JPH05226137A - Oxide magnetic body material and its manufacture - Google Patents
Oxide magnetic body material and its manufactureInfo
- Publication number
- JPH05226137A JPH05226137A JP4030727A JP3072792A JPH05226137A JP H05226137 A JPH05226137 A JP H05226137A JP 4030727 A JP4030727 A JP 4030727A JP 3072792 A JP3072792 A JP 3072792A JP H05226137 A JPH05226137 A JP H05226137A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- mol
- loss
- less
- oxide magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子部品・電子機器に
おいて使用される、高周波用低損失磁芯材料であり、ま
たこれを用いた損失の小さいスイッチング電源である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency low-loss magnetic core material used in electronic parts and electronic equipment, and a switching power supply using the same and having a small loss.
【0002】[0002]
【従来の技術】近年のエレクトロニクス技術の発展にと
もなう機器の小型化・高密度化により、使用周波数の高
周波化が進んでいる。スイッチング電源その他に用いら
れる磁性材料においても、高周波化への対応が必要とさ
れ、とくに小型化した場合の発熱を防止するために、高
周波において低損失であることが要求されている。2. Description of the Related Art With the recent advances in electronics technology, the miniaturization and higher density of equipment have led to higher frequency usage. Magnetic materials used for switching power supplies and the like are also required to cope with higher frequencies, and in particular, in order to prevent heat generation when miniaturized, low loss at high frequencies is required.
【0003】磁芯材料には、大きく分けて金属系材料と
酸化物フェライト系材料がある。金属系の材料は、飽和
磁束密度・透磁率とも高いという長所があるが、電気抵
抗率が10-6〜10-4Ω・cm程度と低いため、高周波
においては渦電流損失が増大するという問題点があっ
た。この問題点を補うために、箔状に加工し絶縁体をは
さんでロール状に巻いたものも作られているが、薄体化
に限界がある(約10ミクロン程度)・複雑形状のもの
が作りにくい・高コストであるといった欠点があり、1
00KHz程度の周波数帯域までしか使用できなかっ
た。Magnetic core materials are roughly classified into metallic materials and oxide ferrite materials. Metal-based materials have the advantage of high saturation magnetic flux density and high magnetic permeability, but have a low electrical resistivity of about 10 −6 to 10 −4 Ω · cm, which increases eddy current loss at high frequencies. There was a point. In order to make up for this problem, some foils are processed and rolled in a roll with an insulator sandwiched between them, but there is a limit to thinning them (about 10 microns). Has the drawback of being difficult to make and expensive, 1
It could only be used up to a frequency band of about 00 KHz.
【0004】一方フェライト系材料は、飽和磁束密度は
金属系材料の1/2程度と低い。しかしながら電気抵抗
率は、通常用いられているMnZn系のもので1Ω・c
m程度と、金属系材料に比べてはるかに高く、また、C
aOやSiO2 等の添加物を用いることにより電気抵抗
率をさらに10〜数KΩ・cm程度まで高めることがで
き、渦電流損失が高周波数まで比較的小さく、特別な工
夫をすることなく使用可能である。また複雑形状のもの
も容易に作れ、かつ低コストであるといった利点を持
つ。このため100KHz以上のスイッチング周波数で
の電源用トランス磁芯材料としてはこのフェライト系の
材料が一般に用いられていた。On the other hand, a ferrite material has a saturation magnetic flux density as low as about 1/2 of that of a metal material. However, the electrical resistivity is 1Ω · c for the MnZn type that is usually used.
m, which is much higher than that of metallic materials, and C
By using additives such as aO and SiO 2, the electrical resistivity can be further increased to about 10 to several KΩ · cm, and the eddy current loss is relatively small up to high frequencies, and it can be used without special measures. Is. In addition, it has the advantage that it can be easily made into a complicated shape and it is low cost. For this reason, this ferrite-based material has been generally used as a power supply transformer core material at a switching frequency of 100 KHz or more.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うなフェライト系材料においても、磁気損失の温度係数
が正であると、実使用時にトランスが損失により発熱
し、そのために温度が上昇し、さらに損失が増大して発
熱が大きくなることを繰り返し、熱暴走を起こす危険性
がある。このため損失は、実際に使用する温度(60〜
80℃)付近で最小となるような温度特性を持つことが
要求される。ところが低損失な材料は損失最小温度が室
温付近にあって熱暴走を起こしやすく、一方損失最小温
度が60℃以上にあるような材料は全体的に損失が大き
いという問題点があり、低損失で同時に温度特性も良い
材料としては、満足するものが得られていなかった。However, even in such a ferrite-based material, if the temperature coefficient of magnetic loss is positive, the transformer generates heat due to loss during actual use, which causes a rise in temperature and further loss. There is a risk that thermal runaway will occur due to repeated increases in heat generation and increased heat generation. Therefore, the loss is due to the temperature (60 ~
It is required to have a temperature characteristic that is minimum around 80 ° C. However, low loss materials have a minimum loss temperature near room temperature and are prone to thermal runaway. On the other hand, materials with a minimum loss temperature of 60 ° C or higher have a large loss. At the same time, no satisfactory material has been obtained as a material having good temperature characteristics.
【0006】本発明は前記従来技術の課題を解決するた
め、高周波帯域において、磁気損失が少なく、かつ損失
が最低となる温度が高いMnZnフェライト系材料、お
よびその製造方法を提供することを目的とする。In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a MnZn ferrite material having a small magnetic loss and a high temperature at which the loss is minimum in a high frequency band, and a method for producing the same. To do.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するた
め、本発明の酸化物磁性体材料は、MnZnフェライト
系低損失酸化物磁性体材料であって、主組成としてFe
2 O3 を52mol%以上57mol%以下、ZnOを
3mol%以上15mol%以下、残分としてMnOを
含み、かつ副成分として少なくとも、MgOを0.05
重量%以上1.0重量%以下、CaOを0.05重量%
以上0.3重量%以下、SiO2 を0.005重量%以
上0.05重量%以下含むことを特徴とする。In order to achieve the above object, the oxide magnetic material of the present invention is a MnZn ferrite-based low loss oxide magnetic material having a main composition of Fe.
52 mol% or more and 57 mol% or less of 2 O 3 , ZnO of 3 mol% or more and 15 mol% or less, MnO as a residue, and at least MgO of 0.05
% To 1.0% by weight, 0.05% by weight CaO
The content of SiO 2 is 0.003% by weight or less and the content of SiO 2 is 0.005% by weight or more and 0.05% by weight or less.
【0008】前記構成においては、焼結体の平均結晶粒
径が4μm以下であることが好ましい。また前記構成に
おいては、MnZnフェライト系低損失酸化物磁性体材
料が、スイッチング周波数100KHz〜2MHzのス
イッチング電源の磁芯であることが好ましい。In the above structure, the average crystal grain size of the sintered body is preferably 4 μm or less. Moreover, in the said structure, it is preferable that the MnZn ferrite low loss oxide magnetic material is a magnetic core of a switching power supply with a switching frequency of 100 KHz-2 MHz.
【0009】次に本発明の酸化物磁性体材料の製造方法
は、少なくともFe、Zn、MnおよびMgを含む原料
粉末を混合し、900℃以上の温度で仮焼した後、この
粉末にCaおよびSiを未添加の場合には、Caおよび
Siをを含む添加物を混合し、成形・焼成して、主組成
としてFe2 O3 を52mol%以上57mol%以
下、ZnOを3mol%以上15mol%以下、残分と
してMnOを含み、かつ副成分として少なくとも、Mg
Oを0.05重量%以上1.0重量%以下、CaOを
0.05重量%以上0.3重量%以下、SiO2 を0.
005重量%以上0.05重量%以下含む焼結体を作製
することを特徴とする。Next, in the method for producing an oxide magnetic material of the present invention, raw material powders containing at least Fe, Zn, Mn and Mg are mixed and calcined at a temperature of 900 ° C. or higher, and then Ca and Ca are added to the powders. When Si is not added, additives containing Ca and Si are mixed, molded and fired, and Fe 2 O 3 as main composition is 52 mol% or more and 57 mol% or less, ZnO is 3 mol% or more and 15 mol% or less. , MnO as a residue, and at least Mg as a secondary component
O is 0.05 wt% or more and 1.0 wt% or less, CaO is 0.05 wt% or more and 0.3 wt% or less, and SiO 2 is 0.
It is characterized in that a sintered body containing 005% by weight or more and 0.05% by weight or less is produced.
【0010】[0010]
【作用】前記本発明の構成によれば、主組成が特定範囲
内のMnZnフェライトに、少なくとも特定量のCaO
およびSiO2 を添加して低磁気損失材料とし、これに
さらに特定量のMgOを添加することにより、優れた磁
気損失の温度特性を持つ材料とすることができる。磁気
損失の温度特性は、主組成によっても変化するが、Mg
Oを添加することにより、損失が極小を持つ温度を無添
加のものに比べて20〜60℃程度高温側にシフトさせ
ることができる。従って、使用する温度範囲にあわせ
て、主組成とMgO添加量の組合せを変化させることに
より、その温度付近における磁気損失が最低となる、最
適なフェライト磁芯材料が得られる。また、このフェラ
イト磁芯材料を用いたスイッチング電源は、損失が低い
ことによって高効率であり、また暴走する危険性が低
い。According to the structure of the present invention, at least a specific amount of CaO is added to MnZn ferrite having a main composition within the specific range.
By adding SiO 2 and SiO 2 to obtain a low magnetic loss material, and further adding a specific amount of MgO thereto, a material having excellent temperature characteristics of magnetic loss can be obtained. The temperature characteristic of magnetic loss varies depending on the main composition, but Mg
By adding O, the temperature at which the loss is minimal can be shifted to a high temperature side by about 20 to 60 ° C. as compared with the case of no addition. Therefore, by changing the combination of the main composition and the added amount of MgO according to the temperature range to be used, it is possible to obtain the optimum ferrite core material having the minimum magnetic loss near that temperature. A switching power supply using this ferrite magnetic core material has high efficiency due to low loss, and has a low risk of runaway.
【0011】[0011]
【実施例】以下実施例によって本発明を説明する。 実施例1 出発原料に純度99.5%のα−Fe2 O3 、MnCO
3 、ZnOの各粉末を用いた。これらの粉末を、組成比
が、Fe2 O3 =53mol%、MnO=35mol
%、ZnO=12mol%となり、合計重量が300g
となるようにそれぞれ秤量し、これらにさらに、MgO
を0〜2重量%加え、ボールミルにて湿式10時間混合
粉砕し、乾燥させた。これらの混合粉末を900℃で2
時間空気中で仮焼した後、CaCO3 を、CaO分とし
て0.2重量%、SiO2 を0.05重量%を加え、再
度ボールミルにて10時間、湿式混合粉砕して乾燥し、
仮焼粉末とした。The present invention will be described below with reference to examples. Example 1 As a starting material, α-Fe 2 O 3 and MnCO having a purity of 99.5% were used.
3 and ZnO powders were used. The composition ratio of these powders was Fe 2 O 3 = 53 mol% and MnO = 35 mol
%, ZnO = 12 mol%, total weight 300 g
So that each of the
Was added in an amount of 0 to 2% by weight, wet-mixed and ground in a ball mill for 10 hours, and dried. 2 these mixed powders at 900 ℃
After calcination in air for 2 hours, CaCO 3 of 0.2 wt% as CaO content and 0.05 wt% of SiO 2 were added, and the mixture was again wet mixed and pulverized for 10 hours in a ball mill and dried,
It was a calcined powder.
【0012】これらの仮焼粉末に、ポリビニルアルコー
ルの5重量%水溶液を10重量%加え、30メッシュ
(#)のふるいを通過させて造粒した。これらの造粒粉
を一軸金型成形し、この成形体を500℃で1時間、空
気中でバインダアウトした後、1200℃で2時間、昇
温時および最高温保持時N2 −1%O2 雰囲気、冷却時
窒素中の雰囲気下で焼成し、焼結体を得た。一部の添加
量の試料については、焼成時間を2〜10時間まで変化
させた。成形時の圧力は、焼結体密度が約4.3〜4.
6g/cm3 の範囲内に入るように変化させた。得られ
た焼結体より、外径20mm、内径14mm、厚さ2m
mのリング状試料を切り出し、1MHz・50mTにお
ける磁気損失を、20℃〜100℃の間で測定した。ま
た焼結体破断面の電子顕微鏡観察により、焼結体の平均
結晶粒径を測定した。結果を表1に示す。10% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added to these calcined powders, and the mixture was passed through a 30 mesh (#) sieve to granulate. These granulated powders were uniaxially die-molded, the molded body was binder-out in air at 500 ° C. for 1 hour, and then at 1200 ° C. for 2 hours at the time of temperature rising and maximum temperature holding N 2 -1% O In two atmospheres, when cooled, firing was performed in an atmosphere of nitrogen to obtain a sintered body. The firing time was changed from 2 to 10 hours for some of the added amounts of the samples. The pressure at the time of molding is such that the density of the sintered body is approximately 4.3 to 4.
It was changed to fall within the range of 6 g / cm 3 . From the obtained sintered body, outer diameter 20 mm, inner diameter 14 mm, thickness 2 m
A ring-shaped sample of m was cut out, and the magnetic loss at 1 MHz · 50 mT was measured between 20 ° C and 100 ° C. The average crystal grain size of the sintered body was measured by observing the fracture surface of the sintered body with an electron microscope. The results are shown in Table 1.
【0013】[0013]
【表1】 [Table 1]
【0014】表1より明らかなように、MgO無添加ま
たは添加量の少ない試料番号1および2では、室温の損
失は少ないが、温度上昇とともに損失が増大し、実際に
使用する際には熱暴走を生じてしまう。一方、MgO添
加量が0.05〜1.0重量パーセントの試料番号3〜
6及び9〜10では、室温の損失自体は若干増加する
が、損失が最低となる温度は40℃〜80℃まで上昇
し、実際に使用する際に熱暴走を生じにくい。ところが
同じMgO添加量の試料番号5〜8を比較すると、結晶
粒径が4μmを越える試料番号7,8では、全体的な損
失が増大し、効率が低下した。As is clear from Table 1, in Sample Nos. 1 and 2 with or without addition of MgO, the loss at room temperature is small, but the loss increases as the temperature rises, and thermal runaway occurs in actual use. Will occur. On the other hand, when the amount of MgO added is 0.05 to 1.0 weight percent, sample number 3 to
In 6 and 9-10, the room temperature loss itself slightly increases, but the temperature at which the loss becomes minimum rises to 40 ° C to 80 ° C, and thermal runaway hardly occurs in actual use. However, when comparing sample numbers 5 to 8 with the same MgO addition amount, in sample numbers 7 and 8 in which the crystal grain size exceeds 4 μm, the overall loss increased and the efficiency decreased.
【0015】添加量が1.0重量パーセントを越える試
料番号8,9では、損失が最低となる温度は80℃と高
いが、20〜100℃の全ての温度領域で、無添加の試
料番号1よりも全体の損失が高くなり、効率が低下し
た。In the sample numbers 8 and 9 in which the addition amount exceeds 1.0 weight percent, the temperature at which the loss is minimum is as high as 80 ° C., but in the entire temperature range of 20 to 100 ° C. The overall loss was higher and the efficiency was lower than.
【0016】以上の結果より明かなように、MgOの添
加量を0.05重量パーセント以上に限定するのは、こ
れ未満の添加量では添加の効果が明瞭でないためであ
り、また1.0重量パーセント以下に限るのは、これを
越える添加量では、添加により全体の損失が増加するた
めである。また、平均結晶粒径を4μm以下が好ましい
のは、これを越えると全体の損失が増加する傾向となる
ためである。As is clear from the above results, the reason why the addition amount of MgO is limited to 0.05 weight percent or more is that the effect of the addition is not clear when the addition amount is less than 1.0 weight percent. The reason for limiting the content to less than or equal to the percentage is that the total loss is increased by the addition at the addition amount exceeding this. The reason why the average crystal grain size is preferably 4 μm or less is that the total loss tends to increase if the average grain size exceeds this.
【0017】実施例2 実施例1と同様に、組成比がFe2 O3 =53mol
%、MnO=37.5mol%、ZnO=9.5mol
%となり、合計重量が300gとなるように原料粉末を
それぞれ秤量し、これらにさらに、MgOを0.5重量
%加え、ボールミルにて湿式10時間混合粉砕し、乾燥
した。これらの混合粉末を800〜1000℃で2時間
空気中で仮焼した後、CaCO3 を、CaO分として
0.1重量%、SiO2 を0.02重量%を加え、再度
ボールミルにて10時間、湿式混合粉砕して乾燥させ、
仮焼粉末とした。Example 2 As in Example 1, the composition ratio was Fe 2 O 3 = 53 mol.
%, MnO = 37.5 mol%, ZnO = 9.5 mol
%, The raw material powders were weighed so that the total weight became 300 g, 0.5% by weight of MgO was further added thereto, and the mixture was ground and pulverized by a ball mill for 10 hours and dried. After calcining these mixed powders in air at 800 to 1000 ° C. for 2 hours, 0.1% by weight of CaCO 3 , 0.12% by weight of SiO 2 and 0.02% by weight of SiO 2 are added, and the resulting mixture is again ball milled for 10 hours. , Wet mix pulverize and dry,
It was a calcined powder.
【0018】同様の方法で、MgOの添加を仮焼後の粉
砕時とした粉末、仮焼を行わず混合だけを行った粉末、
および900℃仮焼でMgO無添加の粉末を作製した。
これらの仮焼粉末に、ポリビニルアルコールの5重量%
水溶液を10重量%加え、30#のふるいを通過させて
造粒した。これらの造粒粉を一軸金型成形し、この成形
体を500℃で1時間、空気中でバインダアウトした
後、1200℃で2時間、昇温時および最高温保持時N
2 −1%O2 雰囲気、冷却時窒素中の雰囲気下で焼成
し、焼結体を得た。成形時の圧力は、焼結体密度が約
4.5g/cm3 となるように、変化させた。得られた
焼結体より、外径20mm、内径14mm、厚さ3mm
のリング状試料を切り出し、1MHz・50mTにおけ
る磁気損失を、20℃〜100℃の間で20℃きざみで
測定し、損失が極小となる温度とその時の損失値を測定
した。また焼結体破断面の電子顕微鏡観察により、焼結
体の平均結晶粒径を測定した。結果を表2に示す。In a similar manner, a powder obtained by adding MgO at the time of crushing after calcination, a powder only mixed without calcination,
Then, MgO-free powder was prepared by calcination at 900 ° C.
5% by weight of polyvinyl alcohol was added to these calcined powders.
The aqueous solution was added at 10% by weight, and passed through a 30 # sieve to granulate. These granulated powders were uniaxially die-molded, and the molded body was binder-out in air at 500 ° C. for 1 hour, and then at 1200 ° C. for 2 hours at the time of temperature rising and maximum temperature holding N
A sintered body was obtained by firing in a 2-1% O 2 atmosphere and an atmosphere of nitrogen during cooling. The pressure at the time of molding was changed so that the sintered body density was about 4.5 g / cm 3 . From the obtained sintered body, outer diameter 20 mm, inner diameter 14 mm, thickness 3 mm
The ring-shaped sample was cut out and the magnetic loss at 1 MHz and 50 mT was measured in steps of 20 ° C. between 20 ° C. and 100 ° C., and the temperature at which the loss was minimized and the loss value at that time were measured. The average crystal grain size of the sintered body was measured by observing the fracture surface of the sintered body with an electron microscope. The results are shown in Table 2.
【0019】[0019]
【表2】 [Table 2]
【0020】表2より明らかなように、いずれの添加法
でも、無添加の場合に比べれば極小損失温度は上昇する
が、MgOを仮焼前に加え、かつ仮焼温度が900℃以
上のもの以外では、温度上昇の幅が小さいか、あるいは
極小時の損失がかなり大きくなった。As is clear from Table 2, in any addition method, the minimum loss temperature is higher than in the case of no addition, but MgO is added before calcination and the calcination temperature is 900 ° C. or higher. Other than that, the width of temperature rise was small, or the loss at the minimum was considerably large.
【0021】実施例3 実施例1と同様の方法で、組成比がFe2 O3 =53m
ol%、MnO=35mol%、ZnO=12mol%
となり、CaOを0.1重量%、SiO2 を0.02重
量%、MgOを無添加または0.2重量%となる比率で
添加した仮焼粉末を用意し、実施例2と同じ方法で焼結
体A(MgO無添加)およびB(MgO=0.2重量%
添加)を作製した。Example 3 In the same manner as in Example 1, the composition ratio was Fe 2 O 3 = 53 m.
ol%, MnO = 35 mol%, ZnO = 12 mol%
Therefore, a calcined powder containing 0.1% by weight of CaO, 0.02% by weight of SiO 2 , and MgO not added or at a ratio of 0.2% by weight was prepared, and calcined in the same manner as in Example 2. Conjugates A (without MgO added) and B (MgO = 0.2 wt%)
Addition) was prepared.
【0022】焼結体Aは、室温における損失値は、1M
Hz,50mTで370KW/m3と低いが、温度上昇
とともに損失が増大する試料である。一方焼結体Bは、
60℃で損失極小温度を持ち、損失値は490の本開発
品である。これらの焼結体より、それぞれE型コアを切
り出し、これを用いてフォワード方式のスイッチング電
源回路を試作し、1MHzで片側80mTの状態で動作
させ、損失にあたる温度上昇を評価した。その結果、比
較例の焼結体Aを用いた電源では、動作開始時の発熱は
小さく、温度上昇も緩慢であるが、時間経過とともに温
度上昇のスピードが大きくなり、温度上昇が止まらず、
熱暴走を起こした。一方、実施例の焼結体Bを用いた電
源では、動作開始時の発熱は比較例のものに対して大き
かったが、ある程度温度が上昇すると発熱が小さくな
り、60℃程度の温度で安定化して、熱暴走を生じなか
った。これは、磁芯材料へのMgO添加により、温度特
性が改善されたためである。従って、開発したフェライ
ト材料Aを用いたスイッチング周波数が100KHz〜
2MHzの電源は、発熱が少なく高効率で、熱暴走する
危険性が低い。The sintered body A has a loss value of 1 M at room temperature.
Although it is as low as 370 kW / m 3 at Hz and 50 mT, it is a sample in which the loss increases as the temperature rises. On the other hand, the sintered body B is
This product has a minimum loss temperature at 60 ° C and a loss value of 490. E-type cores were cut out from each of these sintered bodies, a forward-type switching power supply circuit was prototyped using the cores, operated at 1 MHz at 80 mT on one side, and the temperature rise corresponding to loss was evaluated. As a result, in the power source using the sintered body A of the comparative example, the heat generation at the start of operation is small and the temperature rise is slow, but the temperature rise speed increases with the passage of time, and the temperature rise does not stop,
Caused a thermal runaway. On the other hand, in the power source using the sintered body B of the example, the heat generation at the start of operation was larger than that of the comparative example, but when the temperature rises to some extent, the heat generation becomes small, and the temperature is stabilized at about 60 ° C. And did not cause thermal runaway. This is because the temperature characteristics were improved by adding MgO to the magnetic core material. Therefore, the switching frequency using the developed ferrite material A is 100 KHz-
The 2 MHz power supply has low heat generation, high efficiency, and low risk of thermal runaway.
【0023】[0023]
【発明の効果】以上説明した通り、本発明によれば、主
組成が特定範囲内のMnZnフェライトに、少なくとも
特定量のCaOおよびSiO2 を添加して低磁気損失材
料とし、これにさらに特定量のMgOを添加することに
より、優れた磁気損失の温度特性を持つ材料とすること
ができる。As described above, according to the present invention, at least a specified amount of CaO and SiO 2 is added to MnZn ferrite whose main composition is within a specified range to obtain a low magnetic loss material, and further a specified amount thereof is added. It is possible to obtain a material having excellent temperature characteristics of magnetic loss by adding MgO.
【0024】また、このフェライト磁芯材料を用いたス
イッチング電源は、損失が低いことによって高効率であ
り、また暴走する危険性が低いものとすることができ
る。さらに本発明の製造方法は、前記磁気損失の低い酸
化物磁性体材料を効率良く合理的に製造することができ
る。Further, the switching power supply using this ferrite magnetic core material has high efficiency due to low loss, and the risk of runaway can be reduced. Furthermore, the production method of the present invention can efficiently and rationally produce the oxide magnetic material having low magnetic loss.
Claims (4)
体材料であって、主組成としてFe2 O3 を52mol
%以上57mol%以下、ZnOを3mol%以上15
mol%以下、残分としてMnOを含み、かつ副成分と
して少なくとも、MgOを0.05重量%以上1.0重
量%以下、CaOを0.05重量%以上0.3重量%以
下、SiO2 を0.005重量%以上0.05重量%以
下含むことを特徴とする酸化物磁性体材料。1. A MnZn ferrite-based low loss oxide magnetic material having a main composition of 52 mol of Fe 2 O 3 .
% To 57 mol% and ZnO to 3 mol% to 15
mol% or less, containing MnO as the balance, and at least 0.05% by weight to 1.0% by weight of MgO, 0.05% by weight to 0.3% by weight of CaO and SiO 2 as secondary components An oxide magnetic material containing 0.005% by weight or more and 0.05% by weight or less.
ること請求項1に記載の酸化物磁性体材料。2. The oxide magnetic material according to claim 1, wherein the average crystal grain size of the sintered body is 4 μm or less.
体材料が、スイッチング周波数100KHz〜2MHz
のスイッチング電源の磁芯である請求項1または2に記
載の酸化物磁性体材料。3. A MnZn ferrite-based low-loss oxide magnetic material has a switching frequency of 100 KHz to 2 MHz.
The oxide magnetic material according to claim 1 or 2, which is a magnetic core of the switching power supply.
を含む原料粉末を混合し、900℃以上の温度で仮焼し
た後、この粉末にCaおよびSiを未添加の場合には、
CaおよびSiをを含む添加物を混合し、成形・焼成し
て、主組成としてFe2 O3 を52mol%以上57m
ol%以下、ZnOを3mol%以上15mol%以
下、残分としてMnOを含み、かつ副成分として少なく
とも、MgOを0.05重量%以上1.0重量%以下、
CaOを0.05重量%以上0.3重量%以下、SiO
2 を0.005重量%以上0.05重量%以下含む焼結
体を作製することを特徴とする酸化物磁性体材料の製造
方法。4. At least Fe, Zn, Mn and Mg
In the case where Ca and Si are not added to this powder after mixing the raw material powders containing
Additives containing Ca and Si are mixed, molded and fired, and Fe 2 O 3 as main composition is 52 mol% or more 57 m
ol% or less, ZnO is 3 mol% or more and 15 mol% or less, MnO is contained as a residue, and at least MgO is 0.05 wt% or more and 1.0 wt% or less as a sub-component.
CaO 0.05 wt% to 0.3 wt%, SiO
A method for producing an oxide magnetic material, comprising producing a sintered body containing 0.005% by weight or more and 0.05% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4030727A JPH05226137A (en) | 1992-02-18 | 1992-02-18 | Oxide magnetic body material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4030727A JPH05226137A (en) | 1992-02-18 | 1992-02-18 | Oxide magnetic body material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05226137A true JPH05226137A (en) | 1993-09-03 |
Family
ID=12311698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4030727A Pending JPH05226137A (en) | 1992-02-18 | 1992-02-18 | Oxide magnetic body material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05226137A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169072A (en) * | 2007-01-11 | 2008-07-24 | Nippon Ceramic Co Ltd | Mn-Zn FERRITE |
CN114685154A (en) * | 2022-04-27 | 2022-07-01 | 湖北华磁电子科技有限公司 | High-frequency wide-temperature ultralow-loss ferrite material and preparation process thereof |
-
1992
- 1992-02-18 JP JP4030727A patent/JPH05226137A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169072A (en) * | 2007-01-11 | 2008-07-24 | Nippon Ceramic Co Ltd | Mn-Zn FERRITE |
CN114685154A (en) * | 2022-04-27 | 2022-07-01 | 湖北华磁电子科技有限公司 | High-frequency wide-temperature ultralow-loss ferrite material and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3584438B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2917706B2 (en) | Oxide magnetic material | |
JPH05335132A (en) | Oxide magnetic body material | |
JPH06310321A (en) | Oxide magnetic substance material | |
JP2005132715A (en) | Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD | |
JPH06310320A (en) | Oxide magnetic substance material | |
JP2855990B2 (en) | Oxide magnetic material | |
JPH08169756A (en) | Low loss manganese-zinc ferrite core and its production | |
JPH05226137A (en) | Oxide magnetic body material and its manufacture | |
JPH08148322A (en) | Oxide magnetic material and switching power supply employing the same | |
JPH07130527A (en) | Oxide magnetic material | |
JPH11307336A (en) | Manufacture of soft magnetic ferrite | |
JPH08310856A (en) | Nickel-copper-zinc ferrite sintered compact | |
JPH07307212A (en) | Ni ferrite sintered body and power source core | |
JP2726388B2 (en) | High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same | |
JPH0661033A (en) | Low-loss oxide magnetic material | |
JPH08148323A (en) | Production of oxide magnetic material and molding | |
JPH09306718A (en) | Ferrite magnetic material and method of fabricating the same | |
JPH05221715A (en) | Combined magnetic material and its production | |
JP2510788B2 (en) | Low power loss oxide magnetic material | |
JPH0897025A (en) | Chip transformer magnetic material and chip transformer | |
JP2005247652A (en) | TRANSFORMER, MAGNETIC CORE FOR TRANSFORMER, Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME | |
JPH10177912A (en) | Low-loss oxide magnetic material and manufacture thereof | |
JP3438231B2 (en) | Low loss magnetic material | |
JP2001126911A (en) | Oxide magnetic material of low loss |