JP3739849B2 - Low-loss oxide magnetic material - Google Patents

Low-loss oxide magnetic material Download PDF

Info

Publication number
JP3739849B2
JP3739849B2 JP03784096A JP3784096A JP3739849B2 JP 3739849 B2 JP3739849 B2 JP 3739849B2 JP 03784096 A JP03784096 A JP 03784096A JP 3784096 A JP3784096 A JP 3784096A JP 3739849 B2 JP3739849 B2 JP 3739849B2
Authority
JP
Japan
Prior art keywords
mol
oxide
magnetic material
contained
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03784096A
Other languages
Japanese (ja)
Other versions
JPH09232124A (en
Inventor
制 柿沼
基 熊谷
博 奥山
綱 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP03784096A priority Critical patent/JP3739849B2/en
Publication of JPH09232124A publication Critical patent/JPH09232124A/en
Application granted granted Critical
Publication of JP3739849B2 publication Critical patent/JP3739849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源用トランスやチョークコイル等の磁心として使用する低損失酸化物磁性材料に関するもので、特に高周波領域で使用される低損失酸化物磁性材料に関するものである。
【0002】
【従来の技術】
従来、スイッチング電源用トランスやチョークコイル等の磁心として使用される磁性材料としては一般にMn−Zn系フェライト材が用いられてきた。
【0003】
しかし、エレクトロニクス製品は常に小型化、軽量化、高性能化が望まれており、それに伴ってエレクトロニクス製品に使用される酸化物磁性材料もこれらの要求を満足させるため、動作周波数の高周波化が要求され、高周波領域で使用可能な低損失酸化物磁性材料の開発が急務となっていた。
【0004】
ここで、Mn−Zn系フェライト材は比抵抗が小さいため高周波領域では渦電流損失が増大する。即ち、Mn−Zn系フェライト材は図7の鉄損の周波数特性(f・Bm積:25kTHz)を示すグラフからわかるように、高周波領域における鉄損が大きいため実用には適さない。ここで、f・Bm積とは磁心の電力伝送状態を示す値であって、使用周波数とそのときの磁束密度の積で表す。
【0005】
また、比抵抗が大きいNi−Zn系フェライト材は渦電流損失は小さいが、ヒステリシス損失が大きく、前記Mn−Zn系フェライト材と同様に実用には至っていない。
【0006】
そこで、高周波領域においても低損失な低損失酸化物磁性材料として特開平4ー337605号公報が提案されている。
【0007】
これはFe,Zn,Ni,Cuを適当に混合させて生成焼結させた低損失酸化物磁性材料であり、Ni−Zn系フェライト材でありながらヒステリシス損失を比較的小さくすることが可能で、2MHzの高周波領域であっても370〜500kw/m3(20mT)を達成している。
【0008】
【発明が解決しようとする課題】
現在、エレクトロニクス製品は小型、軽量化即ち軽薄短小化の波に追われ、高周波領域にあっても低損失な酸化物磁性材料の開発が求められている。そのような環境の中から2MHzの高周波領域にて370〜500kw/m3(20mT)の低損失を可能としたものが提案されているが、スイッチング電源用トランスやチョークコイル等の磁心として使用される磁性材料はできるだけ小さいことが望ましく、電源回路の小型化のため更なる高周波領域での低損失化が求められている。
【0009】
そこで、本発明は2MHz以上の高周波領域においても低損失で、スイッチング電源用トランスやチョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、酸化物換算で、Fe を47mol%、NiOを20mol%、CuOを9mol%、ZnOを24mol%の組成比で含有し、添加物として、CoOを0.1〜2.4wt%の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を47mol%、NiOを20mol%、CuOを9mol%、ZnOを24mol%の組成比で含有し、添加物として、CoOを0.1〜2.4wt%の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料を提供する。
更に本発明は、酸化物換算で、Fe を47mol%、NiOを9〜31mol%、CuOを15mol%、残部をZnOの組成比で含有し、添加物として、CoOを0.5wt%の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を47mol%、NiOを9〜31mol%、CuOを15mol%、残部をZnOの組成比で含有し、添加物として、CoOを0.5wt%の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を47mol%、NiOを17mol%、CuOを6〜20mol%、残部をZnOの組成比で含有し、添加物として、CoOを0.5wt%の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を47mol%、NiOを17mol%、CuOを6〜20mol%、残部をZnOの組成比で含有し、
添加物として、CoOを0.5wt%の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を45.5〜49mol%、CuOを15mol%、ZnOを18mol%、残部をNiOの組成比で含有し、添加物として、CoOを0.5wt%の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料を提供する。
また、本発明は、酸化物換算で、Fe を45.5〜49mol%、CuOを15mol%、ZnOを18mol%、残部をNiOの組成比で含有し、添加物として、CoOを0.5wt%の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料を提供する。
上記発明によれば、2MHz以上の高周波においても低損失で、スイッチング電源用トランスやチョークコイル等の磁心として適切な低損失酸化物磁性材料が提供される。
【0011】
【発明の実施の形態】
Fe23、NiO、CuO、ZnO、CoOを湿式ボールミルにて5時間混合した後、乾燥させた。次に、800℃にて2時間仮焼成を行った後、湿式ボールミルにて20時間粉砕し、乾燥させた後バインダーを加えて造粒した。これをトロイダル形状に1ton/cm3にて加圧成型し、990〜1000℃で2時間焼成し図1に示すような組成ごとの含有量をもつ焼結酸化物磁性材料であるトロイダルコアを得た。
【0012】
ここで、得られた焼結酸化物磁性材料であるトロイダルコアについてB−Hアナライザーにより5MHz,5mTにて鉄損(Pcv)を測定した。
【0013】
図2にCoOの量を0〜3重量%変化させこのときの鉄損の値の変化を示す。
【0014】
一般に、スイッチング電源用トランスやチョークコイル等の磁心の温度上昇は上昇分で40〜50℃以下が望ましいとされており、このときの鉄損の値は60〜80kw/m3(f・Bm積:25kTHz)となる。
【0015】
したがって、図2よりCoOは0.1乃至2.4重量%の範囲で含有すれば、スイッチング電源用チョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料となることがわかる。また、鉄損の値は40kW/m 以下であることがより好ましいが、このような鉄損の値を得ることのできるCoOの含有率は0.2重量%以上、1.75重量%以下であることが図2よりわかる。
【0016】
図3にNiOの量を5〜35mol%変化させこのときの鉄損の値の変化を示す。
【0017】
図3よりNiOは9乃至31mol%の範囲で含有すれば、スイッチング電源用トランスやチョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料となることがわかる。また、鉄損の値として前記40kW/m 以下の値を得ることのできるNiOの含有率は13mol%以上、28mol%以下であることが図3よりわかる。
【0018】
図4にCuOの量を5〜21mol%変化させこのときの鉄損の値の変化を示す。
【0019】
図4よりCuOは6乃至20mol%の範囲で含有すれば、スイッチング電源用トランスやチョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料となることがわかる。また、鉄損の値として前記40kW/m 以下の値を得ることのできるCuOの含有率は7.5mol%以上、18mol%以下であることが図4よりわかる。但し、本発明におけるCuOの含有率の範囲は、特開平6−120021号公報に開示のフェライトコアとの差異を明確にするために、8mol%より大で18mol%以下に減縮する。
【0020】
図5にFe23の量を45〜50mol%変化させこのときの鉄損の値の変化を示す。
【0021】
図5よりFeは45.5乃至49mol%の範囲で含有すれば、スイッチング電源用トランスやチョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料となることがわかる。また、鉄損の値として前記40kW/m 以下の値を得ることのできるFe の含有率は46mol%以上、48.5mol%未満であることが図5よりわかる。
【0022】
さらに、組成物の配合量を図1のNo.5に示す値に固定し周波数を変化させたときの鉄損の値の変化を図6に示す。ただし、このときのf・Bm積は25kTHzに固定することとする。
【0023】
図6より周波数範囲2M〜20MHzで鉄損は80kw/m3以下となり、高周波領域で使用されるスイッチング電源用トランスやチョークコイル等の磁心として適切な高周波用低損失酸化物磁性材料であることがわかる。
【0024】
【発明の効果】
酸化物換算で、Fe23を45.5乃至49mol%、NiOを9乃至31mol%、CuOを6乃至20mol%、残部をZnOの組成比で含有し、添加物として、CoOを0.1乃至2.4重量%の範囲で含有する酸化物磁性材料により、2MHz以上の高周波にて使用できる、低損失なスイッチング電源用トランスやチョークコイル等の磁心を提供することが可能となった。
【図面の簡単な説明】
【図1】焼結酸化物磁性材料であるトロイダルコアの含有量を示す図表
【図2】CoOの量を変化させた場合の鉄損の変化を示すグラフ
【図3】NiOの量を変化させた場合の鉄損の変化を示すグラフ
【図4】CuOの量を変化させた場合の鉄損の変化を示すグラフ
【図5】Fe23の量を変化させた場合の鉄損の変化を示すグラフ
【図6】鉄損の周波数特性を示すグラフ
【図7】Mn−Zn系酸化物磁性材料の鉄損の周波数特性を示すグラフ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-loss oxide magnetic material used as a magnetic core for a switching power transformer, choke coil or the like, and more particularly to a low-loss oxide magnetic material used in a high frequency region.
[0002]
[Prior art]
Conventionally, as a magnetic material used as a magnetic core for a switching power transformer or choke coil, a Mn—Zn ferrite material has generally been used.
[0003]
However, electronic products are always required to be smaller, lighter, and higher in performance, and accordingly oxide magnetic materials used in electronic products also meet these requirements, and therefore require higher operating frequencies. Therefore, there has been an urgent need to develop a low-loss oxide magnetic material that can be used in a high-frequency region.
[0004]
Here, since the Mn—Zn ferrite material has a small specific resistance, eddy current loss increases in a high frequency region. That is, as can be seen from the graph showing the frequency characteristics of iron loss in FIG. 7 (f · Bm product: 25 kTHz), the Mn—Zn ferrite material is not suitable for practical use because the iron loss in the high frequency region is large. Here, the f · Bm product is a value indicating the power transmission state of the magnetic core, and is represented by the product of the operating frequency and the magnetic flux density at that time.
[0005]
In addition, Ni—Zn ferrite material having a large specific resistance has small eddy current loss but large hysteresis loss, and has not been put into practical use like the Mn—Zn ferrite material.
[0006]
In view of this, Japanese Patent Laid-Open No. 4-337605 has been proposed as a low-loss oxide magnetic material having a low loss even in a high-frequency region.
[0007]
This is a low-loss oxide magnetic material produced and sintered by appropriately mixing Fe, Zn, Ni, and Cu, and it is possible to relatively reduce hysteresis loss while being a Ni-Zn ferrite material. Even in the high frequency region of 2 MHz, 370 to 500 kw / m 3 (20 mT) is achieved.
[0008]
[Problems to be solved by the invention]
At present, electronic products are being pursued by the wave of miniaturization, weight reduction, that is, thinness and miniaturization, and there is a demand for the development of low-loss oxide magnetic materials even in the high frequency region. In such an environment, what has enabled a low loss of 370 to 500 kw / m 3 (20 mT) in a high frequency region of 2 MHz has been proposed, but it is used as a magnetic core for a switching power transformer or choke coil. It is desirable that the magnetic material to be as small as possible, and further reduction in loss in the high frequency region is required for miniaturization of the power supply circuit.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency low-loss oxide magnetic material that has low loss even in a high-frequency region of 2 MHz or higher and is suitable as a magnetic core for a switching power supply transformer, choke coil, or the like.
[0010]
[Means for Solving the Problems]
The present invention contains 47 mol% Fe 2 O 3 , 20 mol% NiO, 9 mol% CuO, and 24 mol% ZnO in terms of oxides, and CoO is added in an amount of 0.1-2. Provided is a low-loss oxide magnetic material for a magnetic core of a switching power supply transformer, which is contained in a range of 4 wt%.
Further, the present invention contains, in terms of oxide , 47 mol% Fe 2 O 3 , 20 mol% NiO, 9 mol% CuO, and 24 mol% ZnO, and contains 0.1 to 0.1 CoO as an additive. Provided is a low-loss oxide magnetic material for a magnetic core of a choke coil that is contained in a range of 2.4 wt%.
Furthermore, the present invention in terms of oxide, Fe 2 O 3 to 47mol%, 9~31mol% of NiO, 15 mol% of CuO, the balance being contained in the composition ratio of ZnO, as an additive, 0.5 wt% of CoO A low-loss oxide magnetic material for a magnetic core of a switching power supply transformer contained in the range of
Further, the present invention contains, in terms of oxide , 47 mol% Fe 2 O 3 , 9 to 31 mol% NiO, 15 mol% CuO, and the remaining ZnO in a composition ratio of ZnO, and 0.5 wt% of CoO as an additive. A low-loss oxide magnetic material for a magnetic core of a choke coil is provided.
Further, the present invention contains, in terms of oxide , 47 mol% Fe 2 O 3 , 17 mol% NiO, 6 to 20 mol% CuO, and the remainder in a composition ratio of ZnO, and 0.5 wt% of CoO as an additive. A low-loss oxide magnetic material for a magnetic core of a transformer for a switching power supply, contained in the range of%.
Further, the present invention is in terms of oxide, 47 mol% of Fe 2 O 3, 17mol% of NiO, 6~20mol% of CuO, containing the remainder in the composition ratio of ZnO,
As an additive, a low-loss oxide magnetic material for a magnetic core of a choke coil containing CoO in a range of 0.5 wt% is provided.
Further, the present invention is in terms of oxide, Fe 2 O 3 the 45.5~49mol%, 15mol% of CuO, ZnO and 18 mol%, the remainder was contained in the composition ratio of NiO, as an additive, the CoO 0 Provided is a low-loss oxide magnetic material for a magnetic core of a transformer for a switching power supply, which is contained in a range of 0.5 wt%.
Further, the present invention is in terms of oxide, Fe 2 O 3 the 45.5~49mol%, 15mol% of CuO, ZnO and 18 mol%, the remainder was contained in the composition ratio of NiO, as an additive, the CoO 0 Provided is a low-loss oxide magnetic material for a magnetic core of a choke coil that is contained in a range of .5 wt%.
According to the above invention, a low-loss oxide magnetic material suitable for a magnetic core of a transformer for a switching power supply, a choke coil or the like is provided with a low loss even at a high frequency of 2 MHz or higher.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Fe 2 O 3 , NiO, CuO, ZnO, and CoO were mixed in a wet ball mill for 5 hours and then dried. Next, after calcination at 800 ° C. for 2 hours, the mixture was pulverized with a wet ball mill for 20 hours, dried, and then granulated with a binder. This is pressed into a toroidal shape at 1 ton / cm 3 and fired at 990 to 1000 ° C. for 2 hours to obtain a toroidal core which is a sintered oxide magnetic material having a content for each composition as shown in FIG. It was.
[0012]
Here, the iron loss (Pcv) of the obtained toroidal core, which is a sintered oxide magnetic material, was measured with a BH analyzer at 5 MHz and 5 mT.
[0013]
FIG. 2 shows the change in the value of iron loss when the amount of CoO is changed from 0 to 3% by weight.
[0014]
Generally, it is desirable that the temperature rise of the magnetic core of a transformer for a switching power supply, a choke coil, etc. is 40 to 50 ° C. or less, and the iron loss at this time is 60 to 80 kw / m 3 (f · Bm product). : 25 kTHz).
[0015]
Therefore, it can be seen from FIG. 2 that if CoO is contained in the range of 0.1 to 2.4% by weight, it becomes a high-frequency low-loss oxide magnetic material suitable as a magnetic core for a switching power supply choke coil or the like. Further, the iron loss value is more preferably 40 kW / m 3 or less, but the CoO content capable of obtaining such an iron loss value is 0.2 wt% or more and 1.75 wt% or less. It can be seen from FIG.
[0016]
FIG. 3 shows the change in the value of iron loss when the amount of NiO is changed by 5 to 35 mol%.
[0017]
FIG. 3 shows that when NiO is contained in the range of 9 to 31 mol%, it becomes a high-frequency low-loss oxide magnetic material suitable as a magnetic core for a switching power supply transformer or choke coil. Further, it can be seen from FIG. 3 that the content of NiO that can obtain the value of 40 kW / m 3 or less as the value of iron loss is 13 mol% or more and 28 mol% or less.
[0018]
FIG. 4 shows the change in the iron loss value when the amount of CuO is changed by 5 to 21 mol%.
[0019]
From FIG. 4, it can be seen that if CuO is contained in the range of 6 to 20 mol%, it becomes a high-frequency low-loss oxide magnetic material suitable as a magnetic core for a switching power transformer or choke coil. Moreover, it can be seen from FIG. 4 that the CuO content at which the iron loss value can be 40 kW / m 3 or less is 7.5 mol% or more and 18 mol% or less. However, the range of the CuO content in the present invention is reduced from 8 mol% to 18 mol% in order to clarify the difference from the ferrite core disclosed in JP-A-6-120021.
[0020]
FIG. 5 shows the change of the iron loss value when the amount of Fe 2 O 3 is changed by 45 to 50 mol%.
[0021]
FIG. 5 shows that when Fe 2 O 3 is contained in the range of 45.5 to 49 mol%, it becomes a high-frequency low-loss oxide magnetic material suitable as a magnetic core for a switching power transformer or choke coil. Moreover, it can be seen from FIG. 5 that the Fe 2 O 3 content at which the iron loss value can be 40 kW / m 3 or less is 46 mol% or more and less than 48.5 mol%.
[0022]
Further, the blending amount of the composition was changed to No. 1 in FIG. FIG. 6 shows a change in the iron loss value when the frequency is changed while being fixed to the value shown in FIG. However, the f · Bm product at this time is fixed at 25 kTHz.
[0023]
From FIG. 6, the iron loss is 80 kw / m 3 or less in the frequency range of 2 to 20 MHz, and it is a low-frequency oxide magnetic material suitable for high-frequency use as a magnetic core for a switching power transformer or choke coil used in a high-frequency range. Recognize.
[0024]
【The invention's effect】
In terms of oxide, it contains 45.5 to 49 mol% of Fe 2 O 3 , 9 to 31 mol% of NiO, 6 to 20 mol% of CuO, and the balance in the composition ratio of ZnO. The oxide magnetic material contained in the range of up to 2.4% by weight makes it possible to provide a magnetic core such as a low-loss transformer for a switching power supply or a choke coil that can be used at a high frequency of 2 MHz or higher.
[Brief description of the drawings]
FIG. 1 is a graph showing the content of a toroidal core that is a sintered oxide magnetic material. FIG. 2 is a graph showing changes in iron loss when the amount of CoO is changed. FIG. 3 is a graph showing changes in the amount of NiO. Fig. 4 is a graph showing a change in iron loss when the amount of CuO is changed. Fig. 5 is a graph showing a change in iron loss when the amount of CuO is changed. Fig. 5 is a change in iron loss when the amount of Fe 2 O 3 is changed. FIG. 6 is a graph showing the frequency characteristic of iron loss. FIG. 7 is a graph showing the frequency characteristic of iron loss of the Mn—Zn-based oxide magnetic material.

Claims (8)

酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを20mol%、20 mol% NiO,
CuOを9mol%、9 mol% CuO,
ZnOを24mol%の組成比で含有し、Containing ZnO at a composition ratio of 24 mol%,
添加物として、As an additive
CoOを0.1〜2.4wt%0.1 to 2.4 wt% of CoO
の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料。A low-loss oxide magnetic material for a magnetic core of a switching power supply transformer contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを20mol%、20 mol% NiO,
CuOを9mol%、9 mol% CuO,
ZnOを24mol%の組成比で含有し、Containing ZnO at a composition ratio of 24 mol%,
添加物として、As an additive
CoOを0.1〜2.4wt%0.1 to 2.4 wt% of CoO
の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料。Low loss oxide magnetic material for choke coil magnetic cores contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを9〜31mol%、9-31 mol% NiO,
CuOを15mol%、15 mol% CuO,
残部をZnOの組成比で含有し、The balance is contained in the composition ratio of ZnO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料。A low-loss oxide magnetic material for a magnetic core of a switching power supply transformer contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを9〜31mol%、9-31 mol% NiO,
CuOを15mol%、15 mol% CuO,
残部をZnOの組成比で含有し、The balance is contained in the composition ratio of ZnO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料。Low loss oxide magnetic material for choke coil magnetic cores contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを17mol%、17 mol% NiO,
CuOを6〜20mol%、6-20 mol% CuO,
残部をZnOの組成比で含有し、The balance is contained in the composition ratio of ZnO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料。A low-loss oxide magnetic material for a magnetic core of a switching power supply transformer contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を47mol%、47 mol%,
NiOを17mol%、17 mol% NiO,
CuOを6〜20mol%、6-20 mol% CuO,
残部をZnOの組成比で含有し、The balance is contained in the composition ratio of ZnO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料。Low loss oxide magnetic material for choke coil magnetic cores contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を45.5〜49mol%、45.5 to 49 mol%,
CuOを15mol%、15 mol% CuO,
ZnOを18mol%、18 mol% ZnO,
残部をNiOの組成比で含有し、The balance is contained in a composition ratio of NiO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するスイッチング電源用トランスの磁心用低損失酸化物磁性材料。A low-loss oxide magnetic material for a magnetic core of a switching power supply transformer contained in the range of
酸化物換算で、In terms of oxide,
FeFe 2 O 3 を45.5〜49mol%、45.5 to 49 mol%,
CuOを15mol%、15 mol% CuO,
ZnOを18mol%、18 mol% ZnO,
残部をNiOの組成比で含有し、The balance is contained in a composition ratio of NiO,
添加物として、As an additive
CoOを0.5wt%CoO 0.5wt%
の範囲で含有するチョークコイルの磁心用低損失酸化物磁性材料。Low loss oxide magnetic material for choke coil magnetic cores contained in the range of
JP03784096A 1996-02-26 1996-02-26 Low-loss oxide magnetic material Expired - Lifetime JP3739849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03784096A JP3739849B2 (en) 1996-02-26 1996-02-26 Low-loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03784096A JP3739849B2 (en) 1996-02-26 1996-02-26 Low-loss oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH09232124A JPH09232124A (en) 1997-09-05
JP3739849B2 true JP3739849B2 (en) 2006-01-25

Family

ID=12508738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03784096A Expired - Lifetime JP3739849B2 (en) 1996-02-26 1996-02-26 Low-loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP3739849B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795855B1 (en) * 1999-06-29 2001-10-05 Thomson Csf LOW LOSS FERRITES
US8436708B2 (en) * 2007-12-25 2013-05-07 Hitachi Metals, Ltd. Multilayer inductor and power converter comprising it
JP5580961B2 (en) * 2010-07-15 2014-08-27 Fdk株式会社 Oxidized magnetic material and manufacturing method thereof
US9824802B2 (en) 2012-10-31 2017-11-21 Toda Kogyo Corp. Ferrite sintered plate and ferrite sintered sheet
JP5880517B2 (en) 2013-10-16 2016-03-09 Tdk株式会社 Ferrite composition and electronic component

Also Published As

Publication number Publication date
JPH09232124A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP4298962B2 (en) Oxide magnetic materials, ferrite cores and electronic components
JP3739849B2 (en) Low-loss oxide magnetic material
JP2001006916A (en) Low loss oxide magnetic material
JP2000299215A (en) Low loss oxide magnetic material
JP2000159523A5 (en)
JPH0661033A (en) Low-loss oxide magnetic material
JP2530769B2 (en) Low loss oxide magnetic material for magnetic elements used in high frequency power supplies
JP2000159523A (en) Low loss ferrite sintered compact having highly saturated magnetic flux density and choke coil
JP3597666B2 (en) Mn-Ni ferrite material
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JPH09295862A (en) Low loss ferrite material and signal chip inductor using the same
JP3597665B2 (en) Mn-Ni ferrite material
JPS6359241B2 (en)
JP2001076923A (en) Low-loss oxide magnetic material
JP3544615B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JPH06267724A (en) Oxide magnetic material
JPH11219812A (en) Oxide magnetic material
JP3487243B2 (en) Mn-Zn ferrite material
JP2510788B2 (en) Low power loss oxide magnetic material
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof
JP3550258B2 (en) Ferrite material
JP2939035B2 (en) Soft magnetic oxide substance
JPH11329822A (en) Ferrite sintered body having high temperature, high saturated flux density and choke coil
JPH11340024A (en) Low-loss oxide magnetic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term