JP2000299215A - Low loss oxide magnetic material - Google Patents

Low loss oxide magnetic material

Info

Publication number
JP2000299215A
JP2000299215A JP11105560A JP10556099A JP2000299215A JP 2000299215 A JP2000299215 A JP 2000299215A JP 11105560 A JP11105560 A JP 11105560A JP 10556099 A JP10556099 A JP 10556099A JP 2000299215 A JP2000299215 A JP 2000299215A
Authority
JP
Japan
Prior art keywords
loss
magnetic material
mol
oxide magnetic
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11105560A
Other languages
Japanese (ja)
Inventor
Tatsuya Chiba
龍矢 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11105560A priority Critical patent/JP2000299215A/en
Publication of JP2000299215A publication Critical patent/JP2000299215A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable reducing magnetic loss by specifying the composition amount of Fe2O3, NiO, CuO and ZnO which are main component and SiO2 or MnO which are admixture to the main component. SOLUTION: As main component composition, 43-50 mol% of Fe2O3, 10-40 mol% of NiO, 1-15 mol% of CuO and residual ZnO are used, and at least one kind out of 0.005-0.1 wt.% of SiO2 and 0.005-0.5 wt.% of MnO is added as admixture, thereby obtaining low loss oxide magnetic material. The mean crystal grain diameter of a baked member is set at least 5 μm, and the ratio of pores in crystal grains to the whole pores is set as 5-60%, so that oxide magnetic material of lower loss can be obtained. Since resistivity is remarkably high, direct winding of a coil is enabled, and a jig for winding like a bobbin is unnecessary. Since the resistivity is high, collective baking with magnetic material is possible, and microminiaturization is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物磁性材料に
関し、特に、電源用トランスに使用されるフェライトコ
アに適した低損失酸化物磁性材料に関するものである。
The present invention relates to an oxide magnetic material, and more particularly to a low-loss oxide magnetic material suitable for a ferrite core used in a power transformer.

【0002】[0002]

【従来の技術】従来、電源用トランス材料としては、主
に比較的、飽和磁束密度が高く、電力損失が小さいMn
−Zn系フェライトが用いられている。しかし、Mn−
Zn系フェライトは、直流比抵抗が10〜10Ωcm
と低い。そこで、Mn−Zn系フェライトを用いた磁芯
に巻線を行う場合、磁芯と巻線間での短絡等の不具合を
なくすため、磁芯にボビン等の治具を介して巻線を行っ
ていた。そのため、トランスあるいはチョークコイルの
小型化、軽量化、および低コスト化を進める上での障害
となっている。
2. Description of the Related Art Conventionally, as a transformer material for a power source, Mn having a relatively high saturation magnetic flux density and a small power loss has been mainly used.
-Zn-based ferrite is used. However, Mn-
Zn-based ferrite has a DC specific resistance of 10 to 10 3 Ωcm.
And low. Therefore, when winding is performed on a magnetic core using Mn-Zn-based ferrite, winding is performed on the magnetic core through a jig such as a bobbin in order to eliminate problems such as a short circuit between the magnetic core and the winding. I was For this reason, this is an obstacle to miniaturization, weight reduction, and cost reduction of the transformer or the choke coil.

【0003】近年、携帯機器をはじめとして、電子機器
の小型化が急速に進歩している。そして、それらに用い
られる電源も、小型化の傾向にある。電源の中でトラン
スは、体積的にも、電力損失においても、大きな位置を
占めるため、その小型化、高効率化が求められている。
そこで、直流比抵抗が高く、巻線をする際に、ボビンを
必要としないNi−Zn系フェライトを用いた磁芯が使
用されている。Ni−Zn系フェライトは、比抵抗が高
く、巻線の直巻きが可能である。また、比抵抗が高いこ
とに加え、Cu添加により低温焼成が可能であることよ
り、導体と磁性体の一体焼成が可能であり、限りない小
型化を実現できる。
[0003] In recent years, miniaturization of electronic devices such as portable devices has been rapidly advancing. And the power supply used for them also tends to be downsized. Transformers occupy a large part of the power supply in terms of both volume and power loss, so that their size and efficiency have been demanded.
Therefore, a magnetic core using a Ni—Zn-based ferrite that has a high DC specific resistance and does not require a bobbin when winding is used. Ni—Zn-based ferrite has a high specific resistance, and can be wound directly. In addition to the high specific resistance and the low temperature firing by the addition of Cu, the conductor and the magnetic material can be integrally fired, and an unlimited size reduction can be realized.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述のNi−
Zn系フェライトは、次のような欠点がある。即ち、一
般に、磁気損失がMn−Zn系フェライトに比べ、著し
く大きいという問題がある。
However, the above-mentioned Ni-
Zn-based ferrite has the following disadvantages. That is, in general, there is a problem that the magnetic loss is significantly larger than that of the Mn-Zn ferrite.

【0005】フェライトの磁気損失は、ヒステリシス損
失、渦電流損失、および残留損失かからなる。特に、N
i−Zn系フェライトは、一般に、直流比抵抗が、10
〜1010Ωcmと高く、渦電流損失は、無視できる
ほど小さい。
[0005] The magnetic loss of ferrite is composed of hysteresis loss, eddy current loss, and residual loss. In particular, N
i-Zn ferrite generally has a DC specific resistance of 10
As high as 6 to 10 10 Ωcm, the eddy current loss is negligibly small.

【0006】ヒステリシス損失は、磁壁の非可逆的な移
動により発生する損失である。ヒステリシス損失を低減
するためには、磁壁移動の障害となるポアあるいは介在
物を低減することが必要である。しかしながら、介在物
を極端に減らしすぎると、磁壁は長い距離を移動するこ
とになり、逆にヒステリシス損失を増加させることにな
る。また、磁壁の枚数は、平均結晶粒径に依存する。よ
って、結晶粒径は、大きいことが望ましい。以上、ヒス
テリシス損失を低減するためには、平均結晶粒径を大き
く、結晶粒は適度に磁壁移動の障害となるポアあるいは
介在物が存在することが望ましい。
The hysteresis loss is a loss caused by irreversible movement of the domain wall. In order to reduce the hysteresis loss, it is necessary to reduce pores or inclusions that hinder domain wall movement. However, if the inclusions are reduced too much, the domain wall will travel a long distance, and conversely increase the hysteresis loss. Further, the number of domain walls depends on the average crystal grain size. Therefore, it is desirable that the crystal grain size is large. As described above, in order to reduce the hysteresis loss, it is desirable that the average crystal grain size is large and that the crystal grains have pores or inclusions that hinder the domain wall movement.

【0007】従って、本発明は、Ni−Zn系フェライ
トにSiO,MnOのうち少なくとも1種を添加し、
平均結晶粒径の大きい、結晶粒にポアを存在させること
により、磁気損失を低減させた酸化物磁性材料を提供す
ることにある。
Accordingly, the present invention provides a method of adding at least one of SiO 2 and MnO to a Ni—Zn ferrite,
It is an object of the present invention to provide an oxide magnetic material having a large average crystal grain size and having pores in crystal grains to reduce magnetic loss.

【0008】[0008]

【課題を解決するための手段】本発明によれば、駆動周
波数内で磁気的損失が小さく、比抵抗が大きく、平均結
晶粒径が大きなフェライトが得られる。
According to the present invention, ferrite having a small magnetic loss within a driving frequency, a large specific resistance, and a large average crystal grain size can be obtained.

【0009】即ち、本発明は、主成分組成が43〜50
mol%Fe2O3、10〜40mol%NiO、1〜
15mol%CuO、残部ZnOからなり、添加物とし
て0.005〜0.1wt%SiO2、ないし、0.00
5〜0.5wt%MnOのうち少なくとも1種を含む低
損失酸化物磁性材料である。
That is, according to the present invention, the main component composition is 43 to 50.
mol% Fe2O3, 10-40 mol% NiO, 1
It consists of 15 mol% CuO and the balance ZnO, and has an additive of 0.005 to 0.1 wt% SiO2 or 0.00.
A low-loss oxide magnetic material containing at least one of 5-0.5 wt% MnO.

【0010】主成分組成を43〜50mol%Fe2O
3、10〜40mol%NiO、1〜15mol%Cu
O、残部ZnOとしたのは、Feを43mol%
以下、もしくはNiOを40mol%以上、もしくはC
uOを15mol%以上とすると、常温の損失が著しく
劣化するためであり、Feを50mol%以上と
すると、Fe2+の発生により比抵抗が著しく低下する
ためであり、NiOを10mol%以下とすると、キュ
リー温度、及び、最大磁束密度が低くなり、電源材とし
ての信頼性に劣るためであり、CuOを1mol%以下
とすると、低温での焼成ができず、高温焼成によるFe
2+の発生により、比抵抗が著しく低下するためであ
る。添加物として0.005〜0.1wt%SiO、な
いし、0.005〜0.5wt%MnOの少なくとも1種
としたのは、SiOを0.005wt%以下、ない
し、MnOを0.005wt%以下とすると、ヒステリ
シス損失の増大により損失の劣化を招くためであり、S
iOを0.1wt%以上、ないし、MnOを0.5wt
%とすると、密度が低くなるためである。
The main component composition is 43 to 50 mol% Fe2O.
3, 10 to 40 mol% NiO, 1 to 15 mol% Cu
O and the balance being ZnO are as follows: Fe 2 O 3 is 43 mol%
Or less, or 40 mol% or more of NiO, or C
When uO is 15 mol% or more, the loss at room temperature is significantly deteriorated. When Fe 2 O 3 is 50 mol% or more, the specific resistance is remarkably reduced due to generation of Fe 2+ , and NiO is 10 mol% or less. This is because the Curie temperature and the maximum magnetic flux density are low, and the reliability as a power supply material is inferior. If CuO is 1 mol% or less, firing at a low temperature cannot be performed, and
This is because the generation of 2+ significantly lowers the specific resistance. The reason why at least one kind of additive is 0.005 to 0.1 wt% SiO 2 or 0.005 to 0.5 wt% MnO is that SiO 2 is 0.005 wt% or less and MnO is 0.005 wt%. % Or less, the hysteresis loss increases to cause deterioration of the loss.
iO 2 is 0.1 wt% or more, and MnO is 0.5 wt%
This is because the density becomes low when the percentage is set to%.

【0011】また、本発明は、上記低損失酸化物磁性材
料において、焼成体の平均結晶粒径が5μm以上であ
り、全ポアに対する結晶粒内のポアの割合が5〜60%
である低損失酸化物磁性材料である。
Further, the present invention provides the low-loss oxide magnetic material, wherein the sintered body has an average crystal grain size of 5 μm or more, and the ratio of pores in the crystal grains to all pores is 5 to 60%.
Is a low-loss oxide magnetic material.

【0012】焼成体の平均結晶粒径を5μm以上とした
のは、焼成体の平均結晶粒径が5μm以下であると、ヒ
ステリシス損失の増大により損失が劣化するためであ
る。
The reason why the average crystal grain size of the fired body is 5 μm or more is that if the average crystal grain size of the fired body is 5 μm or less, the loss is deteriorated due to an increase in hysteresis loss.

【0013】全ポアに対する結晶粒内のポアの割合を5
〜60%としたのは、全ポアに対する結晶粒内のポアの
割合が5%以下、ないし、60%以上であると、ヒステ
リシス損失が増大するためである。
The ratio of pores in crystal grains to all pores is 5
The reason why it is set to 6060% is that if the proportion of the pores in the crystal grains to all the pores is 5% or less, or 60% or more, the hysteresis loss increases.

【0014】また、本発明は、上記低損失酸化物磁性材
料において、電力損失が最小となる温度が120℃以上
である低損失酸化物磁性材料である。
The present invention also relates to the above low-loss oxide magnetic material, wherein the temperature at which the power loss is minimized is 120 ° C. or higher.

【0015】また、本発明は、上記低損失酸化物磁性材
料において、予焼温度を500〜750℃とする低損失
酸化物磁性材料である。
[0015] The present invention also relates to the low-loss oxide magnetic material described above, wherein the pre-baking temperature is 500 to 750 ° C.

【0016】予焼温度を500〜750℃以下としたの
は、予焼温度が500℃以下であると、常温の損失が著
しく劣化するためである。この詳細な原因は不明であ
る。予焼温度が750℃以上であると、特に80℃以上
の高温で損失が増大するだけでなく、損失が最小となる
温度が120℃以下となるためである。
The reason why the pre-baking temperature is set to 500 to 750 ° C. or lower is that if the pre-baking temperature is 500 ° C. or lower, the loss at room temperature is significantly deteriorated. The exact cause is unknown. When the pre-baking temperature is 750 ° C. or higher, not only the loss increases particularly at a high temperature of 80 ° C. or higher, but also the temperature at which the loss is minimized is 120 ° C. or lower.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】表1は、本発明の第1の実施の形態による
添加物組成を一定として主成分組成を変化させた時の諸
特性を示す。
Table 1 shows various characteristics of the first embodiment of the present invention when the additive composition is kept constant and the main component composition is changed.

【0019】[0019]

【表1】 [Table 1]

【0020】Fe、NiO、ZnO、CuO、S
iO、MnOを、表1に示す組成となるように秤量
し、アトライターを用いて2時間混合した。混合の後、
スプレードライアーで造粒した。造粒した粉末をロータ
リーキルンで仮焼した。得られた粉末をアトライターを
用いて解砕した。解碎後、スプレードライアーにて造粒
し、トロイダル形状にプレスし、1150℃の焼成温度
で焼成し、発明品と比較品を作製した。
Fe 2 O 3 , NiO, ZnO, CuO, S
iO 2 and MnO were weighed to have the composition shown in Table 1, and mixed for 2 hours using an attritor. After mixing
Granulated with a spray dryer. The granulated powder was calcined in a rotary kiln. The obtained powder was crushed using an attritor. After crushing, the mixture was granulated by a spray dryer, pressed into a toroidal shape, and baked at a sintering temperature of 1150 ° C. to produce an invention product and a comparative product.

【0021】従来品として、主成分組成を49mol%
Fe、25mol%NiO、残部ZnOからなる
Ni−Znフェライトを秤量し、アトライターを用いて
2時間混合した。混合の後、スプレードライアーで造粒
した。造粒した粉末をロータリーキルンで仮焼した。得
られた粉末をアトライターを用いて解砕した。解碎後、
スプレードライアーにて造粒し、トロイダル形状にプレ
スし1250℃の焼成温度で焼成した。
As a conventional product, the main component composition is 49 mol%
Ni—Zn ferrite composed of Fe 2 O 3 , 25 mol% NiO and the balance ZnO was weighed and mixed for 2 hours using an attritor. After mixing, the mixture was granulated with a spray dryer. The granulated powder was calcined in a rotary kiln. The obtained powder was crushed using an attritor. After crushing,
It was granulated by a spray dryer, pressed into a toroidal shape, and fired at a firing temperature of 1250 ° C.

【0022】表1に、主成分組成を変化させた時の発明
品、比較品、従来品の全ポアに対する結晶粒内のポアの
割合、平均結晶粒径、比抵抗、及び、50kHz−15
0mT−R.T.、50kHz−150mT−80℃、5
0kHz−150mT−120℃の損失を示す。主成分
組成が43〜50mol%Fe、10〜40mo
l%のNiO、1〜15mol%のCuO、残部ZnO
の範囲で比抵抗が高く、損失が小さいことがわかる。
Table 1 shows the ratio of the pores in the crystal grains to the total pores of the invention product, the comparison product, and the conventional product when the main component composition was changed, the average crystal grain size, the specific resistance, and 50 kHz-15.
0mT-RT, 50kHz-150mT-80 ° C, 5
The loss at 0 kHz-150 mT-120 ° C is shown. The main component composition is 43 to 50 mol% Fe 2 O 3 , 10 to 40 mo
1% NiO, 1 to 15 mol% CuO, balance ZnO
It can be seen that the specific resistance is high and the loss is small in the range.

【0023】表2は、本発明の第2の実施の形態による
主成分組成を一定として、SiO、MnO添加量を変
化させた時の諸特性を示す。
Table 2 shows various characteristics when the addition amounts of SiO 2 and MnO are changed while the main component composition is kept constant according to the second embodiment of the present invention.

【0024】[0024]

【表2】 [Table 2]

【0025】Fe、NiO、ZnO、CuO、S
iO、MnOを表2の組成になるように秤量し、第1
の実施の形態と同様の条件で発明品と比較品を作製し
た。
Fe 2 O 3 , NiO, ZnO, CuO, S
iO 2 and MnO were weighed to have the composition shown in Table 2, and
The invention product and the comparison product were produced under the same conditions as those of the embodiment.

【0026】表2に、SiO2、MnO量を変化させた
時の発明品、比較品、従来品の全ポアに対する結晶粒内
のポアの割合、平均結晶粒径、比抵抗、及び、50kH
z−150mT−R.T.、50kHz−150mT−8
0℃、50kHz−150mT−120℃の損失を示
す。0.005〜0.1wt%のSiO、ないし、0.
005〜0.5wt%のMnOの少なくとも1種を含む
発明品は比抵抗が高く、損失が小さいことがわかる。
Table 2 shows the ratio of pores in the crystal grains to the total pores of the invention product, the comparison product, and the conventional product when the amounts of SiO2 and MnO were changed, the average crystal grain size, the specific resistance, and 50 kHz.
z-150mT-RT, 50kHz-150mT-8
0 ° C., 50 kHz-150 mT-120 ° C. loss. 0.005 to 0.1 wt% of SiO 2 , or
It can be seen that the invention containing at least one of 005 to 0.5 wt% MnO has a high specific resistance and a small loss.

【0027】表3は、本発明の第3の実施の形態による
焼成温度を変化させて全ポアに対する結晶粒内のポアの
割合を変化させた時の諸特性を示す。
Table 3 shows various characteristics when the ratio of the pores in the crystal grains to the total pores is changed by changing the firing temperature according to the third embodiment of the present invention.

【0028】[0028]

【表3】 [Table 3]

【0029】Fe、NiO、ZnO、CuO、S
iO、MnOを表3の組成になるように秤量し、第1
の実施の形態と同様の条件で発明品と比較品を作製し
た。
Fe 2 O 3 , NiO, ZnO, CuO, S
iO 2 and MnO were weighed to have the composition shown in Table 3, and
The invention product and the comparison product were produced under the same conditions as those of the embodiment.

【0030】表3に、平均結晶粒径を変化させた時の発
明品、比較品、従来品の全ポアに対する結晶粒内のポア
の割合、平均結晶粒径、比抵抗、及び、50kHz−1
50mT−R.T.、50kHz−150mT−80℃、
50kHz−150mT−120℃の損失を示す。平均
結晶粒径が5μm以上の発明品は、比抵抗が高く、損失
が小さいことがわかる。
Table 3 shows the ratio of the pores in the crystal grains to the total pores of the invention product, the comparison product, and the conventional product when the average crystal grain size was changed, the average crystal grain size, the specific resistance, and 50 kHz-1.
50mT-RT, 50kHz-150mT-80 ° C,
The loss at 50 kHz-150 mT-120C is shown. It can be seen that invention products having an average crystal grain size of 5 μm or more have high specific resistance and small loss.

【0031】表4は、本発明の第4の実施の形態による
予焼温度を変化させた時の諸特性を示す。
Table 4 shows various characteristics when the pre-baking temperature is changed according to the fourth embodiment of the present invention.

【0032】[0032]

【表4】 [Table 4]

【0033】主成分組成を49.5mol%Fe
、15mol%NiO、5mol%CuO、残部
ZnOとなるよう秤量し、アトライターを用いて2時間
混合した。混合の後、スプレードライアーで造粒した。
造粒した粉末をロータリーキルンで500〜750℃で
予焼した。得られた粉末をアトライターを用いて解砕し
た。解碎後、スプレードライアーにて造粒し、トロイダ
ル形状にプレスし、1150℃の焼成温度で焼成した。
The main component composition is 49.5 mol% Fe
2 O 3 , 15 mol% NiO, 5 mol% CuO and the balance ZnO were weighed and mixed using an attritor for 2 hours. After mixing, the mixture was granulated with a spray dryer.
The granulated powder was pre-fired at 500 to 750 ° C in a rotary kiln. The obtained powder was crushed using an attritor. After crushing, the mixture was granulated by a spray dryer, pressed into a toroidal shape, and fired at a firing temperature of 1150 ° C.

【0034】表4に、予焼温度を変化させた時の発明
品、比較品の平均結晶粒径、比抵抗、及び、50kHz
−150mT−R.T.、50kHz−150mT−80
℃、50kHz−150mT−140℃の損失を示す。
予焼温度が500〜750℃範囲で比抵抗が高く、損失
が小さいことがわかる。
Table 4 shows the average grain size, specific resistance, and 50 kHz of the invention product and the comparison product when the pre-baking temperature was changed.
-150mT-RT, 50kHz-150mT-80
° C, 50 kHz-150 mT-140 ° C loss.
It is understood that the specific resistance is high and the loss is small when the pre-baking temperature is in the range of 500 to 750 ° C.

【0035】図1に、本発明の第1の実施の形態による
発明品4と従来品の50kHz−150mTの損失の温
度特性を示す。発明品4は、従来品とくらべ、全温度範
囲で損失が小さく、電力損失が最小となる温度が120
℃以上であることがわかる。
FIG. 1 shows the temperature characteristics of the loss of 50 kHz-150 mT between the invention product 4 according to the first embodiment of the present invention and the conventional product. Inventive product 4 has a smaller loss over the entire temperature range and a temperature at which the power loss is minimized is 120, compared to the conventional product.
It turns out that it is more than ° C.

【0036】図2に、本発明の第4の実施の形態による
発明品25、27、4、及び、比較品13の50kHz
−150mTの損失の温度特性を示す。予焼温度が50
0〜700℃の試料で、全温度範囲で損失が小さく、電
力損失が最小となる温度が120℃以上であることがわ
かる。
FIG. 2 shows 50 kHz of invention products 25, 27, 4 and comparison product 13 according to the fourth embodiment of the present invention.
4 shows the temperature characteristics of a loss of −150 mT. Pre-baking temperature is 50
It can be seen that in the sample at 0 to 700 ° C., the loss is small over the entire temperature range and the temperature at which the power loss is minimized is 120 ° C. or higher.

【0037】[0037]

【発明の効果】以上、述べたごとく、本発明によれば、
主成分組成として43〜50mol%Fe、10
〜40mol%NiO、1〜15mol%CuO、残部
ZnOからなり、添加物として0.005〜0.1wt%
のSiO、ないし、0.005〜0.5wt%のMnO
の少なくとも1種を含む低損失酸化物磁性材料におい
て、焼成体の平均結晶粒径が5μm以上であり、全ポア
に対する結晶粒内のポアの割合を5〜60%とすること
により、低損失な酸化物磁性材料が得られる。
As described above, according to the present invention,
43-50 mol% Fe 2 O 3 , 10
-40 mol% NiO, 1-15 mol% CuO, balance ZnO, 0.0005-0.1 wt% as additive
SiO 2 or 0.005 to 0.5 wt% MnO
In the low-loss oxide magnetic material containing at least one of the following, the average crystal grain size of the fired body is 5 μm or more, and the ratio of the pores in the crystal grains to all the pores is 5 to 60%, so that the low loss An oxide magnetic material is obtained.

【0038】また、本発明によれば、従来のMn−Zn
フェライトと比較し、比抵抗が著しく高いため、巻線の
直巻きが可能であり、ボビン等の巻線用磁具が不要であ
り、コストの低減が期待できる。また、比抵抗が高いこ
とより、磁性体との一体焼成が可能であり、超小型化が
可能である。
According to the present invention, the conventional Mn-Zn
Since the specific resistance is remarkably higher than that of ferrite, it is possible to directly wind a winding, and a winding magnet such as a bobbin is not required, and cost reduction can be expected. In addition, since the specific resistance is high, it is possible to integrally sinter with the magnetic material, and it is possible to miniaturize.

【0039】また、本発明によれば、Fe、Ni
O、ZnO、CuOを主成分とするNi−Zn−Cuフ
ェライトの製造方法において、予焼温度を500〜75
0℃とすることにより、低損失の低損失酸化物磁性材料
が提供できる。
Further, according to the present invention, Fe 2 O 3 , Ni
In the method for producing Ni—Zn—Cu ferrite containing O, ZnO, and CuO as main components, the pre-baking temperature is set to 500 to 75.
By setting the temperature to 0 ° C., a low-loss low-loss oxide magnetic material can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による発明品4と従
来品の50kHz−150mTの損失の温度特性を示す
図。
FIG. 1 is a diagram showing temperature characteristics of a loss of 50 kHz-150 mT between an invention product 4 according to a first embodiment of the present invention and a conventional product.

【図2】本発明の第4の実施の形態による発明品25,
27,4、及び比較品13の50kHz−150mTの
損失の温度特性を示す図。
FIG. 2 shows an invented product 25 according to a fourth embodiment of the present invention;
The figure which shows the temperature characteristic of loss of 50kHz-150mT of 27,4, and the comparative product 13.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主成分組成が43〜50mol%Fe2
O3、10〜40mol%NiO、1〜15mol%C
uO、残部ZnOからなり、添加物として0.005〜
0.1wt%SiO2、ないし、0.005〜0.5wt
%MnOのうち少なくとも1種を含むことを特徴とする
低損失酸化物磁性材料。
1. A composition comprising a main component of 43 to 50 mol% Fe2
O3, 10 to 40 mol% NiO, 1 to 15 mol% C
uO, with the balance being ZnO, with an additive of 0.005 to
0.1 wt% SiO2, or 0.005 to 0.5 wt
% MnO. A low-loss oxide magnetic material comprising at least one of MnO.
【請求項2】 請求項1記載の低損失酸化物磁性材料に
おいて、焼成体の平均結晶粒径が5μm以上であり、全
ポアに対する結晶粒内のポアの割合が5〜60%である
ことを特徴とする低損失酸化物磁性材料。
2. The low-loss oxide magnetic material according to claim 1, wherein an average crystal grain size of the fired body is 5 μm or more, and a ratio of pores in crystal grains to all pores is 5 to 60%. Characterized low-loss oxide magnetic material.
【請求項3】 請求項1または2記載の低損失酸化物磁
性材料において、電力損失が最小となる温度が120℃
以上であることを特徴とする低損失酸化物磁性材料。
3. The low-loss oxide magnetic material according to claim 1, wherein the temperature at which the power loss is minimized is 120 ° C.
A low-loss oxide magnetic material characterized by the above.
【請求項4】 請求項1乃至3のいずれかに記載の低損
失酸化物磁性材料において、予焼温度を500〜750
℃とすることを特徴とする低損失酸化物磁性材料。
4. The low-loss oxide magnetic material according to claim 1, wherein the pre-baking temperature is 500 to 750.
A low-loss oxide magnetic material having a temperature of ° C.
JP11105560A 1999-04-13 1999-04-13 Low loss oxide magnetic material Pending JP2000299215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105560A JP2000299215A (en) 1999-04-13 1999-04-13 Low loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105560A JP2000299215A (en) 1999-04-13 1999-04-13 Low loss oxide magnetic material

Publications (1)

Publication Number Publication Date
JP2000299215A true JP2000299215A (en) 2000-10-24

Family

ID=14410939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105560A Pending JP2000299215A (en) 1999-04-13 1999-04-13 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2000299215A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054419A1 (en) * 2000-12-27 2002-07-11 Fdk Corporation Oxide magnetic material exhibiting low magnetic loss
JP2008214161A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Ni BASED SPINEL FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP2008290893A (en) * 2007-05-22 2008-12-04 Jfe Chemical Corp Ni-Cu-Zn-BASED FERRITE
JP2010143821A (en) * 2010-01-14 2010-07-01 Tdk Corp Ferrite composition and electronic component
JP2012214378A (en) * 2012-06-18 2012-11-08 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
CN109650868A (en) * 2018-12-10 2019-04-19 安徽精磁电子有限公司 A kind of wide temperature low-power consumption magnetic core and preparation method thereof
CN112538254A (en) * 2020-12-07 2021-03-23 陕西生益科技有限公司 Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board
JP2022055915A (en) * 2020-09-29 2022-04-08 株式会社村田製作所 Ferrite sintered body and coil component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054419A1 (en) * 2000-12-27 2002-07-11 Fdk Corporation Oxide magnetic material exhibiting low magnetic loss
US6800215B2 (en) 2000-12-27 2004-10-05 Fdk Corporation Low-loss magnetic oxide material and method for making
JP2008214161A (en) * 2007-03-07 2008-09-18 Hitachi Metals Ltd Ni BASED SPINEL FERRITE SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP2008290893A (en) * 2007-05-22 2008-12-04 Jfe Chemical Corp Ni-Cu-Zn-BASED FERRITE
JP2010143821A (en) * 2010-01-14 2010-07-01 Tdk Corp Ferrite composition and electronic component
JP2012214378A (en) * 2012-06-18 2012-11-08 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
CN109650868A (en) * 2018-12-10 2019-04-19 安徽精磁电子有限公司 A kind of wide temperature low-power consumption magnetic core and preparation method thereof
JP2022055915A (en) * 2020-09-29 2022-04-08 株式会社村田製作所 Ferrite sintered body and coil component
JP7259822B2 (en) 2020-09-29 2023-04-18 株式会社村田製作所 Ferrite sintered body and coil parts
CN112538254A (en) * 2020-12-07 2021-03-23 陕西生益科技有限公司 Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board

Similar Documents

Publication Publication Date Title
JP2000299215A (en) Low loss oxide magnetic material
JP2003321272A (en) Oxide magnetic material, ferrite core, and electronic component
JP4404408B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JPH06310320A (en) Oxide magnetic substance material
JP5137275B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2002289421A (en) Oxide magnetic material, ferrite core, coil component, and transformer
JP2001006916A (en) Low loss oxide magnetic material
JP4683718B2 (en) Ferrite material and ferrite core using the same
JP2530769B2 (en) Low loss oxide magnetic material for magnetic elements used in high frequency power supplies
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP4587541B2 (en) Ferrite material and ferrite core using the same
JP3739849B2 (en) Low-loss oxide magnetic material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JPH07130527A (en) Oxide magnetic material
JP3544615B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JPH0661033A (en) Low-loss oxide magnetic material
JPH10270229A (en) Mn-ni ferrite material
JP2001076923A (en) Low-loss oxide magnetic material
JP3337937B2 (en) Ferrite magnetic material and ferrite core
JPH11219812A (en) Oxide magnetic material
JPH10270231A (en) Mn-ni ferrite material
JP2004269316A (en) Ferrite material and ferrite core using the same
JP2001118714A (en) Small-loss oxide magnetic material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material