JP3597665B2 - Mn-Ni ferrite material - Google Patents
Mn-Ni ferrite material Download PDFInfo
- Publication number
- JP3597665B2 JP3597665B2 JP6821997A JP6821997A JP3597665B2 JP 3597665 B2 JP3597665 B2 JP 3597665B2 JP 6821997 A JP6821997 A JP 6821997A JP 6821997 A JP6821997 A JP 6821997A JP 3597665 B2 JP3597665 B2 JP 3597665B2
- Authority
- JP
- Japan
- Prior art keywords
- loss
- mol
- ferrite
- zno
- nio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、Mn−Niフェライト材料に関し、とくに、電源用トランス等の磁心に用いられる、高周波数域で損失の少ないMn−Niフェライト系材料について提案する。
【0002】
【従来の技術】
フェライト系の酸化物磁性材料は、BaフェライトやSrフェライトなどの硬質磁性材料とMn−ZnフェライトやNi−Znフェライトなどの軟質磁性材料とに分類される。このうち軟質磁性材料は、小さな磁場でも十分に磁化することから、電源や通信機器、計測制御機器、磁気記録媒体、コンピュータなどの用途に広く用いられている。それ故に、かかる軟質磁性材料には、保磁力が小さく透磁率が高いこと、飽和磁束密度が大きいこと、低損失であること、など多くの特性が要求される。
【0003】
このような用途に用いられる軟質磁性材料としては、上記フェライト系の酸化物磁性材料以外に金属系の磁性材料がある。この金属系の磁性材料は、飽和磁束密度が高いという点で酸化物磁性材料に比べると有利である。その反面、この金属系の磁性材料は、電気抵抗が低く、高周波数域で使用する際に渦電流に起因する損失が大きくなるという欠点があった。例えば、100kHz程度の周波数域で使われるスイッチング電源等に用いると、渦電流損による発熱が大きくなるという欠点がある。このため、この金属系の磁性材料は、電子機器の小型化・高密度化に伴って使用周波数の高周波数化した電子部品への適用が困難であった。
【0004】
このような背景のもとで、高周波数域で使われるスイッチング電源に適用できる電源用トランスの磁心材料としては、従来、酸化物軟質磁性材料であるMn−Znフェライトが主に用いられている。
【0005】
このMn−Znフェライトの場合、飽和磁束密度およびキュリー温度は、基本成分であるMnO: ZnO: FeOの比でほぼ決まることが知られている。例えば、ZnOの量が少ない領域においてはZnO量の増加に伴い飽和磁束密度は増加するが、これと同時にキュリー温度も低下する。また、損失が極小となる温度もまた上記基本成分の比により決まることが知られている。
【0006】
一方で、低損失Mn−Znフェライトを得るためには、損失を構成するヒステリシス損失、渦電流損失、それ以外の残留損失をそれぞれ小さくすることが必要である。これらの損失のうちヒステリシス損失は、磁気異方性定数K1と磁歪定数λに大きく支配され、これらK1とλはフェライトの組成により決まることが知られている。例えば、 Fe2O3=52 mol%付近で ZnO=20〜30 mol%である組成のMn−Znフェライトは、室温において、K1ならびにλs が共にゼロに近くなり、その組成では、透磁率が最大となり、損失も小さくなる(K.Ohta, J. Phys. Soc. Japan 18(1963) 685)。また、 Fe2O3=53〜54.5 mol%、 ZnO=8〜12 mol%である組成のMn−Znフェライトは、 100kHz 程度までの周波数域で損失が低くなる材料であり、スイッチング電源用パワーフェライトとして用いられている(セラミックス 28 (1993) 937) 。
【0007】
このような従来のMn−Znフェライトは、100kHz程度の周波数域において、高透磁率でかつ低損失な特性を示す。
しかしながら、このMn−Znフェライトは、使用周波数の高周波数化が進む今日では、損失が周波数が高くなるに伴い大きくなるという欠点があった。かかる高周波数化の傾向はこれからも続くと考えられ、高い周波数域でもなお低損失を示す酸化物軟質磁性材料に対する要求が高まっている。
【0008】
この損失のなかでも渦電流損失は、材料の電気抵抗に起因する損失であり、周波数が高くなるに伴いその損失の占める割合が大きくなる。これについては、フェライト粒界に高抵抗層を形成してコア全体の電気抵抗を高めることにより、渦電流損失を低減することができる。
残留損失もまた、周波数が高くなるに伴いその損失の占める割合が増えるものと考えられている。この原因については、共鳴現象等による説明もなされているが現在までのところはっきりしていない。
従って、これら渦電流損失と残留損失を共に低減することができれば、1MHz 程度以上の高周波数域でも低損失を示す材料が得られると考えられる。
【0009】
例えば、500kHz以上の周波数域を対象とした材料として、特開平6−310320号公報などでは、Mn, Zn, Feの酸化物を基本成分とするMn−Znフェライトに添加成分として種々の酸化物を含有させてなる、300kHz〜数MHz の周波数域で低損失を示す磁性材料が提案されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来から比較的低い周波数で用いられているMn−Znフェライト材料では、1MHz 程度以上の高周波数域における要求特性、とりわけ低損失特性について未だ満足できる結果が得られていない。
【0011】
この発明は、1MHz 程度以上の高周波数域において低損失であるフェライト材料を提供することを目的とする。
【0012】
【課題を解決するための手段】
発明者らは、上記目的の実現に向け、1MHz程度以上の高周波数域で低損失を示す組成を探索した。その結果、亜鉛を含まない組成でかつニッケルを含む組成が低損失化に有効であることを見出した。さらに発明者らは、ZnOを含む場合でも、そのZnO量が8mol%以下( ただし、5 mol %以上を除く )であれば損失はそれほど大きく劣化しないことを見出し、本発明を完成するに至った。
【0013】
即ち、この発明のMn−Niフェライト材料は、以下に示すとおりである。
(1) NiO:1.0〜10mol%、Fe2O3:55〜68mol%を含み、残部が実質的にMnOの組成となる基本成分中に、SiO2:0.02〜0.10wt%( ただし、 0.02wt %を除く )およびCaO:0.03〜0.30wt%( ただし、 0.03wt %を除く )を含有することを特徴とするMn−Niフェライト材料である。
(2) NiO:1.0〜10mol%、Fe2O3:55〜68mol%、ZnO:8mol%以下( ただし、5 mol %以上を除く )を含み、残部が実質的にMnOの組成となる基本成分中に、SiO2:0.02〜0.10wt%( ただし、 0.02wt %を除く )およびCaO:0.03〜0.30wt%( ただし、 0.02wt %を除く )を含有することを特徴とするMn−Niフェライト材料である。
(3) また発明者らは、上記(1)または (2)に記載のMn−Niフェライト材料において、損失が極小となる温度を、実際にトランスとして動作する60〜100℃程度の温度範囲に適合できるよう100℃以下にすることができることを見出した。
【0014】
なお、この発明は、高周波数域で損失の少ない電源用トランス等の磁心材料に関するものであり、磁気ヘッドコア材料に関する特開昭63−302505号公報に記載の発明とは異なる。
【0015】
【発明の実施の形態】
以下、この発明において、基本成分組成を前記範囲に限定した理由について説明する。なお、以下に述べるNiO,Fe2O3 ,ZnO以外の基本成分は実質的にMnOからなる。
・NiO:1〜10 mol%
NiOの含有量が1 mol%に満たないと損失低減効果が顕著でないため、NiOの含有量は1 mol%を下限とした。このNiOには他にスピネル化を促進する効果がある。即ち、本発明の上記(1) に記載のフェライト材料のように従来の成分組成と異なりZnOを含まない場合は、仮焼あるいは焼成時の昇温過程においてスピネル化が進まず、その時の温度や酸素濃度によっては異相が存在する場合がしばしば生じ、磁気特性が大きく劣化する。この点、NiOを含有させることによりスピネル化が促進し、ZnOを含む場合と同程度の効果が得られる。このことからも1 mol%以上のNiOが必要である。
一方、NiOの含有量が多すぎると、固有電気抵抗が小さくなり渦電流損失の増大を招くため、10 mol%を上限とした。
【0016】
・Fe2O3 :55〜68 mol%
Fe2O3 の含有量が少なすぎると、飽和磁束密度が低下すると同時に、損失が極小となる温度が高温側にシフトしてスイッチング電源等の動作温度である80℃付近における損失が大きくなる。このため、Fe2O3 の含有量は 55mol%を下限とした。
一方、この発明にかかるフェライト材料のようにNiOを含有する場合、磁性イオンであるNi2+イオンがフェライトのスピネル化合物の格子点に入り、他の格子点にある磁性イオンとの相互作用により、磁気異方性定数K1と磁歪定数λsが変化する。そのため、 Fe2O3の最適含有量はNiO含有量に伴って変化する。すなわち、Fe2O3 の含有量はNiO含有量の増加に伴い増やす必要がある。そこで、上記NiO含有量の上限に対応する値、68 mol%をFe2O3 含有量の上限とした。
【0017】
・ZnO:8mol%以下( ただし、5 mol %以上を除く )
この発明のMn−Niフェライト材料は、ZnOを含む場合でも、従来材料と比べると1MHz程度以上の高周波数域において低損失である。しかしながら、ZnOの含有量が8mol%( ただし、5 mol %以上を除く )を超えると損失の劣化が大きくなる。そこで、ZnOを含む組成では、その含有量を8mol%以下( ただし、5 mol %以上を除く )とした。
【0018】
この発明は、基本的にはスピネルを構成する上記基本成分の組成に関するものであり、基本成分中の金属酸化物は、すべて結晶粒内に固溶すると考えられる。この基本成分中には、従来から報告されているように、SiO2、CaO等のような焼結体の結晶粒界に析出してガラス相を形成する酸化物、あるいは同様に結晶粒界に析出して粒界抵抗を高めるZr,Ta,Hf,Mo,Nb,V,Ti 等の酸化物を添加することが知られており、これらの添加成分は渦電流損失の低減に寄与する。
特にこの発明においては、SiO2およびCaOを添加することが、焼結性を高め、結晶粒界相を高抵抗化して損失低減に寄与する点で望ましい。
【0019】
・SiO2:0.02〜0.1wt%( ただし、 0.02wt %を除く )
CaO:0.03〜0.3wt%( ただし、 0.03wt %を除く )
SiO2は、焼結促進の効果があり、この効果を充分に引き出すためには0.02wt%以上( ただし、 0.02wt %を除く )の添加が必要であり、多すぎると異常粒成長を引き起こすため、その上限を0.1wt%とした。ただし、この上限付近の添加量では焼結温度を下げる等の考慮が必要である。CaOは、SiO2とともに粒界を高抵抗化して損失を低くする効果があり、この効果を引き出すためには0.03wt%以上( ただし、 0.03wt %を除く )の添加が必要であり、0.3wt%を超えて添加すると焼結性に問題があり、コアの損失が劣化するため、その上限を0.3wt%以下とした。
【0020】
以上説明したような成分組成を有するMn−Niフェライト材料からなる低損失磁心材料は、まず、上述した成分組成になるように原料酸化物を配合した混合粉を仮焼し、次いで、アトライターやボールミル等の粉砕手段により粉砕し、その粉砕粉を所望のコア形状に成形したのち焼成することにより得られる。このときの焼成温度は、成分により異なるが、概ね1100℃〜1250℃であり、これより低い場合は焼結が進まず、高い場合は焼結密度は上がるものの異常粒成長を招き、コアの損失が著しく劣化する。また、この焼成過程では、酸素・窒素混合雰囲気が必要で、酸素分圧をコントロールすることにより粒界相の形成を制御して抵抗を高めることができる。
【0021】
【実施例】
(実施例1)
基本成分が表1に示す最終組成となるように、各成分の原料酸化物を配合し、次いで、ボールミルを用いて湿式混合を16時間かけて行い、その後、乾燥して原料混合粉を得た。
次に、この原料混合粉に対し、大気雰囲気中、 900〜950 ℃で3時間の仮焼を行い、こうして得られた仮焼粉に、SiO2を0.03wt%、CaOを0.15wt%、Ta2O5 を0.04wt%添加した後、再びボールミルを用いて湿式混合粉砕して乾燥させた。
その乾燥粉末にポリビニルアルコール5重量%の水溶液を10重量%加えて造粒し、次いで、外径22mm、内径11mm、高さ5mmのリング状に成形し、その後、酸素分圧を制御した窒素・空気混合ガス中、1150℃で2時間の焼成を行った。
【0022】
このようにして得られた焼結体試料に巻線を施し (1次側2巻, 2次側1巻) 、(周波数、最大磁束密度)の条件を(1MHz 、50mT)、(2MHz 、25mT)、(500kHz、50mT)に設定して、損失を交流BHトレーサーにより25〜140 ℃で測定した。これらの試料の損失極小値ならびに損失が極小になる温度を表1に示す。また、損失極小値のNiO量依存性を図1に示す。
これらの結果から明らかなように、適切なNiO含有量は損失を低減する効果があり、その効果は高周波であるほど顕著であった。また、実際にトランスとして動作する温度の60〜100 ℃において低損失となるよう、損失が極小となる温度が100 ℃以下となっている。
【0023】
(実施例2)
ZnOを2〜8 mol%含有する基本成分組成としたこと以外は、実施例1と同様にして焼結体試料を得た。このとき、損失極小温度がZnOを含むことにより変化するため、ZnO量の mol%の5分の1に相当する Fe2O3の mol%を減じ、総和が100mol%となるようにMnO量を調整した。
【0024】
得られた焼結体試料に巻線を施し (1次側2巻、2次側1巻) ,1MHz の周波数で最大磁束密度50mTの条件下で、損失を交流BHトレーサーにより25〜140 ℃で測定した。損失極小値のNiO量依存性をZnO量を変化させて調べて結果を図2に示す。
この図2に示す結果から明らかなように、ZnOを含まない組成では確実に低損失を達成することができるが、ZnOを含む組成でもZnO量が8 mol%程度以下であれば比較的低い損失に維持できることが判った。なお、このときの損失が極小となる温度はすべて60〜100 ℃の範囲であった。
【0025】
(実施例3)
基本成分組成が Fe2O3:MnO:NiO=57.7:39.3:3.0 mol%の比になるように、実施例1と同様にして仮焼粉を作製し、次いで、SiO2およびCaOを表2に示す量で添加し、その後、実施例1と同様にして粉砕、造粒、成形したものに対し、酸素分圧を制御した窒素・酸素混合雰囲気中、1150℃で2時間の焼成を行い、焼結体試料を得た。
このようにして得られた焼結体試料について、実施例1と同様にして、周波数1MHz 、最大磁束密度50mTの条件下で損失を測定した。その結果を表2に併せて示す。
これらの表に示す結果から明らかなように、適合例にかかるこの発明のフェライト材料によれば低損失を達成することができる。なお、このときの損失が極小となる温度はすべて60〜100 ℃の範囲であった。
【0026】
【表1】
【0027】
【表2】
【0028】
【発明の効果】
以上説明したようにこの発明によれば、スイッチング電源トランス等の磁心に適した、1MHz 程度以上の高周波数域において損失の小さいMn−Niフェライト材料を提供することができる。
【図面の簡単な説明】
【図1】実施例1における、損失極小値とNiO量の関係を示す図である。
【図2】実施例2における、損失極小値とNiO量の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Mn-Ni ferrite material, and in particular, proposes a Mn-Ni ferrite material used in a magnetic core of a power supply transformer or the like and having a small loss in a high frequency range.
[0002]
[Prior art]
Ferrite-based oxide magnetic materials are classified into hard magnetic materials such as Ba ferrite and Sr ferrite and soft magnetic materials such as Mn-Zn ferrite and Ni-Zn ferrite. Of these, soft magnetic materials are sufficiently magnetized even in a small magnetic field, and thus are widely used for power supplies, communication devices, measurement and control devices, magnetic recording media, computers, and the like. Therefore, such a soft magnetic material is required to have many characteristics such as low coercive force, high magnetic permeability, high saturation magnetic flux density, and low loss.
[0003]
As a soft magnetic material used for such an application, there is a metal-based magnetic material in addition to the ferrite-based oxide magnetic material. The metallic magnetic material is advantageous over the oxide magnetic material in that the saturation magnetic flux density is high. On the other hand, this metallic magnetic material has a drawback that the electric resistance is low and the loss due to eddy current increases when used in a high frequency range. For example, when used in a switching power supply or the like used in a frequency range of about 100 kHz, there is a disadvantage that heat generation due to eddy current loss increases. For this reason, it has been difficult to apply this metallic magnetic material to an electronic component whose operating frequency has been increased with the downsizing and higher density of electronic devices.
[0004]
Against this background, Mn-Zn ferrite, which is an oxide soft magnetic material, has been mainly used as a core material of a power transformer applicable to a switching power supply used in a high frequency range.
[0005]
In the case of this Mn-Zn ferrite, it is known that the saturation magnetic flux density and the Curie temperature are almost determined by the ratio of the basic components MnO: ZnO: FeO. For example, in a region where the amount of ZnO is small, the saturation magnetic flux density increases as the amount of ZnO increases, but at the same time, the Curie temperature also decreases. It is also known that the temperature at which the loss is minimized is also determined by the ratio of the above basic components.
[0006]
On the other hand, in order to obtain low-loss Mn-Zn ferrite, it is necessary to reduce the hysteresis loss, the eddy current loss, and other residual losses constituting the loss. Among these losses, the hysteresis loss is largely governed by the magnetic anisotropy constant K1 and the magnetostriction constant λ, and it is known that these K1 and λ are determined by the ferrite composition. For example, in a Mn-Zn ferrite having a composition in which ZnO is 20 to 30 mol% at around Fe 2 O 3 = 52 mol%, both K1 and λs are close to zero at room temperature, and the composition has a maximum magnetic permeability. And the loss is also small (K. Ohta, J. Phys. Soc. Japan 18 (1963) 685). Mn—Zn ferrite having a composition of Fe 2 O 3 = 53 to 54.5 mol% and ZnO = 8 to 12 mol% is a material having a low loss in a frequency range up to about 100 kHz. It is used as a power ferrite (ceramics 28 (1993) 937).
[0007]
Such a conventional Mn-Zn ferrite exhibits high magnetic permeability and low loss characteristics in a frequency range of about 100 kHz.
However, this Mn-Zn ferrite has a drawback that the loss becomes larger as the frequency becomes higher in today's use frequency. It is thought that such a tendency to increase the frequency will continue in the future, and there is an increasing demand for an oxide soft magnetic material that exhibits low loss even in a high frequency range.
[0008]
Among these losses, the eddy current loss is a loss due to the electric resistance of the material, and the ratio of the loss increases as the frequency increases. In this regard, eddy current loss can be reduced by forming a high-resistance layer at the ferrite grain boundary to increase the electrical resistance of the entire core.
It is also believed that the residual loss also increases in proportion as the frequency increases. The cause has been explained by the resonance phenomenon or the like, but has not been clarified so far.
Therefore, it is considered that if both the eddy current loss and the residual loss can be reduced, a material exhibiting low loss even in a high frequency range of about 1 MHz or more can be obtained.
[0009]
For example, Japanese Unexamined Patent Publication No. 6-310320 discloses various oxides as an additive component to Mn-Zn ferrite containing oxides of Mn, Zn, and Fe as a basic component as a material for a frequency range of 500 kHz or more. There has been proposed a magnetic material which exhibits a low loss in a frequency range of 300 kHz to several MHz.
[0010]
[Problems to be solved by the invention]
However, with the Mn-Zn ferrite material conventionally used at a relatively low frequency, satisfactory results have not yet been obtained with respect to required characteristics in a high frequency range of about 1 MHz or more, particularly low loss characteristics.
[0011]
An object of the present invention is to provide a ferrite material having low loss in a high frequency range of about 1 MHz or more.
[0012]
[Means for Solving the Problems]
The inventors have searched for a composition that exhibits low loss in a high frequency range of about 1 MHz or more in order to achieve the above object. As a result, they have found that a composition containing no zinc and a composition containing nickel is effective for reducing the loss. Further, the inventors have found that even when ZnO is contained, the loss does not deteriorate so much if the ZnO content is 8 mol% or less ( excluding 5 mol % or more ) , and the present invention has been completed. .
[0013]
That is, the Mn-Ni ferrite material of the present invention is as described below .
(1) NiO: 1.0~10mol%, Fe 2 O 3: includes 55~68mol%, the basic component and the balance being substantially the composition of MnO, SiO 2: 0.02~0.10wt% (however, 0.02 wt % excluding) and CaO: 0.03~0.30wt% (provided that Mn-Ni ferrite material characterized by containing the excluding 0.03 wt%).
(2) NiO: 1.0~10mol%, Fe 2 O 3: 55~68mol%, ZnO: 8mol% or less (excluding more than 5 mol%) wherein the balance is substantially the composition of MnO basic components during, SiO 2: 0.02~0.10wt% (excluding 0.02 wt%) and CaO: 0.03~0.30wt% (excluding 0.02wt%) Mn-Ni ferrite material characterized by containing It is.
(3) In addition, in the Mn-Ni ferrite material according to the above (1) or (2) , the inventors set the temperature at which the loss is minimal to a temperature range of about 60 to 100 ° C. which actually operates as a transformer. It has been found that the temperature can be reduced to 100 ° C. or less so that it can be adapted.
[0014]
This invention relates to a magnetic core material such as a transformer for a power supply having a small loss in a high frequency range, and is different from the invention described in JP-A-63-302505 concerning a magnetic head core material.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reason for limiting the basic component composition to the above range in the present invention will be described. The basic components other than NiO, Fe 2 O 3 , and ZnO described below substantially consist of MnO.
-NiO: 1 to 10 mol%
If the NiO content is less than 1 mol%, the loss reduction effect is not remarkable, so the lower limit of the NiO content is 1 mol%. This NiO has another effect of promoting spinelization. That is, when ZnO is not included unlike the conventional component composition as in the ferrite material described in the above (1) of the present invention, spinel formation does not proceed in the temperature increasing process during calcination or firing, and the temperature and the temperature at that time are not increased. Depending on the oxygen concentration, a heterogeneous phase is often present, and the magnetic properties are greatly deteriorated. In this regard, the inclusion of NiO promotes spinelization, and the same effect as that when ZnO is included can be obtained. Therefore, 1 mol% or more of NiO is required.
On the other hand, if the content of NiO is too large, the specific electric resistance becomes small and the eddy current loss increases, so the upper limit was set to 10 mol%.
[0016]
· Fe 2 O 3: 55~68 mol %
If the content of Fe 2 O 3 is too small, the saturation magnetic flux density decreases, and at the same time, the temperature at which the loss is minimized shifts to a higher temperature side, and the loss at around 80 ° C., which is the operating temperature of the switching power supply, increases. Therefore, the lower limit of the content of Fe 2 O 3 is 55 mol%.
On the other hand, when NiO is contained as in the ferrite material according to the present invention, Ni 2+ ions, which are magnetic ions, enter lattice points of the spinel compound of the ferrite, and interact with magnetic ions at other lattice points to form a magnetic field. The anisotropy constant K1 and the magnetostriction constant λs change. Therefore, the optimal content of Fe 2 O 3 changes with the NiO content. That is, the content of Fe 2 O 3 needs to be increased as the NiO content increases. Therefore, a value corresponding to the upper limit of the NiO content, 68 mol%, was set as the upper limit of the Fe 2 O 3 content.
[0017]
・ ZnO: 8 mol% or less ( excluding 5 mol % or more )
The Mn-Ni ferrite material of the present invention has a low loss in a high frequency range of about 1 MHz or more as compared with the conventional material even when ZnO is included. However, when the content of ZnO exceeds 8 mol% ( excluding 5 mol % or more ) , deterioration of loss becomes large. Therefore, in the composition containing ZnO, the content is set to 8 mol% or less ( excluding 5 mol % or more ) .
[0018]
The present invention basically relates to the composition of the above basic components constituting spinel, and it is considered that all metal oxides in the basic components are dissolved in crystal grains. Among these basic components, as previously reported, oxides such as SiO 2 and CaO which precipitate at the crystal grain boundaries of a sintered body to form a glass phase or, similarly, have crystal grains boundaries. It is known to add oxides such as Zr, Ta, Hf, Mo, Nb, V, and Ti which precipitate and increase the grain boundary resistance, and these added components contribute to the reduction of eddy current loss.
In particular, in the present invention, it is desirable to add SiO 2 and CaO in terms of enhancing sintering properties, increasing the resistance of the crystal grain boundary phase, and contributing to a reduction in loss.
[0019]
· SiO 2: 0.02~0.1wt% (excluding the 0.02wt%)
CaO: 0.03~0.3wt% (excluding the 0.03wt%)
SiO 2 is effective for promoting sintering, or 0.02 wt% in order to bring out this effect sufficiently (excluding 0.02 wt%) is necessary to add, to cause too much when the abnormal grain growth , The upper limit of which is 0.1 wt%. However, it is necessary to consider, for example, lowering the sintering temperature with the addition amount near this upper limit. CaO has an effect to reduce the losses and high resistance to intergranular with SiO 2, in order to bring out this effect more than 0.03 wt% (excluding 0.03 wt%) is necessary to add, 0.3 wt %, There is a problem in sinterability and the core loss deteriorates, so the upper limit was made 0.3 wt% or less.
[0020]
The low-loss core material made of the Mn-Ni ferrite material having the above-described component composition is first calcined from a mixed powder containing the raw material oxide so as to have the above-described component composition, and then the attritor or the like. It is obtained by crushing with a crushing means such as a ball mill, forming the crushed powder into a desired core shape, and then firing. The firing temperature at this time varies depending on the component, but is generally 1100 ° C. to 1250 ° C. If it is lower than this, sintering does not proceed, and if it is higher, the sintering density increases, but abnormal grain growth occurs, and core loss occurs. Significantly deteriorates. In this firing step, an oxygen / nitrogen mixed atmosphere is required, and by controlling the oxygen partial pressure, the formation of the grain boundary phase can be controlled to increase the resistance.
[0021]
【Example】
(Example 1)
The raw material oxides of the respective components were blended so that the basic components had the final compositions shown in Table 1, and then wet mixing was performed using a ball mill for 16 hours, and then dried to obtain a raw material mixed powder. .
Next, the raw material mixed powder was calcined at 900 to 950 ° C. for 3 hours in an air atmosphere, and the calcined powder thus obtained was made to contain 0.03 wt% of SiO 2 and 0.15 wt% of CaO. , Ta 2 O 5 was added in an amount of 0.04 wt%, and the mixture was again wet-mixed and pulverized using a ball mill and dried.
10% by weight of an aqueous solution of 5% by weight of polyvinyl alcohol is added to the dried powder to form a granule, and then formed into a ring having an outer diameter of 22 mm, an inner diameter of 11 mm, and a height of 5 mm, and then nitrogen / nitrogen with controlled oxygen partial pressure. The firing was performed at 1150 ° C. for 2 hours in an air mixed gas.
[0022]
The sintered body sample thus obtained was wound (two primary windings, one secondary winding), and the conditions of (frequency, maximum magnetic flux density) were (1 MHz, 50 mT), (2 MHz, 25 mT). ), (500 kHz, 50 mT), and the loss was measured at 25 to 140 ° C. using an AC BH tracer. Table 1 shows the minimum loss value of these samples and the temperature at which the loss becomes minimum. FIG. 1 shows the dependency of the minimum loss value on the amount of NiO.
As is apparent from these results, an appropriate NiO content has an effect of reducing the loss, and the effect is more prominent at higher frequencies. Further, the temperature at which the loss is minimized is 100 ° C. or less so that the loss is reduced at a temperature of 60 to 100 ° C. which actually operates as a transformer.
[0023]
(Example 2)
A sintered body sample was obtained in the same manner as in Example 1, except that the basic component composition contained 2 to 8 mol% of ZnO. At this time, since the minimum loss temperature changes due to the inclusion of ZnO, the mol% of Fe 2 O 3 , which is one fifth of the mol% of the ZnO amount, is reduced, and the MnO amount is reduced so that the total amount becomes 100 mol%. It was adjusted.
[0024]
The obtained sintered body sample was wound (two primary windings, one secondary winding), and the loss was measured at 25 to 140 ° C. with an AC BH tracer under the conditions of a frequency of 1 MHz and a maximum magnetic flux density of 50 mT. It was measured. The dependence of the minimum loss value on the amount of NiO was examined by changing the amount of ZnO, and the results are shown in FIG.
As is clear from the results shown in FIG. 2, the composition containing no ZnO can surely achieve low loss, but the composition containing ZnO can achieve relatively low loss if the ZnO content is about 8 mol% or less. It was found that it could be maintained. The temperatures at which the loss was minimized were all in the range of 60 to 100 ° C.
[0025]
(Example 3)
A calcined powder was produced in the same manner as in Example 1 so that the basic component composition was Fe 2 O 3 : MnO: NiO = 57.7: 39.3: 3.0 mol%, and then
The loss of the sintered body sample thus obtained was measured under the conditions of a frequency of 1 MHz and a maximum magnetic flux density of 50 mT in the same manner as in Example 1. The results are shown in Table 2.
As is clear from the results shown in these tables, low loss can be achieved by the ferrite material of the present invention according to the adaptation example. The temperatures at which the loss was minimized were all in the range of 60 to 100 ° C.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a Mn-Ni ferrite material which is suitable for a magnetic core of a switching power supply transformer or the like and has a small loss in a high frequency range of about 1 MHz or more.
[Brief description of the drawings]
FIG. 1 is a view showing a relationship between a minimum loss value and an amount of NiO in Example 1.
FIG. 2 is a diagram showing the relationship between the minimum loss value and the amount of NiO in Example 2.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6821997A JP3597665B2 (en) | 1997-03-21 | 1997-03-21 | Mn-Ni ferrite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6821997A JP3597665B2 (en) | 1997-03-21 | 1997-03-21 | Mn-Ni ferrite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10270229A JPH10270229A (en) | 1998-10-09 |
JP3597665B2 true JP3597665B2 (en) | 2004-12-08 |
Family
ID=13367485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6821997A Expired - Lifetime JP3597665B2 (en) | 1997-03-21 | 1997-03-21 | Mn-Ni ferrite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3597665B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389170B2 (en) | 1999-10-12 | 2003-03-24 | ティーディーケイ株式会社 | NiMnZn ferrite |
JP4813016B2 (en) * | 2003-12-18 | 2011-11-09 | Jfeフェライト株式会社 | High saturation magnetic flux density Mn-Zn-Ni ferrite |
JP4244193B2 (en) | 2004-01-30 | 2009-03-25 | Tdk株式会社 | Method for producing MnZn ferrite and MnZn ferrite |
JP4813025B2 (en) * | 2004-03-25 | 2011-11-09 | Jfeフェライト株式会社 | High saturation magnetic flux density Mn-Zn-Ni ferrite |
JP2007091539A (en) * | 2005-09-29 | 2007-04-12 | Tdk Corp | NONMAGNETIC Zn FERRITE AND COMPOUNDED MULTILAYER ELECTRONIC COMPONENT USING IT |
-
1997
- 1997-03-21 JP JP6821997A patent/JP3597665B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10270229A (en) | 1998-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3108803B2 (en) | Mn-Zn ferrite | |
JP3968188B2 (en) | Ferrite | |
JP4523430B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
EP1547988A1 (en) | Ferrite material | |
JP3917216B2 (en) | Low loss ferrite core material | |
JP3917325B2 (en) | Ferrite | |
JP2004247603A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JP3597673B2 (en) | Ferrite material | |
JP3108804B2 (en) | Mn-Zn ferrite | |
JP3288113B2 (en) | Mn-Zn ferrite magnetic material | |
JP4656949B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP3597665B2 (en) | Mn-Ni ferrite material | |
JPH08191011A (en) | Mn-zn-co based ferrite magnetic core material | |
JP3247930B2 (en) | Mn-Zn soft ferrite | |
JP3597666B2 (en) | Mn-Ni ferrite material | |
JP2003068516A (en) | Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD | |
JP2004247370A (en) | MnZn FERRITE | |
JP3790606B2 (en) | Mn-Co ferrite material | |
JPH08169756A (en) | Low loss manganese-zinc ferrite core and its production | |
JP2004247602A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JPH08148322A (en) | Oxide magnetic material and switching power supply employing the same | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP3584437B2 (en) | Method for producing Mn-Zn ferrite | |
JP2000182816A (en) | Manganese-based ferrite, transformer using the same and choke coil | |
JP3300522B2 (en) | Low loss oxide soft magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040909 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |