method can be appropriately selected according to a desired shape. In addition, firing is desirably performed in an oxygen atmosphere such as in the air, and the firing temperature is not higher than the melting point of a conductor such as Ag or an alloy containing Ag as a main component used as the internal electrode, for example, 900 ° C. or lower. Is required.

多層型デバイスは内部にコンデンサ、インダクタ等の誘電デバイスを一体に作りこまれた複数のセラミック層からなる多層セラミック基板から作られる。多層セラミック基板は互いに誘電特性が異なるセラミック材料のグリーンシートを複数枚用意し、内部電極となる導体を界面に配し、あるいはスルーホールを形成して積層し同時焼成して製造される。   A multilayer device is made from a multilayer ceramic substrate made of a plurality of ceramic layers in which dielectric devices such as capacitors and inductors are integrally formed. A multilayer ceramic substrate is manufactured by preparing a plurality of green sheets of ceramic materials having different dielectric characteristics, arranging conductors serving as internal electrodes at the interface, or forming through-holes and laminating and co-firing.

以下、具体的実施例を示し、本発明をさらに詳細に説明する。
〔実験例1〕
(試料の作製と所望の物性の測定方法)
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[Experimental Example 1]
(Sample preparation and measurement method of desired physical properties)

下記の要領で表1に示されるような種々の誘電体磁器組成物の試料を製造した。
主成分組成を特定するx及びy、並びに副成分組成の添加量を特定するa、b、及びcの定義は上述したとおりである。
Samples of various dielectric ceramic compositions as shown in Table 1 were produced in the following manner.
The definitions of x and y that specify the main component composition and a, b, and c that specify the addition amount of the subcomponent composition are as described above.

基本的な製造方法に関して本発明の試料である試料No.1を例にとって説明する。   Sample No. which is the sample of the present invention regarding the basic manufacturing method. 1 will be described as an example.

まず、主成分の原料であるBaCO、TiO及びWOを用いて、仮焼後のBaO−TiO−WO系化合物におけるBaOに対するTiOのモル比x、及びBaOに対するWOのモル比yがそれぞれ下記表1の試料No.1の主成分組成の欄に示されるものとなるように秤量した。つまり、x=4.0、y=0.02となるように秤量した。 First, using BaCO 3 , TiO 2, and WO 3 as the main components, the molar ratio x of TiO 2 to BaO in the BaO—TiO 2 —WO 3 compound after calcination, and the mole of WO 3 to BaO The ratio y is the sample No. in Table 1 below. 1 was weighed so as to be shown in the column of the main component composition. That is, it measured so that it might become x = 4.0 and y = 0.02.

秤量した原料に純水を加えスラリー濃度25%として、ボールミルにて16時間湿式混合し、その後、120℃で24時間乾燥した。この乾燥した粉末を、空気中にて仮焼(1100℃、4時間)を行った。仮焼後のBaO−TiO−WO系化合物に純水を加えスラリー濃度25%として、ボールミルにて16時間粉砕し、その後、120℃で24時間乾燥し、BaO−TiO−WO系化合物の粉末を製造した。 Pure water was added to the weighed raw materials to a slurry concentration of 25%, wet-mixed for 16 hours with a ball mill, and then dried at 120 ° C. for 24 hours. The dried powder was calcined (1100 ° C., 4 hours) in the air. Pure water is added to the calcined BaO—TiO 2 —WO 3 -based compound to a slurry concentration of 25%, pulverized in a ball mill for 16 hours, and then dried at 120 ° C. for 24 hours, and BaO—TiO 2 —WO 3 -based Compound powders were prepared.

次に、副成分の原料であるZnOとBとCuOとを準備した。 Next, ZnO, B 2 O 3, and CuO, which are raw materials of subcomponents, were prepared.

次に粉砕した前記BaO−TiO−WO系化合物の粉末と、この主成分に対して、aZnO、bB、cCuOと表される副成分比率が表1の試料No.1の副成分添加量の欄に示されるものとなるよう配合して原料混合粉末を得た。すなわち、a=2.0(重量%)、b=1.5(重量%)、c=1.0(重量%)となるように秤量し、スラリー濃度25%となるように純水を加え、ボールミルにて16時間湿式混合し、その後、120℃で24時間乾燥して原料混合粉末を得た。 Next, the sub-component ratios represented by aZnO, bB 2 O 3 , and cCuO with respect to this pulverized powder of the BaO—TiO 2 —WO 3 -based compound and this main component were as shown in Sample No. 1 in Table 1. The raw material mixed powder was obtained by blending so as to be those shown in the column of the amount of subcomponent addition of 1. That is, weighed so that a = 2.0 (wt%), b = 1.5 (wt%), and c = 1.0 (wt%), and added pure water so that the slurry concentration was 25%. The mixture was wet mixed in a ball mill for 16 hours, and then dried at 120 ° C. for 24 hours to obtain a raw material mixed powder.

このようにして得られた原料混合粉末を、空気中にて再度の仮焼(750℃、2時間)を行い、仮焼粉末を得た。   The raw material mixed powder thus obtained was calcined again in the air (750 ° C., 2 hours) to obtain a calcined powder.

得られた仮焼粉末をスラリー濃度25%となるように純水を加え再度ボールミルにて16時間湿式粉砕した後、120℃で24時間乾燥した。この再度粉砕した粉末にバインダーとしてポリビニルアルコール水溶液を加えて造粒し、直径12mm×高さ6mmの円柱状に成型し、表1の試料No.1の焼成温度の欄に示す温度、すなわち、900℃で1時間焼成して誘電体磁器組成物を得た。   The obtained calcined powder was added with pure water so as to have a slurry concentration of 25%, wet-ground again with a ball mill for 16 hours, and then dried at 120 ° C. for 24 hours. Polyvinyl alcohol aqueous solution as a binder was added to the pulverized powder again, granulated, and formed into a cylindrical shape having a diameter of 12 mm and a height of 6 mm. The dielectric ceramic composition was obtained by firing at a temperature shown in the column of No. 1 firing temperature, ie, 900 ° C. for 1 hour.

このようにして得られた誘電体磁器組成物の表面を削り、直径10mm×高さ5mmの円柱ペレットを作製して測定用試料No.1とした。   The surface of the dielectric ceramic composition thus obtained was shaved to produce a cylindrical pellet having a diameter of 10 mm and a height of 5 mm. It was set to 1.

試料No.1の誘電体磁器組成物について比誘電率εr、Q・f値、共振周波数の温度係数τfを日本工業規格「マイクロ波用ファインセラミックスの誘電特性の試験方法」(JIS R 1627 1996年度)に従って測定した。測定に際して、測定周波数は7.0GHzとし、また、共振周波数を−40〜85℃の温度範囲で測定し、上述した式(1)の算出式により共振周波数の温度係数τfを算出した。   Sample No. 1. Measurement of dielectric constant εr, Q · f value, temperature coefficient τf of resonance frequency for dielectric ceramic composition No. 1 according to Japanese Industrial Standard “Test Method for Dielectric Properties of Microwave Fine Ceramics” (JIS R 1627 1996) did. At the time of measurement, the measurement frequency was 7.0 GHz, the resonance frequency was measured in the temperature range of −40 to 85 ° C., and the temperature coefficient τf of the resonance frequency was calculated by the equation (1) described above.

試料No.1は表1に示されるごとく、上記の各物性の測定ができており900℃の低温で十分に焼結していることがわかる。なお、各物性の測定結果は、表1に示されるごとく比誘電率εr=35.9、Q・f=20712(GHz)、共振周波数の温度係数τf=20(ppm/K)であった。   Sample No. As shown in Table 1, No. 1 has been measured for the above physical properties, and it can be seen that it is sufficiently sintered at a low temperature of 900 ° C. As shown in Table 1, the measurement results of each physical property were the relative dielectric constant εr = 35.9, Q · f = 20712 (GHz), and the temperature coefficient τf = 20 (ppm / K) of the resonance frequency.

このような試料No.1の製造方法に沿って、表1に示されるような種々の試料を作製した。焼成温度を900℃に固定して(表1において「測定不可」の記載がある試料は誘電体高周波特性が測定できるレベルに焼結していない)、焼結した試料について、比誘電率εr、Q・f値(測定周波数の範囲は、6.9〜7.5GHz)、および共振周波数の温度係数τfを求めた。   Such sample No. Various samples as shown in Table 1 were prepared in accordance with the manufacturing method of 1. With the firing temperature fixed at 900 ° C. (samples with “not measurable” in Table 1 are not sintered to a level at which dielectric high-frequency characteristics can be measured), the relative permittivity εr, The Q · f value (measurement frequency range is 6.9 to 7.5 GHz) and the temperature coefficient τf of the resonance frequency were obtained.

結果を下記表1に示した。なお、表1において、*が付されている試料は比較例を示す。   The results are shown in Table 1 below. In Table 1, samples marked with * indicate comparative examples.

Figure 2006273617
Figure 2006273617

表1の結果より、本発明の効果は明らかである。すなわち、本発明は、主成分として、組成式(BaO・xTiO・yWO)と表される成分を含み、当該組成式におけるBaOに対するTiOのモル比xが3.5≦x≦4.5(モル比)の範囲内にあり、BaOに対するWOのモル比yが0.02≦y≦0.2(モル比)の範囲内にあり、
前記主成分に対して副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を含むとともに、これらの副成分をそれぞれ、aZnO、bB、およびcCuOと表したとき、
前記主成分に対する前記各副成分の重量比率を表わすa、b、およびcがそれぞれ
0.1(重量%)≦a≦8.0(重量%)
0.1(重量%)≦b≦8.0(重量%)、
0.1(重量%)≦c≦6.0(重量%)の範囲内、
となるように構成されているので、900℃以下での低温焼結が可能で、比誘電率εrが30〜40の特性を備え、特に、共振周波数の温度係数τfの絶対値が20ppm/Kの特性を備え、共振周波数の温度係数τfが改善された誘電体磁器組成物が得られる。
From the results in Table 1, the effects of the present invention are clear. That is, the present invention includes a component represented by a composition formula (BaO.xTiO 2 .yWO 3 ) as a main component, and the molar ratio x of TiO 2 to BaO in the composition formula is 3.5 ≦ x ≦ 4. 5 (molar ratio), and the molar ratio y of WO 3 to BaO is in the range of 0.02 ≦ y ≦ 0.2 (molar ratio),
When the zinc oxide, boron oxide, and copper oxide are included as subcomponents with respect to the main component, and these subcomponents are expressed as aZnO, bB 2 O 3 , and cCuO, respectively,
A, b, and c representing the weight ratios of the subcomponents to the main component are each 0.1 (wt%) ≦ a ≦ 8.0 (wt%)
0.1 (wt%) ≦ b ≦ 8.0 (wt%),
Within the range of 0.1 (wt%) ≦ c ≦ 6.0 (wt%),
Therefore, low temperature sintering at 900 ° C. or lower is possible, and the specific dielectric constant εr is 30 to 40. In particular, the absolute value of the temperature coefficient τf of the resonance frequency is 20 ppm / K. Thus, a dielectric ceramic composition with improved temperature coefficient τf of resonance frequency can be obtained.

本発明の誘電体磁器組成物は、幅広く各種の電子部品産業に利用できる。   The dielectric ceramic composition of the present invention can be widely used in various electronic component industries.

本発明における誘電体磁器組成物の製造方法の好適な一態様のフロー図を示す。The flowchart of the suitable one aspect | mode of the manufacturing method of the dielectric material ceramic composition in this invention is shown.

Claims (2)

主成分として、組成式(BaO・xTiO・yWO)と表される成分を含み、当該組成式におけるBaOに対するTiOのモル比xが3.5≦x≦4.5の範囲内にあり、BaOに対するWOのモル比yが0.02≦y≦0.2の範囲内にあり、
前記主成分に対して副成分として、亜鉛酸化物、ホウ素酸化物、および銅酸化物を含むとともに、これらの副成分をそれぞれ、aZnO、bB、およびcCuOと表したとき、
前記主成分に対する前記各副成分の重量比率を表わすa、b、およびcがそれぞれ
0.1(重量%)≦a≦8.0(重量%)
0.1(重量%)≦b≦8.0(重量%)、
0.1(重量%)≦c≦6.0(重量%)の範囲内、
にあることを特徴とする誘電体磁器組成物。
As a main component, it contains a component represented by a composition formula (BaO · xTiO 2 · yWO 3 ), and the molar ratio x of TiO 2 to BaO in the composition formula is in the range of 3.5 ≦ x ≦ 4.5 , The molar ratio y of WO 3 to BaO is in the range of 0.02 ≦ y ≦ 0.2,
When the zinc oxide, boron oxide, and copper oxide are included as subcomponents with respect to the main component, and these subcomponents are expressed as aZnO, bB 2 O 3 , and cCuO, respectively,
A, b, and c representing the weight ratios of the subcomponents to the main component are each 0.1 (wt%) ≦ a ≦ 8.0 (wt%)
0.1 (wt%) ≦ b ≦ 8.0 (wt%),
Within the range of 0.1 (wt%) ≦ c ≦ 6.0 (wt%),
A dielectric porcelain composition comprising:
焼成温度が900℃以下、比誘電率が30〜40の範囲内、Q・f値が10000GHz以上、τf値の絶対値が20ppm/K以下の物性を有してなる請求項1に記載の誘電体磁器組成物。   The dielectric according to claim 1, wherein the dielectric property is such that the firing temperature is 900 ° C. or less, the relative dielectric constant is 30 to 40, the Q · f value is 10,000 GHz or more, and the absolute value of τf value is 20 ppm / K or less. Body porcelain composition.
JP2005091935A 2005-03-28 2005-03-28 Dielectric porcelain composition Expired - Fee Related JP4765367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091935A JP4765367B2 (en) 2005-03-28 2005-03-28 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091935A JP4765367B2 (en) 2005-03-28 2005-03-28 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2006273617A true JP2006273617A (en) 2006-10-12
JP4765367B2 JP4765367B2 (en) 2011-09-07

Family

ID=37208719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091935A Expired - Fee Related JP4765367B2 (en) 2005-03-28 2005-03-28 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4765367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243296A1 (en) * 2009-03-25 2010-09-30 Tdk Corporation Dielectric ceramic composition and electronic component using the same
US8420560B2 (en) 2010-03-31 2013-04-16 Tdk Corporation Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298503A (en) * 1985-10-25 1987-05-08 株式会社住友金属セラミックス Dielectric porcelain compound for microwave
JPH06243724A (en) * 1993-02-15 1994-09-02 Matsushita Electric Ind Co Ltd Dielectric ceramic and coaxial type resonator and antenna shared unit
JPH10167817A (en) * 1996-11-29 1998-06-23 Kyocera Corp Dielectric ceramic composition
JP2000239061A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Ind Ltd Dielectric porcelain composition
JP2000264721A (en) * 1999-03-16 2000-09-26 Tdk Corp Dielectric porcelain composition
JP2001035741A (en) * 1999-07-22 2001-02-09 Tdk Corp Manufacture of electronic component
JP2003146748A (en) * 2001-11-20 2003-05-21 Hitachi Metals Ltd Dielectric ceramic composition
JP2004331410A (en) * 2003-04-30 2004-11-25 Koa Corp Dielectric ceramic composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298503A (en) * 1985-10-25 1987-05-08 株式会社住友金属セラミックス Dielectric porcelain compound for microwave
JPH06243724A (en) * 1993-02-15 1994-09-02 Matsushita Electric Ind Co Ltd Dielectric ceramic and coaxial type resonator and antenna shared unit
JPH10167817A (en) * 1996-11-29 1998-06-23 Kyocera Corp Dielectric ceramic composition
JP2000239061A (en) * 1999-02-19 2000-09-05 Sumitomo Metal Ind Ltd Dielectric porcelain composition
JP2000264721A (en) * 1999-03-16 2000-09-26 Tdk Corp Dielectric porcelain composition
JP2001035741A (en) * 1999-07-22 2001-02-09 Tdk Corp Manufacture of electronic component
JP2003146748A (en) * 2001-11-20 2003-05-21 Hitachi Metals Ltd Dielectric ceramic composition
JP2004331410A (en) * 2003-04-30 2004-11-25 Koa Corp Dielectric ceramic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243296A1 (en) * 2009-03-25 2010-09-30 Tdk Corporation Dielectric ceramic composition and electronic component using the same
JP2010228928A (en) * 2009-03-25 2010-10-14 Tdk Corp Dielectric ceramic composition and electronic component using the same
US8343883B2 (en) * 2009-03-25 2013-01-01 Tdk Corporation Dielectric ceramic composition and electronic component using the same
US8420560B2 (en) 2010-03-31 2013-04-16 Tdk Corporation Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic

Also Published As

Publication number Publication date
JP4765367B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5332807B2 (en) Dielectric porcelain composition
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
JP5322429B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component
US8420560B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and method for producing powder for producing dielectric ceramic
WO2001081269A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
US8841226B2 (en) Dielectric ceramic composition
CN109553406A (en) Dielectric ceramic composition and electronic component
JP4412266B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4765367B2 (en) Dielectric porcelain composition
JP3940419B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP5041206B2 (en) Method for producing dielectric ceramic composition
JP4465663B2 (en) Dielectric porcelain composition
JP2006273616A (en) Dielectric ceramic composition
JP2007153659A (en) Dielectric porcelain composition and electronic component
JP4849325B2 (en) Dielectric porcelain composition
JP2009227483A (en) Dielectric ceramic composition
JP2010235325A (en) Dielectric ceramic composition
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
JP7315902B2 (en) Dielectric porcelain composition and electronic parts
JP2011046560A (en) Dielectric ceramic and capacitor
JP2009249244A (en) Dielectric ceramic composition, method for producing the same and dielectric ceramic capacitor
JP4553301B2 (en) Dielectric porcelain composition and electronic component
JP4946875B2 (en) Dielectric porcelain composition
JP2007063076A (en) Dielectric ceramic composition
JP2009203110A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees