JP2001126911A - Oxide magnetic material of low loss - Google Patents

Oxide magnetic material of low loss

Info

Publication number
JP2001126911A
JP2001126911A JP30203699A JP30203699A JP2001126911A JP 2001126911 A JP2001126911 A JP 2001126911A JP 30203699 A JP30203699 A JP 30203699A JP 30203699 A JP30203699 A JP 30203699A JP 2001126911 A JP2001126911 A JP 2001126911A
Authority
JP
Japan
Prior art keywords
crystal grain
loss
grain size
magnetic material
cumulative frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30203699A
Other languages
Japanese (ja)
Inventor
Koichi Kondo
幸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP30203699A priority Critical patent/JP2001126911A/en
Publication of JP2001126911A publication Critical patent/JP2001126911A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce loss of Ni-Zn-Cu based ferrite, in order to provide magnetic material for a small-sized power transformer of high efficiency. SOLUTION: This low-loss oxide magnetic material is Ni-Zn-Cu based ferrite whose main component is Fe2O3, NiO, ZnO and CuO, and has crystal grain size distribution where D50 of crystal grain size distribution, i.e., crystal grain diameter at cumulative frequency 50% is 13-50 μm, and D10, i.e., crystal grain diameter at cumulative frequency 10% is greater than 5 μm, and D90, i.e., the crystal grain diameter at cumulative frequency 90% is smaller than 80 μm. In a manufacturing method of the low-loss oxide magnetic material, an oxygen partial pressure in a sinterning atmosphere is set as at least 25% of atmospheric pressure, in order to control a crystal grain diameter after sinterning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として、電源ト
ランス用あるいはインダクタ用の材料に係わり、特に、
小型で高効率な電源トランスに好適な磁性材料とその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a power transformer or an inductor.
The present invention relates to a magnetic material suitable for a small and highly efficient power supply transformer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】携帯機器を始めとして、近年、電子機器
の小型化が急速に進んでいる。それらで使用される電源
において、トランスは、体積的にも、電力損失において
も重要な位置を占める。そのため、トランスの小型化、
高効率化が求められている。トランス材料の損失が大き
いと電源としての効率が悪いだけでなく、自己発熱によ
る熱暴走の危険が生じる。それゆえ、トランス用材料と
しては、一般に低損失で飽和磁束密度が高く(約500
mT)、低価格なMn-Zn系フェライトが用いられてい
る。
2. Description of the Related Art In recent years, electronic devices such as portable devices have been rapidly reduced in size. In the power supplies used in them, transformers occupy an important place both in volume and in power loss. Therefore, downsizing of the transformer,
Higher efficiency is required. If the loss of the transformer material is large, not only the efficiency as a power source is poor, but also the risk of thermal runaway due to self-heating occurs. Therefore, as a material for a transformer, generally, the loss is low and the saturation magnetic flux density is high (about 500
mT), a low-cost Mn-Zn ferrite is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Mn−
Zn系フェライトは、比抵抗が小さく、絶縁性の確保の
ために、ボビンの巻線用部品を介し、巻線を行わなけれ
ばならない。よって、トランス材料として、Mn−Zn
系フェライトを用いては、小型化に対し、一定の限界が
ある。一方、Ni−Zn−Cu系フェライトは、比抵抗
が高く、巻線の直巻きが可能である。また、比抵抗が高
いことに加え、Cu添加により低温焼成が可能であるこ
とより、導体と磁性体の一体焼成が可能であり、高度な
小型化が実現できる。しかしながら、従来のNi−Zn
−Cu系フェライトは、高損失であるため、効率が悪
く、かつ、熱暴走など、安全性に劣るため、トランス用
材料として、商品化が困難であった。
However, Mn-
Zn-based ferrite has a low specific resistance and must be wound through bobbin winding parts to ensure insulation. Therefore, as a transformer material, Mn-Zn
There is a certain limit to miniaturization using the system ferrite. On the other hand, Ni—Zn—Cu-based ferrite has a high specific resistance, and can be wound directly. In addition to the high specific resistance, the addition of Cu enables low-temperature sintering, so that the conductor and the magnetic material can be integrally sintered, and a high degree of miniaturization can be realized. However, conventional Ni-Zn
-Cu-based ferrite has high loss and is inefficient, and has poor safety such as thermal runaway, so that it has been difficult to commercialize it as a transformer material.

【0004】そこで、本発明は、小型で高効率な電源ト
ランス用の磁性材料を提供するために、Ni−Zn−C
u系フェライトの損失を低減することを課題としてい
る。
Accordingly, the present invention has been made to provide a magnetic material for a power transformer which is small and highly efficient.
It is an object to reduce the loss of u-based ferrite.

【0005】[0005]

【課題を解決するための手段】我々は、種々の実験検討
を行った結果、Fe、NiO、ZnO、CuOを
主成分とするNi−Zn−Cu系フェライトにおいて、
焼結雰囲気の酸素分圧が大気圧の25%以上で焼結さ
れ、結晶粒度分布のD50が13〜50μmであり、か
つD10が5μmより大きく、D90が80μmより小
さいことを特徴とする結晶粒度分布において、低損失を
実現できることを見出した。ここで、D10、D50お
よびD90とは、それぞれ、累積度数が10%、50
%、および90%の時の結晶粒径を示している。
Means for Solving the Problems] We, the results of various experiments investigated, Fe 2 O 3, NiO, ZnO, in the Ni-Zn-Cu-based ferrite mainly composed of CuO,
A grain size characterized by being sintered at an oxygen partial pressure of 25% or more of atmospheric pressure in a sintering atmosphere, having a grain size distribution D50 of 13 to 50 µm, D10 greater than 5 µm, and D90 less than 80 µm. It has been found that low loss can be realized in the distribution. Here, D10, D50 and D90 mean that the cumulative frequency is 10% and 50%, respectively.
% And 90% are shown.

【0006】一般に、フェライトの損失は、ヒステリシ
ス損失、渦電流損失、残留損失に大別できる。本発明品
と従来のNi−Zn−Cu系フェライトの損失を比較す
ると、主に、ヒステリシス損失の低減により損失が低減
されていることが分かった。ヒステリシス損失は、主
に、結晶粒径と結晶磁気異方性エネルギー(K1)に依
存する。結晶粒界は、磁壁移動に対して摩擦力として作
用するため、通常の均一な粒成長となる焼成条件では、
結晶粒径が大きいほどヒステリシス損失は低下する。し
かしながら、異常粒成長により、局所的に粗大粒が発生
すると逆にヒステリシス損失は増大する。通常、Ni−
Zn−Cu系フェライトは、大気中(酸素分圧〜20
%)で焼成される。本発明品の結晶粒度分布は、従来品
と比較して、より均一であり、本発明の方法によれば、
焼成温度を高くしても、局所的な粗大粒を発生すること
なく、均一に粒成長させることができる。また、125
0℃以上の温度で焼成すると、従来品の比抵抗は低下す
るが、本発明品は高温で焼成しても、高比抵抗を維持で
きる。
In general, ferrite loss can be roughly classified into hysteresis loss, eddy current loss, and residual loss. Comparing the loss of the Ni-Zn-Cu ferrite of the present invention with that of the conventional Ni-Zn-Cu ferrite, it was found that the loss was reduced mainly by reducing the hysteresis loss. The hysteresis loss mainly depends on the crystal grain size and the magnetocrystalline anisotropic energy (K1). Since the crystal grain boundary acts as a frictional force against the domain wall movement, under normal firing conditions for uniform grain growth,
The hysteresis loss decreases as the crystal grain size increases. However, when coarse grains locally occur due to abnormal grain growth, the hysteresis loss increases. Usually, Ni-
Zn-Cu ferrite is used in the atmosphere (oxygen partial pressure 2020
%). The grain size distribution of the product of the present invention is more uniform as compared with the conventional product, and according to the method of the present invention,
Even if the firing temperature is increased, the grains can be uniformly grown without generating local coarse grains. Also, 125
When firing at a temperature of 0 ° C. or higher, the specific resistance of the conventional product decreases, but the product of the present invention can maintain a high specific resistance even when firing at a high temperature.

【0007】即ち、本発明の低損失酸化物磁性材料は、
Fe、NiO、ZnO、CuOを主成分とするN
i−Zn−Cu系フェライトであって、結晶粒度分布の
D50、即ち累積度数50%での結晶粒径が13〜50
μmであり、かつD10、即ち累積度数10%での結晶
粒径が5μmより大きく、かつD90、即ち累積度数9
0%での結晶粒径が80μmより小さい結晶粒度分布を
有することを特徴としている。
That is, the low-loss oxide magnetic material of the present invention comprises:
N mainly containing Fe 2 O 3 , NiO, ZnO, and CuO
An i-Zn-Cu ferrite having a grain size distribution D50, that is, a grain size at a cumulative frequency of 50% of 13 to 50.
μm and D10, that is, the crystal grain size at a cumulative frequency of 10% is larger than 5 μm, and D90, ie, a cumulative frequency of 9
It is characterized in that it has a crystal grain size distribution in which the crystal grain size at 0% is smaller than 80 μm.

【0008】また、本発明の製造方法は、Fe
NiO、ZnO、CuOを主成分とするNi−Zn−C
u系フェライトの製造方法において、焼結後の結晶粒径
を制御するために、焼結雰囲気の酸素分圧を大気圧の2
5%以上とすることを特徴としている。
[0008] The production method of the present invention is characterized in that Fe 2 O 3 ,
Ni-Zn-C containing NiO, ZnO, and CuO as main components
In the method for producing a u-based ferrite, the oxygen partial pressure of the sintering atmosphere is adjusted to 2 atmospheres in order to control the crystal grain size after sintering.
It is characterized by being at least 5%.

【0009】[0009]

【発明の実施の形態】まず、主成分であるFe
NiO、ZnO、CuOの粉末を所定の量だけ秤量す
る。次に、混合、造粒、仮焼を行い、得られた粉末を解
砕し、再び造粒し、所定の形状にプレスし、950〜1
300℃で焼成する。そのとき、焼成時の酸素分圧は、
大気圧の25%以上の範囲で変化させる。作製したNi
−Zn−Cu系フェライトについては、結晶粒度分布を
調べる。また、周波数50kHz、磁束密度150mT
の磁気的条件で、温度範囲25〜140℃において損失
を測定する。
BEST MODE FOR CARRYING OUT THE INVENTION First, the main components Fe 2 O 3 ,
A predetermined amount of NiO, ZnO, CuO powder is weighed. Next, mixing, granulation, and calcination are performed, and the obtained powder is pulverized, granulated again, and pressed into a predetermined shape.
Bake at 300 ° C. At that time, the oxygen partial pressure during firing is
It is changed within a range of 25% or more of the atmospheric pressure. Ni produced
Regarding -Zn-Cu-based ferrite, the crystal grain size distribution is examined. In addition, frequency 50kHz, magnetic flux density 150mT
The loss is measured in a temperature range of 25 to 140 ° C. under the following magnetic conditions.

【0010】損失は、焼成時の雰囲気の酸素分圧が高く
なると、より低くなるが、最小の損失をもたらす焼成温
度は酸素分圧が高いほど高温側へ移動するので、他の条
件を勘案して決めると良い。一例として、49mol%
のFe、19mol%のNiO、25mol%の
ZnO、残部をCuOとするNi−Zn−Cu系フェラ
イトにおいては、焼成温度1250℃、酸素分圧95%
の焼成条件で、優れた損失値が得られる。
The loss decreases as the oxygen partial pressure of the atmosphere during firing increases, but the firing temperature that causes the minimum loss moves to the higher temperature side as the oxygen partial pressure increases. It is good to decide. As an example, 49 mol%
Of Fe 2 O 3, 19mol% of NiO, 25 mol% of ZnO, the Ni-Zn-Cu ferrite to CuO and the balance being, the firing temperature 1250 ° C., oxygen partial pressure 95%
Under the firing conditions described above, an excellent loss value can be obtained.

【0011】他方、焼成雰囲気の酸素分圧が高いほど、
損失が最小となるD50(累積度数50%での結晶粒
径)は、粒径が大きい側に移動し、粒径は均一化され
る。そして、D50が13〜50μmであり、かつD1
0(累積度数10%での結晶粒径)が5μmより大き
く、かつD90(累積度数90%での結晶粒径)が80
μmより小さいときに優れた損失値が得られる。
On the other hand, the higher the oxygen partial pressure of the firing atmosphere,
D50 (the crystal grain size at a cumulative frequency of 50%) at which the loss becomes minimum moves to the side where the grain size is large, and the grain size is made uniform. And D50 is 13 to 50 μm and D1
0 (crystal grain size at a cumulative frequency of 10%) is larger than 5 μm, and D90 (crystal grain size at a cumulative frequency of 90%) is 80.
Excellent loss values are obtained when smaller than μm.

【0012】以上、Fe、NiO、ZnO、Cu
Oを主成分としたNi−Zn−Cu系フェライトについ
て説明したが、Fe、NiO、ZnOを主成分と
するNi−Zn系フェライトにおいても、酸素分圧と温
度による結晶粒度分布の制御は損失の低減に対して同様
の効果をもたらす。
As described above, Fe 2 O 3 , NiO, ZnO, Cu
Although the Ni-Zn-Cu ferrite containing O as a main component has been described, also in the Ni-Zn ferrite containing Fe 2 O 3 , NiO, and ZnO as a main component, control of crystal grain size distribution by oxygen partial pressure and temperature. Has a similar effect on loss reduction.

【0013】[0013]

【実施例】本発明の実施例について、図表を参照して説
明する。主成分組成として、49mol%のFe
、19mol%のNiO、25mol%のZn
O、残部のCuOを所定の量だけ秤量し、アトライター
を用いて、2時間混合した。混合の後、スプレードライ
アーで造粒した。造粒した粉末をロータリーキルンで仮
焼した。得られた粉末をアトラターを用いて解砕した。
その後、スプレードライアーにて造粒し、トロイダル形
状にプレスし、950〜1300℃で焼成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. As a main component composition, 49 mol% of Fe
2 O 3 , 19 mol% NiO, 25 mol% Zn
O and the remaining CuO were weighed by a predetermined amount, and mixed for 2 hours using an attritor. After mixing, the mixture was granulated with a spray dryer. The granulated powder was calcined in a rotary kiln. The obtained powder was disintegrated using an attrater.
Thereafter, the mixture was granulated by a spray dryer, pressed into a toroidal shape, and fired at 950 to 1300 ° C.

【0014】表1に、焼成時の酸素分圧POを大気圧
の20%から95%まで変化させた時の発明品、比較
品、および従来品における結晶粒度分布、50kHz−
150mT−80℃での損失Pcv(即ち周波数50kH
z、磁束密度150mTでの80℃における損失)、お
よび比抵抗を示す。ここで、従来品とは、酸素分圧PO
=20%の雰囲気中で焼結した試料であり、焼結温度
に応じて1〜8の番号を付けた。他方、酸素分圧PO
が25%以上で作製された試料のうち、損失Pcvが実用
的に良好なものを発明品と呼び、焼結温度に応じて1〜
8の番号を付け、また損失Pcvが実用的に良好でないも
の比較品と呼び、1〜16の番号を付けた。
Table 1 shows the oxygen partial pressure PO during firing.2The atmospheric pressure
Invention when compared from 20% to 95%
Grain size distribution of 50kHz-
Loss Pcv at 150 mT-80 ° C (ie, frequency 50 kHz)
z, loss at 80 ° C. at a magnetic flux density of 150 mT), and
And specific resistance. Here, the conventional product is the oxygen partial pressure PO
2= Sample sintered in an atmosphere of 20%, sintering temperature
Are assigned numbers from 1 to 8. On the other hand, the oxygen partial pressure Po2
Loss Pcv is practical among samples made with 25% or more
Products that are good in terms of quality are referred to as inventions.
8 and the loss Pcv is not practically good.
No. 1-16.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から、発明品は、従来品と比べ、結晶
粒度分布がより均一であり、また比抵抗は同等または、
それ以上であることが分かる。また、発明品の結晶粒度
分布は、D50が13〜50μmであり、かつD10が
5μmより大きく、D90が80μmより小さいことが
分かる。
From Table 1, it can be seen that the invention product has a more uniform grain size distribution and a specific resistance equal to or less than that of the conventional product.
It turns out that it is more than that. In addition, the crystal grain size distribution of the invention product shows that D50 is 13 to 50 µm, D10 is larger than 5 µm, and D90 is smaller than 80 µm.

【0017】図1に、酸素分圧を変化させた場合の50
kHz−150mT−80℃での損失と焼成温度との関
係を示す。酸素分圧が高いほど損失が最小となる焼成温
度は、高温側にシフトし、そのときの損失は、酸素分圧
が高いほど低いことが分かる。
FIG. 1 shows a graph of 50 when the oxygen partial pressure is changed.
The relationship between the loss at kHz-150 mT-80 ° C. and the firing temperature is shown. It can be seen that the firing temperature at which the loss is minimized shifts to higher temperatures as the oxygen partial pressure is higher, and the loss at that time is lower as the oxygen partial pressure is higher.

【0018】図2に、焼成時の酸素分圧を変化させた場
合の50kHz−150mT−80℃の損失Pcvと結晶
粒度分布のD50との関係を示す。酸素分圧が高いほど
損失が最小となるD50は、粒径が大きい側にシフト
し、そのときの最小の損失は、酸素分圧が高いほど低い
ことがわかる。また、従来品の最良値である300mW
/ccよりも低損失な試料のD50は、13〜50μmで
あることもわかる。
FIG. 2 shows the relationship between the loss Pcv at 50 kHz-150 mT-80 ° C. and the crystal grain size distribution D50 when the oxygen partial pressure during firing is changed. It can be seen that D50, at which the loss is minimized as the oxygen partial pressure is higher, shifts to a larger particle size side, and the minimum loss at that time is lower as the oxygen partial pressure is higher. In addition, 300mW which is the best value of the conventional product
It can also be seen that the D50 of the sample having a lower loss than / cc is 13 to 50 μm.

【0019】図3に、発明品8と従来品3の50kHz
−150mTでの損失Pcvの温度特性を示す。発明品8
は、従来品3と比べ、全温度範囲で損失が小さいことが
わかる。ここで、従来品3とは、従来品の中で50kH
z−150mT−80℃での損失が最も小さい値を示し
たサンプルである。
FIG. 3 shows 50 kHz of invention product 8 and conventional product 3.
The temperature characteristic of the loss Pcv at -150 mT is shown. Invention 8
Shows that the loss is smaller in the entire temperature range than that of the conventional product 3. Here, the conventional product 3 is 50 kHz among the conventional products.
This is a sample showing the smallest value of the loss at z-150 mT-80 ° C.

【0020】[0020]

【発明の効果】以上述べたごとく、本発明による酸化物
磁性材料は、低損失であり、高効率の電源トランス用と
して好適である。
As described above, the oxide magnetic material according to the present invention has a low loss and is suitable for a high-efficiency power supply transformer.

【0021】また、本発明品は、従来のMn−Zn系フ
ェライトと比較し、比抵抗が著しく高い。そのため、巻
線のコアへの直巻きが可能であり、ボビン等の巻線用部
品が不要であり、コストの低減が図れる。また、比抵抗
が高いことにより導体との一体焼成が可能であり、高度
な小型化が可能である。
The product of the present invention has remarkably high specific resistance as compared with the conventional Mn-Zn ferrite. For this reason, the winding can be wound directly around the core, and no winding component such as a bobbin is required, so that the cost can be reduced. In addition, since the specific resistance is high, it is possible to integrally sinter with the conductor, and a high degree of miniaturization is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素分圧を変化させた場合の50kHz−15
0mT−80℃での損失Pcvと焼成温度との関係を示す
図。
FIG. 1: 50 kHz-15 when oxygen partial pressure is changed
The figure which shows the relationship between loss Pcv at 0 mT-80 degreeC, and baking temperature.

【図2】酸素分圧を変化させた場合の50kHz−15
0mT−80℃での損失Pcvと結晶粒度分布のD50と
の関係を示す図。
FIG. 2: 50 kHz-15 when oxygen partial pressure is changed
The figure which shows the relationship between loss Pcv at 0 mT-80 degreeC, and D50 of a crystal grain size distribution.

【図3】発明品8と従来品3における50kHz−15
0mTでの損失Pcvの温度特性を示す図。
FIG. 3 shows 50 kHz-15 of invention product 8 and conventional product 3.
The figure which shows the temperature characteristic of loss Pcv at 0 mT.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe、NiO、ZnO、CuOを
主成分とするNi−Zn−Cu系フェライトであって、
結晶粒度分布のD50、即ち累積度数50%での結晶粒
径が13〜50μmであり、かつD10、即ち累積度数
10%での結晶粒径が5μmより大きく、かつD90、
即ち累積度数90%での結晶粒径が80μmより小さい
結晶粒度分布を有することを特徴とする低損失酸化物磁
性材料。
1. A Ni—Zn—Cu ferrite mainly composed of Fe 2 O 3 , NiO, ZnO, and CuO,
D50 of the crystal grain size distribution, that is, the crystal grain size at a cumulative frequency of 50% is 13 to 50 μm, and D10, that is, the crystal grain size at a cumulative frequency of 10% is larger than 5 μm, and D90,
That is, a low-loss oxide magnetic material having a crystal grain size distribution in which the crystal grain size at a cumulative frequency of 90% is smaller than 80 μm.
【請求項2】 請求項1記載の低損失酸化物磁性材の製
造方法であって、焼結雰囲気の酸素分圧を大気圧の25
%以上とすることを特徴とする低損失酸化物磁性材料の
製造方法。
2. The method for producing a low-loss oxide magnetic material according to claim 1, wherein the oxygen partial pressure of the sintering atmosphere is reduced to 25 at atmospheric pressure.
% Or less, a method for producing a low-loss oxide magnetic material.
JP30203699A 1999-10-25 1999-10-25 Oxide magnetic material of low loss Withdrawn JP2001126911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30203699A JP2001126911A (en) 1999-10-25 1999-10-25 Oxide magnetic material of low loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30203699A JP2001126911A (en) 1999-10-25 1999-10-25 Oxide magnetic material of low loss

Publications (1)

Publication Number Publication Date
JP2001126911A true JP2001126911A (en) 2001-05-11

Family

ID=17904142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30203699A Withdrawn JP2001126911A (en) 1999-10-25 1999-10-25 Oxide magnetic material of low loss

Country Status (1)

Country Link
JP (1) JP2001126911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298725A (en) * 2005-04-25 2006-11-02 Neomax Co Ltd Ni-BASED FERRITE, AND MAGNETIC CORE OF TRANSMISSION TRANSFORMER FOR POWER LINE COMMUNICATION
JP2008214161A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Ni BASED SPINEL FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298725A (en) * 2005-04-25 2006-11-02 Neomax Co Ltd Ni-BASED FERRITE, AND MAGNETIC CORE OF TRANSMISSION TRANSFORMER FOR POWER LINE COMMUNICATION
JP2008214161A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Ni BASED SPINEL FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
US9984799B2 (en) Ferrite composition and electronic component
US7892446B2 (en) Ferrite material
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JPH05335132A (en) Oxide magnetic body material
JP2002068830A (en) Hexagonal y type oxide magnetic material and inductor element
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JPH113813A (en) Ferrite material
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP2000299215A (en) Low loss oxide magnetic material
JP2000159523A (en) Low loss ferrite sintered compact having highly saturated magnetic flux density and choke coil
JP2001126911A (en) Oxide magnetic material of low loss
JP2002246221A (en) Low loss oxide magnetic material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2002187769A (en) Ferrite material and ferrite core using the same
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH10270231A (en) Mn-ni ferrite material
JPH10270229A (en) Mn-ni ferrite material
JPH0661033A (en) Low-loss oxide magnetic material
JP2010058983A (en) Mn-Zn-BASED FERRITE MATERIAL
JPH11219812A (en) Oxide magnetic material
JP2001076923A (en) Low-loss oxide magnetic material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material
JP2000335961A (en) Oxide magnetic material and its production
JPH08148323A (en) Production of oxide magnetic material and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070604