JPH06215627A - Low-temperature sintered porcelain composition for high-frequency - Google Patents
Low-temperature sintered porcelain composition for high-frequencyInfo
- Publication number
- JPH06215627A JPH06215627A JP4360442A JP36044292A JPH06215627A JP H06215627 A JPH06215627 A JP H06215627A JP 4360442 A JP4360442 A JP 4360442A JP 36044292 A JP36044292 A JP 36044292A JP H06215627 A JPH06215627 A JP H06215627A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- temperature
- glass powder
- powder
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高周波用の積層磁器コ
ンデンサ、インダクタ、共振器等の磁器部分を構成する
高周波用低温焼結性磁器組成物に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency low-temperature sinterable porcelain composition which constitutes a porcelain portion such as a high-frequency laminated ceramic capacitor, inductor, or resonator.
【0002】[0002]
【従来の技術】高周波用の積層磁器コンデンサ、インダ
クタ、共振器等の磁器材料を構成する磁器組成物として
は、例えばBaO−TiO2 −Re系(但し、Re:希
土類元素)、ZrO2 −SnO2 −TiO2 系、Ba
(Zn1/3 Ta2/3 )O3 複合ペロブスカイト等が知ら
れている。2. Description of the Related Art As a ceramic composition that constitutes a ceramic material such as a high-frequency laminated ceramic capacitor, inductor, or resonator, for example, BaO--TiO 2 --Re system (re: rare earth element), ZrO 2 --SnO is used. 2- TiO 2 system, Ba
(Zn 1/3 Ta 2/3 ) O 3 composite perovskite and the like are known.
【0003】[0003]
【この発明が解決しようとする課題】これらの磁器組成
物は焼結温度が1100〜1600℃とかなり高いの
で、例えば積層磁器コンデンサの誘電体材料として使用
する場合は、内部電極としてタングステン、モリブデ
ン、パラジウム等の高融点金属を使用しなければならな
い。しかし、これらの高融点金属は電気伝導度が低いの
で、この積層磁器コンデンサを高周波回路で使用した場
合は誘電体損失が大きくなり、Qが低下してしまうとい
う問題があった。Since these ceramic compositions have considerably high sintering temperatures of 1100 to 1600 ° C., for example, when they are used as dielectric materials for laminated ceramic capacitors, tungsten, molybdenum, Refractory metals such as palladium must be used. However, since these high melting point metals have low electric conductivity, there is a problem that when this laminated ceramic capacitor is used in a high frequency circuit, dielectric loss becomes large and Q is lowered.
【0004】また、上述した組成物は比誘電率が20〜
100と高いので、例えば高周波用の積層磁器コンデン
サの誘電体材料として使用した場合は、自己共振周波数
が比較的低周波側で発生することによって高周波領域で
はコンデンサとして機能しなくなるという問題があっ
た。Further, the above-mentioned composition has a relative dielectric constant of 20 to
Since it is as high as 100, for example, when it is used as a dielectric material of a high-frequency laminated ceramic capacitor, there is a problem that the self-resonant frequency is generated at a relatively low frequency side and thus does not function as a capacitor in a high frequency region.
【0005】本発明は、比誘電率の低い高周波用磁器組
成物を、900℃以下の比較的低い温度の焼成で製造す
ることができる高周波用低温焼結性磁器組成物を提供す
ることを目的とする。An object of the present invention is to provide a high frequency low temperature sinterable porcelain composition which can be produced by firing a high frequency porcelain composition having a low relative dielectric constant at a relatively low temperature of 900 ° C. or lower. And
【0006】具体的には、900℃以下の温度の焼成で
緻密に焼結し、比誘電率εr が10以下、Qが500以
上、比誘電率εr の温度係数τεが0±60ppm/℃
の高周波用低温焼結性磁器組成物を提供することを目的
とする。Specifically, it is densely sintered by firing at a temperature of 900 ° C. or less, a relative permittivity ε r of 10 or less, a Q of 500 or more, and a temperature coefficient τ ε of the relative permittivity ε r of 0 ± 60 ppm / ℃
It is an object of the present invention to provide a low-temperature sinterable porcelain composition for high frequencies.
【0007】[0007]
【課題を解決するための手段】本発明に係る高周波用低
温焼結性磁器組成物は、石英粉末とガラス粉末との混合
物を焼結したものからなり、石英粉末(X)とガラス粉
末(Y)のモル比率が、13mol%≦X≦55mol
%,45mol%≦Y≦87mol%,X+Y=100
mol%,の範囲にある。The low frequency sinterable porcelain composition for high frequencies according to the present invention comprises a mixture of quartz powder and glass powder, which is sintered, and is composed of quartz powder (X) and glass powder (Y). ), The molar ratio of 13 mol% ≦ X ≦ 55 mol
%, 45 mol% ≦ Y ≦ 87 mol%, X + Y = 100
It is in the range of mol%.
【0008】ここで、石英粉末としてはα−石英の粉末
が好ましい。また、石英粉末及びガラス粉末の組成範囲
を、13mol%≦X≦55mol%、45mol%≦
Y≦87mol%としたのは、石英粉末が55mol%
を越え、ガラス粉末が45mol%未満になると、90
0℃の焼成で緻密な焼結体が得られなくなり、石英粉末
が13mol%未満になり、ガラス粉末が87mol%
を越えると、900℃の焼成において発泡、反り、変形
を生じるようになるか、比誘電率εr が10以上と悪化
するからである。As the quartz powder, α-quartz powder is preferable. In addition, the composition range of the quartz powder and the glass powder is 13 mol% ≦ X ≦ 55 mol%, 45 mol% ≦
Y ≦ 87 mol% means that the quartz powder is 55 mol%
And the glass powder content is less than 45 mol%, 90
A dense sintered body can no longer be obtained by firing at 0 ° C., the quartz powder content is less than 13 mol%, and the glass powder content is 87 mol%.
If it exceeds, the foaming, warping, and deformation will occur in firing at 900 ° C., or the relative permittivity ε r will deteriorate to 10 or more.
【0009】次に、この高周波用低温焼結性磁器組成物
において、ガラス粉末は、酸化物換算表記に従ったと
き、主成分が、SiO2 ,Al2 O3 ,(Baa,Cab,
Src)O,TiO2 からなり、SiO2 (A),Al2
O3 (B),(Baa,Cab)O(C)及びTiO2
(D)のモル比率が、15mol%≦A≦70mol
%,0mol%<B≦15mol%,5mol%≦C≦
60mol%,0mol%<a≦80mol%,0mo
l%<b≦80mol%,0mol%<c≦80mol
%,a+b+c=100mol%,4mol%≦D≦1
5mol%,A+B+C+D=100mol%,の範囲
にある。Next, in this low-frequency sinterable porcelain composition for high frequencies, the glass powder has SiO 2 , Al 2 O 3 , (Ba a , Ca b ,
Sr c ) O, TiO 2 and SiO 2 (A), Al 2
O 3 (B), (Ba a , Ca b ) O (C) and TiO 2
The molar ratio of (D) is 15 mol% ≦ A ≦ 70 mol
%, 0 mol% <B ≦ 15 mol%, 5 mol% ≦ C ≦
60 mol%, 0 mol% <a ≤ 80 mol%, 0mo
1% <b ≦ 80 mol%, 0 mol% <c ≦ 80 mol
%, A + b + c = 100 mol%, 4 mol% ≦ D ≦ 1
It is in the range of 5 mol% and A + B + C + D = 100 mol%.
【0010】ここで、SiO2 (A)の組成範囲を、1
5mol%≦A≦70mol%としたのは、SiO2 が
15mol%未満になると、ガラス成分がガラス化しな
くなり、SiO2 が70mol%を越えると、900℃
の焼成で緻密な焼結体が得られなくなるからである。Here, the composition range of SiO 2 (A) is set to 1
5 mol% ≤ A ≤ 70 mol% means that when SiO 2 is less than 15 mol%, the glass component does not vitrify, and when SiO 2 exceeds 70 mol%, the temperature is 900 ° C.
This is because a dense sintered body can no longer be obtained by firing.
【0011】また、Al2 O3 (B)の組成範囲を、0
mol%<B≦15mol%としたのは、Al2 O3 が
0mol%ではガラス成分がガラス化せず、Al2 O3
が15mol%を越えると、900℃の焼成で緻密な焼
結体が得られなくなるからである。The composition range of Al 2 O 3 (B) is 0.
Mol% <B ≦ 15 mol% means that when Al 2 O 3 is 0 mol%, the glass component does not vitrify and Al 2 O 3
Is more than 15 mol%, a dense sintered body cannot be obtained by firing at 900 ° C.
【0012】また、(Baa,Cab,Src )O(C)の
組成範囲を、5mol%≦C≦60mol%としたの
は、(Baa,Cab,Src )が5mol%未満では、9
00℃の焼成で緻密な焼結体が得られなくなり、(Ba
a,Cab,Src )が60mol%を越えると、比誘電率
εr の温度係数τεが悪化するからである。The composition range of (Ba a , Ca b , Sr c ) O (C) is defined as 5 mol% ≤C≤60 mol% is that (Ba a , Ca b , Sr c ) is less than 5 mol%. Then 9
A dense sintered body can no longer be obtained by firing at 00 ° C. (Ba
This is because the temperature coefficient τε of the relative permittivity ε r deteriorates when a , Ca b , Sr c ) exceeds 60 mol%.
【0013】また、BaO(a),CaO(c)及びS
rO(d)の組成範囲を、0mol%<a≦80mol
%,0mol%<b≦80mol%,0mol%<c≦
80mol%としたのは、BaOが80mol%を越え
たり、CaOが80mol%を越えたり、SrOが80
mol%を越えると、900℃の焼成において発泡、変
形、反りを生じたり、900℃の焼成で緻密な焼結体が
得られなくなるからである。Further, BaO (a), CaO (c) and S
The composition range of rO (d) is 0 mol% <a ≦ 80 mol
%, 0 mol% <b ≦ 80 mol%, 0 mol% <c ≦
80 mol% means that BaO exceeds 80 mol%, CaO exceeds 80 mol%, and SrO is 80 mol%.
This is because if it exceeds mol%, foaming, deformation, and warpage occur in firing at 900 ° C., or a dense sintered body cannot be obtained by firing at 900 ° C.
【0014】また、TiO2 (D)の組成範囲を、4m
ol%≦E≦15mol%としたのは、TiO2 が4m
ol%未満になったり、TiO2 が15mol%を越え
ると、比誘電率εr が悪化したり、比誘電率εr の温度
係数τεが悪化するからである。The composition range of TiO 2 (D) is 4 m.
ol% ≦ E ≦ 15 mol% means that TiO 2 is 4 m
This is because if it is less than ol% or if TiO 2 exceeds 15 mol%, the relative permittivity ε r deteriorates or the temperature coefficient τ ε of the relative permittivity ε r deteriorates.
【0015】なお、上述のガラス粉末の製造方法として
は、ガラス成分を例えば1400〜1500℃の高温で
溶融させ、これを水中に滴下して急冷させるか、鉄板上
に流して急冷させることにより得られるが、これ以外の
急冷方法を用いてもよい。また、上述のガラス成分の各
原料は酸化物に限定されるものではなく、炭酸塩、水酸
化物のように焼成で酸化物になり得るものであれば使用
できることはもちろんである。The above-mentioned glass powder can be produced by melting the glass component at a high temperature of, for example, 1400 to 1500 ° C. and dropping it into water to quench it, or by pouring it on an iron plate and quenching it. However, a quenching method other than this may be used. Further, each raw material of the above-mentioned glass component is not limited to the oxide, and it is needless to say that it can be used as long as it can form an oxide by firing such as carbonate and hydroxide.
【0016】[0016]
【実施例】まず、実施例1の場合について説明する。ガ
ラス成分の各原料(SiO2 ,CaCO3 ,BaCO
3 ,SrCO3 ,Al2 O3 ,TiO2 )を表1の実
施例1の欄に示すように各々秤量し、これらをボールミ
ルで十分に混合してガラス成分のバッチ(batch) を作成
した。First, the case of the first embodiment will be described. Raw materials for glass component (SiO 2 , CaCO 3 , BaCO
3 , SrCO 3 , Al 2 O 3 , TiO 2 ) were weighed as shown in the column of Example 1 of Table 1, and these were thoroughly mixed in a ball mill to prepare a batch of glass components.
【0017】次に、このバッチを坩堝に入れ、1550
℃で1時間加熱して溶融し、溶融物を水中に滴下して急
冷しガラス片を得た。そして、このガラス片をボールミ
ルで微粉砕し、平均粒径0.4〜1.0μmのガラス粉
末を得た。Next, this batch was put into a crucible and placed at 1550.
The glass was heated at 1 ° C for 1 hour to be melted, and the melted material was dropped into water and rapidly cooled to obtain a glass piece. Then, the glass pieces were finely pulverized with a ball mill to obtain glass powder having an average particle diameter of 0.4 to 1.0 μm.
【0018】次に、このガラス粉末とα−石英の粉末と
を表1に示すようなモル比で配合し、これらをボール
ミルに入れて15時間混合し、均質な混合粉末を得た。Next, the glass powder and α-quartz powder were blended in a molar ratio as shown in Table 1, and these were placed in a ball mill and mixed for 15 hours to obtain a homogeneous mixed powder.
【0019】次に、この混合粉末に有機バインダー(P
VA)を加えて造粒し、これを成形機の型内に入れ、5
00kg/cm2 の圧力で加圧成形し、直径9.8m
m、厚さ0.6mmの円板状の成形物を得た。Next, an organic binder (P
VA) and granulate, put this in the mold of the molding machine, and
Pressure molding at a pressure of 00 kg / cm 2 and a diameter of 9.8 m
A disk-shaped molded product having m and a thickness of 0.6 mm was obtained.
【0020】次に、この成形物をジルコニアセッター上
に載せて焼成炉に入れ、大気雰囲気中において350℃
で6時間保持し、成形物中の有機バインダーを燃焼除去
させ、その後、炉内温度を900℃まで上昇させ、この
温度で2時間保持させて成形物を焼結させ、磁器素体を
得た。Next, this molded product was placed on a zirconia setter and placed in a firing furnace at 350 ° C. in an air atmosphere.
Held for 6 hours to burn off the organic binder in the molded product, after which the furnace temperature was raised to 900 ° C. and the molded product was sintered for 2 hours at this temperature to obtain a porcelain body. .
【0021】次に、この磁器素体の両主面にAgペース
トを塗布して焼付け、一対の電極を設けた測定用のコン
デンサを得た。そして、このコンデンサについて、比誘
電率εr 、Q及び比誘電率εr の温度係数τεを測定し
た。比誘電率εr 及びQは、20℃,1MHz,1V
rms の条件で測定し、比誘電率εr の温度係数τεは、
−55〜+125℃(20℃基準)の温度範囲において
測定した。結果は表1の電気的特性の欄に示す通りと
なった。Next, Ag paste was applied to both main surfaces of this porcelain body and baked to obtain a measuring capacitor having a pair of electrodes. Then, for this capacitor, the relative permittivity ε r , Q and the temperature coefficient τ ε of the relative permittivity ε r were measured. Relative permittivity ε r and Q are 20 ℃, 1MHz, 1V
Measured under the condition of rms , the temperature coefficient τε of the relative permittivity ε r is
The measurement was performed in the temperature range of −55 to + 125 ° C. (20 ° C. standard). The results are shown in the column of electrical characteristics in Table 1.
【0022】表1〜表1には、実施例2〜21及び
比較例1〜14の条件及び結果も記載されている。これ
らの例における各原料成分の割合(mol%)はこれら
の表の左欄に記載されている通りである。実験方法は実
施例1と同様である。結果はこれらの表の右欄に示す通
りとなった。Tables 1 to 1 also show the conditions and results of Examples 2 to 21 and Comparative Examples 1 to 14. The ratio (mol%) of each raw material component in these examples is as described in the left column of these tables. The experimental method is the same as in Example 1. The results are shown in the right column of these tables.
【0023】[0023]
【表1】[Table 1]
【0024】[0024]
【表1】[Table 1]
【0025】[0025]
【表1】[Table 1]
【0026】次に、表1〜表1に示す結果を参照し
ながら、各原料成分の好適な範囲(mol%)について
検討する。Next, referring to the results shown in Tables 1 to 1, a suitable range (mol%) of each raw material component will be examined.
【0027】まず、実施例1〜11に示すように、石英
粉末が13〜55mol%、ガラス粉末が45〜87m
ol%の場合は、所望の磁器組成物が得られる。しか
し、比較例1に示すように、石英粉末が60mol%、
ガラス粉末が40mol%の場合は、900℃の焼成で
緻密な焼結体が得られない。また、比較例2,3に示す
ように、石英粉末が10mol%、ガラス粉末が90m
ol%の場合は、900℃の焼成において発泡、反り、
変形を生ずるか、または比誘電率εr が11.2と悪化
する。従って、石英粉末(X)は、13mol%≦X≦
55mol%の範囲が好適であり、ガラス粉末(Y)
は、45mol%≦Y≦87mol%の範囲が好適であ
る。First, as shown in Examples 1 to 11, quartz powder is 13 to 55 mol%, and glass powder is 45 to 87 m.
In the case of ol%, the desired porcelain composition is obtained. However, as shown in Comparative Example 1, 60 mol% of quartz powder,
If the glass powder is 40 mol%, a dense sintered body cannot be obtained by firing at 900 ° C. Further, as shown in Comparative Examples 2 and 3, quartz powder is 10 mol% and glass powder is 90 m.
In the case of ol%, foaming, warping, etc. occur at 900 ° C firing.
Deformation occurs or the relative permittivity ε r deteriorates to 11.2. Therefore, the content of the quartz powder (X) is 13 mol% ≦ X ≦
A range of 55 mol% is preferable, and glass powder (Y)
Is preferably in the range of 45 mol% ≦ Y ≦ 87 mol%.
【0028】なお、同様の目的で、実施例7の磁器組成
物についてX線回折図を求めたところ、図1に示す通り
となった。すなわち、この組成物の結晶相は、SiO2
(α−石英),(Ba,Ca,Sr)Al2 Si2 O
8 ,TiO2 (Rutile),Sr2 TiSi2 O8
であった。For the same purpose, the X-ray diffraction pattern of the porcelain composition of Example 7 was determined and it was as shown in FIG. That is, the crystal phase of this composition is SiO 2
(Α-quartz), (Ba, Ca, Sr) Al 2 Si 2 O
8 , TiO 2 (Rutile), Sr 2 TiSi 2 O 8
Met.
【0029】次に、実施例12〜15に示すように、S
iO2 が15〜70mol%の場合は、いずれも所望の
磁器組成物が得られる。しかし、比較例5に示すよう
に、SiO2 が75mol%の場合は、900℃の焼成
で緻密な焼結体が得られず、また、比較例6に示すよう
に、SiO2 が10mol%の場合は、ガラス成分がガ
ラス化しない。従って、SiO2 (A)は、15mol
%≦A≦70mol%の範囲が好適である。Next, as shown in Examples 12 to 15, S
When iO 2 is 15 to 70 mol%, a desired porcelain composition can be obtained. However, as shown in Comparative Example 5, when SiO 2 is 75 mol%, a dense sintered body cannot be obtained by firing at 900 ° C., and as shown in Comparative Example 6, SiO 2 is 10 mol%. In this case, the glass component does not vitrify. Therefore, SiO 2 (A) is 15 mol
The range of% ≦ A ≦ 70 mol% is preferable.
【0030】次に、実施例15〜21に示すように、A
l2 O3 が5〜15mol%の場合は、いずれも所望の
磁器組成物が得られる。しかし、比較例7に示すよう
に、Al2 O3 が0mol%の場合は、ガラス成分がガ
ラス化せず、また、比較例13に示すように、Al2 O
3 が20mol%の場合は、900℃の焼成で緻密な焼
結体が得られない。従って、Al2 O3 (B)は、0m
ol%<B≦15mol%の範囲が好適である。Next, as shown in Examples 15 to 21, A
When l 2 O 3 is 5 to 15 mol%, the desired porcelain composition is obtained in each case. However, as shown in Comparative Example 7, when Al 2 O 3 was 0 mol%, the glass component did not vitrify, and as shown in Comparative Example 13, Al 2 O 3
When 3 is 20 mol%, a dense sintered body cannot be obtained by firing at 900 ° C. Therefore, Al 2 O 3 (B) is 0 m
The range of ol% <B ≦ 15 mol% is preferable.
【0031】次に、実施例14〜21に示すように、
(Baa,Cab,Src )が5〜60mol%の場合は、
いずれも所望の磁器組成物が得られる。しかし、比較例
12に示すように、(Baa,Cab,Src )が3mol
%の場合は、900℃の焼成で緻密な焼結体が得られ
ず、また、比較例14に示すように、(Baa,Cab,S
rc )が65.0mol%の場合は、比誘電率εr の温
度係数τεが+75ppm/℃と悪くなる。従って、
(Baa,Cab,Src )(C)は、5mol%≦C≦6
0mol%の範囲が好適である。Next, as shown in Examples 14 to 21,
When (Ba a , Ca b , Sr c ) is 5 to 60 mol%,
In each case, the desired porcelain composition is obtained. However, as shown in Comparative Example 12, (Ba a , Ca b , Sr c ) is 3 mol.
%, A dense sintered body could not be obtained by firing at 900 ° C., and as shown in Comparative Example 14, (Ba a , Ca b , S
When r c ) is 65.0 mol%, the temperature coefficient τ ε of the relative permittivity ε r becomes +75 ppm / ° C, which is poor. Therefore,
(Ba a , Ca b , Sr c ) (C) is 5 mol% ≦ C ≦ 6
The range of 0 mol% is preferable.
【0032】次に、実施例14〜21に示すように、B
aOが10mol%〜80mol%、CaOが10mo
l%〜80mol%、SrOが10mol%〜80mo
l%の場合は、所望の磁器組成物が得られる。しかし、
比較例8に示すように、BaOが10mol%,CaO
が90mol%,SrOが0mol%の場合は、900
℃の焼成で緻密な焼結体が得られず、また、比較例9に
示すように、BaOが90mol%,CaOが0mol
%,SrOが10mol%の場合は、900℃の焼成に
おいて発泡、反り、変形を生じ、比較例10に示すよう
に、BaOが0mol%,CaOが10mol%,Sr
Oが90mol%の場合は、900℃の焼成において発
泡、反り、変形を生じる。従って、BaO(a),Ca
O(b)及びSrO(c)は、0mol%<a≦80m
ol%、0mol%<b≦80mol%,0mol%<
c≦80mol%の範囲が好適である。Next, as shown in Examples 14 to 21, B
aO is 10 mol% to 80 mol%, CaO is 10 mo
1% to 80 mol%, SrO is 10 mol% to 80 mo
In the case of 1%, the desired porcelain composition is obtained. But,
As shown in Comparative Example 8, BaO is 10 mol%, CaO
Is 90 mol% and SrO is 0 mol%, 900
A dense sintered body could not be obtained by firing at ℃, and as shown in Comparative Example 9, BaO was 90 mol% and CaO was 0 mol.
%, SrO is 10 mol%, foaming, warpage, and deformation occur during firing at 900 ° C., and as shown in Comparative Example 10, BaO is 0 mol%, CaO is 10 mol%, and Sr is SrO.
When O is 90 mol%, foaming, warping, and deformation occur at 900 ° C. firing. Therefore, BaO (a), Ca
O (b) and SrO (c) are 0 mol% <a ≦ 80 m
ol%, 0 mol% <b ≦ 80 mol%, 0 mol% <
The range of c ≦ 80 mol% is preferable.
【0033】次に、実施例1〜5,17〜20に示すよ
うに、TiO2 が4mol%の場合、及び実施例12,
14,21に示すように、TiO2 が15mol%の場
合は、いずれも所望の磁器組成物が得られる。しかし、
比較例4に示すように、TiO2 が3mol%の場合
は、比誘電率εr の温度係数τεが+83ppm/℃と
悪化し、また、比較例11に示すように、TiO2 が2
0mol%の場合は、比誘電率εr が12.4と悪化
し、比誘電率εr の温度係数τεが−126ppm/℃
と悪化する。従って、TiO2 (D)は、4mol%≦
D≦15mol%の範囲が好適である。Next, as shown in Examples 1 to 5 and 17 to 20, when TiO 2 was 4 mol%,
As shown in Nos. 14 and 21, when TiO 2 is 15 mol%, a desired porcelain composition can be obtained. But,
As shown in Comparative Example 4, when TiO 2 was 3 mol%, the temperature coefficient τ ε of the relative dielectric constant ε r deteriorated to +83 ppm / ° C., and as shown in Comparative Example 11, TiO 2 was 2 mol% or less.
In the case of 0 mol%, the relative permittivity ε r deteriorates to 12.4, and the temperature coefficient τ ε of the relative permittivity ε r is -126 ppm / ° C.
Becomes worse. Therefore, TiO 2 (D) is 4 mol% ≦
The range of D ≦ 15 mol% is preferable.
【0034】[0034]
【発明の効果】本発明によれば、高周波用磁器組成物を
900℃以下の比較的低い温度の焼成で得ることができ
るので、内部導体としてAgやCuのような電気伝導度
の良い金属を使用することができ、従って、Qを高める
ことができるという効果がある。According to the present invention, since a high frequency porcelain composition can be obtained by firing at a relatively low temperature of 900 ° C. or less, a metal having a high electric conductivity such as Ag or Cu is used as an internal conductor. It has the effect that it can be used and therefore the Q can be increased.
【0035】また、本発明によれば、従来よりも低い温
度の焼成で高周波用磁器組成物を得ることができるの
で、焼成のためのエネルギーコストを低減させることが
できるという効果がある。Further, according to the present invention, since the high frequency porcelain composition can be obtained by firing at a temperature lower than the conventional one, there is an effect that the energy cost for firing can be reduced.
【0036】更に、本発明によれば、高周波用磁器組成
物の比誘電率を低下させたので、高周波域における電気
的特性を良好ならしめることができるという効果があ
る。Furthermore, according to the present invention, since the relative permittivity of the high frequency porcelain composition is lowered, there is an effect that the electrical characteristics in the high frequency range can be made good.
【図1】図1は実施例7の磁器組成物についてのX線回
折図である。FIG. 1 is an X-ray diffraction diagram for the porcelain composition of Example 7.
【表1○1】 [Table 1 ○ 1]
【表1○2】 [Table 1 ○ 2]
【表1○3】 [Table 1 ○ 3]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 淳 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 (72)発明者 鳥羽 利一 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Masuda 6-16-20 Ueno, Taito-ku, Tokyo Within Taiyo Denki Co., Ltd. (72) Inventor Riichi Toba 6-16-20 Ueno, Taito-ku, Tokyo Within Taiyo Electric Co., Ltd.
Claims (1)
たものからなり、石英粉末(X)とガラス粉末(Y)の
モル比率が、 13mol%≦X≦55mol%, 45mol%≦Y≦87mol%, X+Y=100mol%, の範囲にあり、 前記ガラス粉末は、酸化物換算表記に従ったとき、主成
分が、SiO2 ,Al2 O3 ,(Baa,Cab,Src )
O及びTiO2 からなり、SiO2 (A),Al2 O3
(B),(Baa,Cab,Src )O(C)及びTiO2
(D)のモル比率が、 15mol%≦A≦70mol%, 0mol%<B≦15mol%, 5mol%≦C≦60mol%, 0mol%<a≦80mol%, 0mol%<b≦80mol%, 0mol%<c≦80mol%, a+b+c=100mol%, 4mol%≦D≦15mol%, A+B+C+D=100mol%, の範囲にあるものであることを特徴とする高周波用低温
焼結性磁器組成物。1. A mixture of quartz powder and glass powder, which is sintered, wherein the molar ratio of quartz powder (X) and glass powder (Y) is 13 mol% ≦ X ≦ 55 mol%, 45 mol% ≦ Y ≦ 87 mol. %, X + Y = 100mol% , in the range of the glass powder, when in accordance with the oxide equivalent representation, the main component is, SiO 2, Al 2 O 3 , (Ba a, Ca b, Sr c)
Consisting of O and TiO 2 , SiO 2 (A), Al 2 O 3
(B), (Ba a , Ca b , Sr c ) O (C) and TiO 2
The molar ratio of (D) is 15 mol% ≦ A ≦ 70 mol%, 0 mol% <B ≦ 15 mol%, 5 mol% ≦ C ≦ 60 mol%, 0 mol% <a ≦ 80 mol%, 0 mol% <b ≦ 80 mol%, 0 mol% <C ≦ 80 mol%, a + b + c = 100 mol%, 4 mol% ≦ D ≦ 15 mol%, A + B + C + D = 100 mol%, a low-temperature sinterable porcelain composition for high frequencies, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4360442A JP3067918B2 (en) | 1992-12-28 | 1992-12-28 | Low frequency sinterable porcelain composition for high frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4360442A JP3067918B2 (en) | 1992-12-28 | 1992-12-28 | Low frequency sinterable porcelain composition for high frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06215627A true JPH06215627A (en) | 1994-08-05 |
JP3067918B2 JP3067918B2 (en) | 2000-07-24 |
Family
ID=18469421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4360442A Expired - Fee Related JP3067918B2 (en) | 1992-12-28 | 1992-12-28 | Low frequency sinterable porcelain composition for high frequency |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3067918B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407020B1 (en) | 1999-03-31 | 2002-06-18 | Tdk Corporation | Ceramics composition |
CN108439804A (en) * | 2018-04-19 | 2018-08-24 | 苏州凌科特新材料有限公司 | A kind of glass ceramic composite material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04275976A (en) * | 1991-03-01 | 1992-10-01 | Ngk Insulators Ltd | Dielectric porcelain composition |
JPH04367537A (en) * | 1991-06-14 | 1992-12-18 | Matsushita Electric Works Ltd | Glass composition and substrate for circuit |
-
1992
- 1992-12-28 JP JP4360442A patent/JP3067918B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04275976A (en) * | 1991-03-01 | 1992-10-01 | Ngk Insulators Ltd | Dielectric porcelain composition |
JPH04367537A (en) * | 1991-06-14 | 1992-12-18 | Matsushita Electric Works Ltd | Glass composition and substrate for circuit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407020B1 (en) | 1999-03-31 | 2002-06-18 | Tdk Corporation | Ceramics composition |
CN108439804A (en) * | 2018-04-19 | 2018-08-24 | 苏州凌科特新材料有限公司 | A kind of glass ceramic composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3067918B2 (en) | 2000-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics | |
JP7179135B2 (en) | dielectric | |
JP4632534B2 (en) | Dielectric porcelain and manufacturing method thereof | |
JP3737773B2 (en) | Dielectric ceramic composition | |
JP3737774B2 (en) | Dielectric ceramic composition | |
JP2000319066A (en) | Low temperature simultaneously firing dielectric ceramic composition | |
JPH0415604B2 (en) | ||
JP2000095541A (en) | Low melting temperature composite solder glass, additive for the same and use of the same | |
JPH05211007A (en) | Dielectric porcelain composition for microwave | |
JP3067918B2 (en) | Low frequency sinterable porcelain composition for high frequency | |
JP3067919B2 (en) | Low frequency sinterable porcelain composition for high frequency | |
JP3067917B2 (en) | Low frequency sinterable porcelain composition for high frequency | |
JP4613954B2 (en) | Ferroelectric glass ceramics, method for producing the same, and glass composition | |
JP3287303B2 (en) | Dielectric ceramic composition and ceramic electronic component using the same | |
JPH08259319A (en) | Low-temperature-baked dielectric porcelain and its production | |
JP3085625B2 (en) | Dielectric porcelain composition | |
EP1627863B1 (en) | Porcelain composition | |
JP2865925B2 (en) | Method for producing dielectric porcelain composition | |
JPWO2005061403A1 (en) | Ferroelectric glass ceramics and manufacturing method thereof | |
JP2865926B2 (en) | Method for producing dielectric porcelain composition | |
JP2879865B2 (en) | Method for producing dielectric porcelain composition | |
JP2865927B2 (en) | Method for producing dielectric porcelain composition | |
JP2879864B2 (en) | Method for producing dielectric porcelain composition | |
JP3074194B2 (en) | Dielectric porcelain composition | |
JP2879866B2 (en) | Method for producing dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980707 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |