JPH08169756A - Low loss manganese-zinc ferrite core and its production - Google Patents
Low loss manganese-zinc ferrite core and its productionInfo
- Publication number
- JPH08169756A JPH08169756A JP6315034A JP31503494A JPH08169756A JP H08169756 A JPH08169756 A JP H08169756A JP 6315034 A JP6315034 A JP 6315034A JP 31503494 A JP31503494 A JP 31503494A JP H08169756 A JPH08169756 A JP H08169756A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- ferrite core
- loss
- low
- subcomponent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、スイッチング電源用ト
ランス等の磁心に用いられる、電力損失の少ないMn−
Zn系フェライトに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for magnetic cores such as transformers for switching power supplies and has a low power loss, Mn-.
The present invention relates to Zn-based ferrite.
【0002】[0002]
【従来の技術】酸化物磁性材料は総称としてフェライト
と呼ばれる。その中ではBaフェライト、Srフェライ
ト等の硬質磁性材料とMn−Znフェライト、Ni−Z
nフェライト等の軟質磁性材料に分けられる。軟質磁性
材料は非常にわずかな磁場に対しても十分に磁化する材
料であり、電源、通信機器、計測制御機器、磁気記録、
コンピュータなどの広い範囲で用いられている。これら
軟質磁性材料に要求される特性として、保磁力が小さく
透磁率が高いこと、飽和磁束密度が大きいこと、低損失
であることなどがあげられる。2. Description of the Related Art Oxide magnetic materials are generically called ferrites. Among them, hard magnetic materials such as Ba ferrite and Sr ferrite, and Mn-Zn ferrite and Ni-Z.
It is divided into soft magnetic materials such as n-ferrite. A soft magnetic material is a material that is sufficiently magnetized even with a very small magnetic field, and is used for power supplies, communication equipment, measurement control equipment, magnetic recording,
It is used in a wide range of computers. Properties required for these soft magnetic materials include low coercive force, high magnetic permeability, high saturation magnetic flux density, and low loss.
【0003】酸化物フェライトの他に軟質磁性材料とし
ては、金属系のものがあげられる。金属系軟質磁性材料
は飽和磁束密度が高いため、酸化物系と比べると有利で
あるが、その反面電気抵抗が低く、高周波のもとで使用
する際には渦電流に起因する磁気損失が大きくなってし
まう。特に近年の電子機器の小型化・高密度化の要請か
ら使用周波数の高周波化が進んできており、スイッチン
グ電源等に用いられている100kHz程度の周波数帯
では、従来の金属系材料では抵抗が低いため発熱が大き
くなり、その使用はほとんど不可能であった。In addition to oxide ferrite, soft magnetic materials include metal-based materials. Metal-based soft magnetic materials have a high saturation magnetic flux density, so they are more advantageous than oxide-based ones, but on the other hand, they have low electrical resistance, and when used at high frequencies, magnetic loss due to eddy currents is large. turn into. In particular, in recent years, there has been a demand for downsizing and high density of electronic devices, and the operating frequency has been increasing. In the frequency band of about 100 kHz used for switching power supplies, etc., the resistance of conventional metal-based materials is low. Therefore, the heat generation became large, and its use was almost impossible.
【0004】そのため高周波域での電源用トランスの磁
性材料としてMn−Zn系フェライトを用いることが主
流となっている。しかしこの材料も電気低効率の値が数
Ω・cmであるため、さらに電気抵抗を高くして渦電流
を低減することにより全体としての磁気損失を低くし発
熱量を抑えることが望まれていた。この問題を解決する
ため、例えば特公昭36−2283号公報、特開昭60
−12302号公報、特開平5−226138号公報で
はMn−Zn系フェライトでは副成分としてSiO2 や
CaOなどの酸化物を微量に添加し粒界に偏析させ、粒
界での抵抗を向上し、全体としての抵抗率を数百Ω・c
m以上に高めている。Therefore, it has been mainstream to use Mn-Zn type ferrite as a magnetic material of a power transformer in a high frequency range. However, since this material also has a low electrical efficiency value of several Ω · cm, it has been desired to further reduce the eddy current by further increasing the electric resistance to reduce the magnetic loss as a whole and suppress the heat generation amount. . In order to solve this problem, for example, Japanese Patent Publication No. 36-2283 and Japanese Patent Laid-Open No. 60
In JP-A-12302 and JP-A-5-226138, a small amount of an oxide such as SiO 2 or CaO is added as a sub-component to Mn-Zn-based ferrite to segregate at the grain boundaries to improve the resistance at the grain boundaries. The total resistivity is several hundred Ω · c
It is higher than m.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、単に副
成分である酸化物を添加したのではそのまま低損失な材
料が得られるとはかぎらず、また電気抵抗値のみを高め
ることにより磁気損失を低減できるわけではない。本発
明は、現在スイッチング電源に適用されている100k
Hz程度の周波数において損失を大幅に低減することが
できる低損失Mn−Zn系フェライトコア及びその製造
方法を提供することを目的とする。However, it is not always possible to obtain a low-loss material as it is by simply adding an oxide as a subcomponent, and magnetic loss can be reduced by increasing only the electric resistance value. Do not mean. The present invention is applied to a switching power supply at 100 k.
An object of the present invention is to provide a low-loss Mn-Zn-based ferrite core capable of significantly reducing loss at a frequency of about Hz and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】本発明は、主成分として MnO:25〜40mol% ZnO:6〜25mol%及び Fe2 O3 :残部 を含み、副成分として SiO2 :0.002〜0.040重量% CaO:0.02〜0.20重量% を含有し、かつこれらの副成分元素が結晶粒界に偏析
し、その幅が濃度分布の半値幅として10nm以下であ
ることを特徴とする低損失Mn−Znフェライトコアで
ある。The present invention SUMMARY OF THE INVENTION may, MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0. It is characterized in that it contains 040 wt% CaO: 0.02 to 0.20 wt%, and these subcomponent elements segregate at the grain boundaries, and the width thereof is 10 nm or less as the half-value width of the concentration distribution. It is a low-loss Mn-Zn ferrite core.
【0007】上記成分に副成分としてさらに Nb2 O5 :0.001〜0.04重量% Ta2 O5 :0.001〜0.4重量% ZrO2 :0.001〜0.05重量% V2 O5 :0.001〜0.03重量% から選ばれた少なくとも1種を含有すると好適である。In addition to the above components, Nb 2 O 5 : 0.001 to 0.04% by weight Ta 2 O 5 : 0.001 to 0.4% by weight ZrO 2 : 0.001 to 0.05% by weight V 2 O 5: 0.001~0.03 should preferably contain at least one selected from weight%.
【0008】このような低損失Mn−Znフェライトコ
アは、主成分として MnO:25〜40mol% ZnO:6〜25mol%及び Fe2 O3 :残部 を含み、副成分として SiO2 :0.002〜0.040重量% CaO:0.02〜0.20重量% であるように原料粉末を調整し、混合し、仮焼し、粉砕
し、ついで成形したのち、焼成することによって製造す
ることができる。この場合、焼成後の冷却過程の110
0〜800℃における酸素分圧を1.0%以下とし、か
つ冷却速度を0.5〜2℃/時とすると好ましい結果を
得ることができる。[0008] Such low loss Mn-Zn ferrite core, MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 0.040 wt% CaO: 0.02 to 0.20 wt% The raw material powder is adjusted so as to be mixed, calcined, crushed, molded, and then baked. . In this case, 110 in the cooling process after firing
When the oxygen partial pressure at 0 to 800 ° C. is 1.0% or less and the cooling rate is 0.5 to 2 ° C./hour, preferable results can be obtained.
【0009】さらに、主成分として MnO:25〜40mol% ZnO:6〜25mol%及び Fe2 O3 :残部 を含み、副成分として SiO2 :0.002〜0.040重量% CaO:0.02〜0.20重量% を含有し、副成分としてさらに Nb2 O5 :0.001〜0.04重量% Ta2 O5 :0.001〜0.4重量% ZrO2 :0.001〜0.05重量% V2 O5 :0.001〜0.03重量% から選ばれた少なくとも1種を含有する低損失Mn−Z
nフェライトコアの製造に当り、焼成後の冷却過程の1
100〜950℃における酸素分圧を1.0%以下とし
かつ冷却速度を0.5〜2℃/時とすることを特徴とす
る低損失Mn−Znフェライトコアの製造方法を提供す
る。Furthermore, MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0.040 wt% CaO: 0.02 containing 0.20 wt%, further Nb 2 O 5 as an auxiliary component: 0.001 to 0.04 wt% Ta 2 O 5: 0.001 to 0.4 wt% ZrO 2: .001 to 0 0.05% by weight V 2 O 5 : low loss Mn-Z containing at least one selected from 0.001 to 0.03% by weight
When manufacturing n-ferrite core, one of the cooling process after firing
A method for producing a low-loss Mn-Zn ferrite core, wherein the oxygen partial pressure at 100 to 950 ° C is 1.0% or less and the cooling rate is 0.5 to 2 ° C / hour.
【0010】次に、本発明は、主成分として MnO:25〜40mol% ZnO:6〜25mol%及び Fe2 O3 :残部 副成分として SiO2 :0.002〜0.040重量% CaO:0.02〜0.20重量% からなる低損失Mn−Znフェライトコアの製造に当
り、焼成後の冷却過程の1100〜950℃における酸
素分圧を1.0%以下とし、この雰囲気下に20分〜5
時間保持することを特徴とする低損失Mn−Znフェラ
イトコアの製造方法を提供する。Next, according to the present invention, the main components are MnO: 25 to 40 mol% ZnO: 6 to 25 mol% and Fe 2 O 3 : the balance is an auxiliary component SiO 2 : 0.002 to 0.040 wt% CaO: 0. In producing a low-loss Mn-Zn ferrite core composed of 0.02 to 0.20% by weight, the oxygen partial pressure at 1100 to 950 ° C in the cooling process after firing was set to 1.0% or less, and the atmosphere was kept under this atmosphere for 20 minutes. ~ 5
A method for producing a low-loss Mn-Zn ferrite core characterized by holding for a time is provided.
【0011】さらに、主成分として MnO:25〜40mol% ZnO:6〜25mol%及び Fe2 O3 :残部 を含み、副成分として SiO2 :0.002〜0.040重量% CaO:0.02〜0.20重量% を含有し、副成分としてさらに Nb2 O5 :0.001〜0.04重量% Ta2 O5 :0.001〜0.4重量% ZrO2 :0.001〜0.05重量% V2 O5 :0.001〜0.03重量% から選ばれた少なくとも1種を含有する低損失Mn−Z
nフェライトコアの製造に当たり、焼成後の冷却過程の
1100〜950℃における酸素分圧を1.0%以下と
しこの雰囲気下に20分〜5時間保持することを特徴と
する低損失Mn−Znフェライトコアの製造方法を提供
するものである。Furthermore, MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0.040 wt% CaO: 0.02 containing 0.20 wt%, further Nb 2 O 5 as an auxiliary component: 0.001 to 0.04 wt% Ta 2 O 5: 0.001 to 0.4 wt% ZrO 2: .001 to 0 0.05% by weight V 2 O 5 : low loss Mn-Z containing at least one selected from 0.001 to 0.03% by weight
In producing the n-ferrite core, the oxygen partial pressure at 1100 to 950 ° C. in the cooling process after firing is set to 1.0% or less, and the n-ferrite core is kept in this atmosphere for 20 minutes to 5 hours. A method of manufacturing a core is provided.
【0012】発明者は、MnO:25〜40mol%、
ZnO:6〜25mol%及びFe 2 O3 :残部を基本
成分として含み、副成分としてシリカ(SiO2 )、カ
ルシア(CaO)がそれぞれSiO2 :0.002〜
0.040重量%、CaO:0.02〜0.20重量%
を含有する焼結体について、添加した副成分元素の分布
と磁気損失の関係を調べた結果、副成分元素が結晶粒界
付近に高濃度に偏析しているとき損失が最も低く、広い
範囲にわたって分布している場合は損失が大きくなって
いることを見出した。さらに副成分として、Nb2 O5
(0.001〜0.04重量%)、Ta2 O5 (0.0
01〜0.4重量%)、ZrO2 (0.001〜0.0
5重量%)、V2 O5 (0.001〜0.03重量%)
から選ばれた少なくとも1種を含有する焼結体について
も、添加した副成分元素の分布と磁気損失の関係を調べ
た結果、これらの元素が結晶粒界付近に高濃度に偏析し
ているとき損失が最も低く、広い範囲にわたって分布し
ている場合は損失が大きくなっていることを見出した。The inventor has found that MnO: 25-40 mol%,
ZnO: 6-25 mol% and Fe 2 O3 : The rest is basic
Included as a component and silica (SiO2 ),
Lucia (CaO) is SiO2 : 0.002-
0.040% by weight, CaO: 0.02 to 0.20% by weight
Distribution of the added subcomponent elements in the sintered body containing
As a result of investigating the relationship between magnetic loss and
When segregated to high concentration in the vicinity, the loss is the lowest and wide.
When distributed over the range, the loss becomes large
I found that. Furthermore, as an accessory component, Nb2 OFive
(0.001-0.04% by weight), Ta2 OFive (0.0
01-0.4% by weight), ZrO2 (0.001-0.0
5% by weight), V2 OFive (0.001-0.03% by weight)
A sintered body containing at least one selected from
Also investigated the relationship between the distribution of the added subcomponent element and the magnetic loss.
As a result, these elements were segregated to a high concentration near the grain boundaries.
Has the lowest loss and is distributed over a wide range
If it is, the loss is found to be large.
【0013】さらに精度を高めて調査した結果、粒界偏
析の幅が濃度分布の半値幅として10nmを境にしてこ
の値以下では損失が大きく低減していることが明らかに
なった。As a result of further investigation with higher accuracy, it was revealed that the loss at the grain boundary segregation greatly decreased when the width of the grain boundary segregation was 10 nm as the half-value width of the concentration distribution.
【0014】[0014]
【作用】前述したように、軟磁性フェライトに求められ
る磁気特性としては、飽和磁束密度が大きいこと、キュ
リー温度が高いこと、損失が小さいことがあげられる。
飽和磁束密度、キュリー温度は基本成分であるMnO:
ZnO:Fe2 O3 の比でほぼ決まる。ZnOの量が少
ない領域においてはZnO量の増加に伴い飽和磁束密度
は増加するが、これと同時にキュリー温度も低下する。
また磁気損失が極小となる温度も基本成分比により概ね
決まる。As described above, the magnetic characteristics required for the soft magnetic ferrite are high saturation magnetic flux density, high Curie temperature, and low loss.
Saturation magnetic flux density and Curie temperature are the basic components MnO:
It is almost determined by the ratio of ZnO: Fe 2 O 3 . In the region where the amount of ZnO is small, the saturation magnetic flux density increases as the amount of ZnO increases, but at the same time, the Curie temperature also decreases.
The temperature at which the magnetic loss is minimized is also largely determined by the basic component ratio.
【0015】磁気損失が最小となる温度が室温付近にあ
る場合、電源トランスとして使用された場合に磁気損失
により磁心自体が発熱し温度上昇して損失が大きくな
り、それに伴い、発熱がさらに大きくなり、これが繰り
返されて熱暴走を起こす危険性がある。従って室温付近
の損失の温度係数が負で、トランスに組み込まれた際の
他の電子部品の温度等も考慮して80〜100℃で極小
となるように基本成分の組成を決めなければならない。
以上説明したように、飽和磁束密度、キュリー温度およ
び損失の極小温度を最適にする観点から、基本成分をM
nO:25〜40mol%、ZnO:6〜25mol%
及び残部Fe2 O3 とする。When the temperature at which the magnetic loss is the minimum is near room temperature, the magnetic core itself generates heat due to the magnetic loss when used as a power transformer, and the temperature rises to increase the loss, and accordingly the heat generation further increases. , There is a risk that this will be repeated and cause thermal runaway. Therefore, the composition of the basic components must be determined so that the temperature coefficient of loss near room temperature is negative, and the temperature is minimized at 80 to 100 ° C in consideration of the temperature of other electronic components when incorporated in a transformer.
As described above, from the viewpoint of optimizing the saturation magnetic flux density, the Curie temperature, and the minimum loss temperature, the basic component is M
nO: 25-40 mol%, ZnO: 6-25 mol%
And the balance is Fe 2 O 3 .
【0016】副成分の微量添加物は、主として焼成時に
おける結晶粒成長の促進・抑制、粒界の形成等に効果が
あり、添加物の量により焼結体の微細構造が変化し、透
磁率、保磁力ひいては磁気損失の絶対値に影響を及ぼ
す。SiO2 はCaOとともに粒界を形成し粒界の高抵
抗化に寄与する。しかしながら添加量が少ないとその寄
与は小さく、また過剰に含むと焼結時に異常粒成長を生
じせしめ損失を大幅に増大させる。CaOも添加量が少
ないとその寄与は小さく、また多すぎると損失は逆に増
大する。したがってSiO2 ならびにCaOの添加量は
それぞれSiO2 :0.002〜0.040重量%、C
aO:0.02〜0.20重量%とする。The small amount of the auxiliary component additive is effective mainly for promoting / suppressing the growth of crystal grains during firing, forming grain boundaries, etc., and the microstructure of the sintered body changes depending on the amount of the additive, and the magnetic permeability. , Coercive force and eventually the absolute value of magnetic loss are affected. SiO 2 forms a grain boundary together with CaO and contributes to increasing the resistance of the grain boundary. However, if the added amount is small, its contribution is small, and if it is contained excessively, abnormal grain growth is caused during sintering and the loss is greatly increased. If CaO is added in a small amount, its contribution is small, and if it is too large, the loss is increased. Therefore, the addition amounts of SiO 2 and CaO are SiO 2 : 0.002-0.040% by weight, C
aO: 0.02 to 0.20% by weight.
【0017】Nb2 O5 、Ta2 O5 、ZrO2 、V2
O5 はSiO2 やCaOと共に添加した場合に磁気損失
の低減に寄与する元素であり、それぞれの元素につい
て、Nb2 O5 :0.001重量%未満、Ta2 O5 :
0.001重量%未満、ZrO 2 :0.001重量%未
満、V2 O5 :0.001重量%未満のように添加量が
少ない場合はその効果が現われず、一方Nb2 O5 :
0.04重量%超、Ta2O5 :0.04重量%超、Z
rO2 :0.05重量%超、V2 O5 :0.03重量%
超のように一定の濃度範囲を越えた添加量では逆に損失
は増大する。従って、 Nb2 O5 :0.001〜0.04重量% Ta2 O5 :0.001〜0.4重量% ZrO2 :0.001〜0.05重量% V2 O5 :0.001〜0.03重量% に限定する。Nb2 OFive , Ta2 OFive , ZrO2 , V2
OFive Is SiO2 Loss when added with CaO and CaO
Is an element that contributes to the reduction of
Nb2 OFive : Less than 0.001% by weight, Ta2 OFive :
Less than 0.001% by weight, ZrO 2 : 0.001% by weight
Man, V2 OFive : Addition amount is less than 0.001% by weight
If the amount is small, the effect does not appear, while Nb2 OFive :
Over 0.04% by weight, Ta2OFive : More than 0.04% by weight, Z
rO2 : Over 0.05% by weight, V2 OFive : 0.03% by weight
On the other hand, if the addition amount exceeds a certain concentration range, such as over, loss will occur on the contrary.
Will increase. Therefore, Nb2 OFive : 0.001 to 0.04 wt% Ta2 OFive : 0.001-0.4 wt% ZrO2 : 0.001 to 0.05% by weight V2 OFive : Limited to 0.001 to 0.03% by weight.
【0018】発明者等は選ばれた基本組成並びに添加物
組成における焼成条件を変えた試料を作製し、それらの
微細構造を調べた結果、結晶粒界における添加元素の偏
析度により磁気損失が大きく異なることを見出したわけ
であるが、これらの結果は以下のように考えられる。ま
ず、結晶粒界の偏析度を高めることにより結晶粒間の絶
縁性を高めて固有抵抗を高め、その結果渦電流損を低減
する効果があげられる。この目的に対しては、結晶粒界
に絶縁層を形成して絶縁抵抗を高めるために、粒界層を
できるだけ厚くすること、および結晶粒界における副成
分元素の濃度を高めることが重要である。次に、スピネ
ルに固溶しない元素が結晶粒界に押し出されること、す
なわち結晶粒内に残存しないことにより結晶格子のひず
みを少なくし、磁壁の移動を容易にすることによりヒス
テリシス損失も低減する効果がある。The inventors made samples with different firing conditions for selected basic composition and additive composition, and examined their fine structures. As a result, the magnetic loss was large due to the degree of segregation of the additive elements at the grain boundaries. Although they found different things, these results are considered as follows. First, by increasing the degree of segregation of crystal grain boundaries, the insulating property between crystal grains is increased to increase the specific resistance, and as a result, the effect of reducing eddy current loss can be obtained. For this purpose, it is important to make the grain boundary layer as thick as possible and to increase the concentration of the accessory component element at the crystal grain boundary in order to form an insulating layer at the crystal grain boundary and increase the insulation resistance. . Next, the effect that elements that do not form a solid solution in spinel are extruded to the grain boundaries, that is, strain in the crystal lattice is reduced by not remaining in the crystal grains, and hysteresis loss is also reduced by facilitating the movement of domain walls. There is.
【0019】本発明における副成分元素、SiおよびC
a、またNb、Ta、V、Zrはすべてスピネルに固溶
しない元素とされている。したがって、これらの元素の
うちいずれかの元素が結晶粒内に残存した場合には結晶
格子にひずみを与えるため、すべての副成分元素が結晶
粒界に高濃度に偏析していることが要求される。すなわ
ち単に粒界絶縁層を形成して絶縁抵抗を高めるだけでな
く、結晶のひずみ等を考慮に入れると、全損失を考えた
場合には結晶粒界の厚み、すなわち添加元素の偏析の幅
を10nm以下にすることが損失低減に大きく寄与する
のである。ここで、さらに重要なことは、添加したすべ
ての副成分元素が半値幅10nm以下の範囲に偏析して
いることである。本発明でいう偏析の幅とは、結晶粒界
に直角に結晶粒間をわたる線分析において添加元素濃度
の半値幅、すなわち分布曲線のピーク値の半分の値を持
つ点を結んだ距離を指す。Subcomponent elements Si and C in the present invention
a, Nb, Ta, V, and Zr are all elements that do not form a solid solution with spinel. Therefore, when any one of these elements remains in the crystal grains, it strains the crystal lattice, so that it is required that all subcomponent elements are segregated at the grain boundaries at a high concentration. It That is, when not only simply forming the grain boundary insulating layer to increase the insulation resistance but also considering the strain of the crystal and the like, the thickness of the crystal grain boundary, that is, the width of the segregation of the additive element is taken into consideration when the total loss is considered. Setting the thickness to 10 nm or less greatly contributes to loss reduction. Here, what is more important is that all the added subcomponent elements are segregated within a range of a half value width of 10 nm or less. The width of segregation referred to in the present invention refers to the half-value width of the concentration of the additive element in the line analysis that extends between the crystal grains at right angles to the grain boundaries, that is, the distance connecting the points having the half value of the peak value of the distribution curve. .
【0020】また、スピネルに固溶しない元素が結晶粒
界に押し出され、結晶粒内に残存しないことにより、結
晶歪みを少なくし、高透磁率を実現させる。従って本発
明による効果は低損失のみならず高透磁率材料にも適用
できる。添加元素をできるだけ高濃度にかつ狭い領域に
偏析させるためには、原料の選択ならびに焼成条件の選
定が重要である。出発原料である基本成分の酸化鉄、酸
化マンガンあるいは酸化亜鉛、あるいはこれらに限らず
焼成により基本成分の酸化物に変わることのできる化合
物において、これらの中に含まれる不純物濃度ができる
だけ低いものを用いることが肝要である。たとえその不
純物が意図的に添加する添加物元素と同種のものでも例
外でない。もし出発原料中に不純物が多量に含まれてい
た場合には、仮焼および焼成を経た後でもこれらが結晶
粒内に残存することが多く、前に述べたような理想的な
微細構造を実現することができない。Further, an element that does not form a solid solution in the spinel is extruded to the crystal grain boundary and does not remain in the crystal grain, so that crystal strain is reduced and high magnetic permeability is realized. Therefore, the effect of the present invention can be applied not only to low loss but also to high magnetic permeability material. In order to segregate the additive element in the highest possible concentration and in a narrow region, it is important to select raw materials and firing conditions. Use iron oxide, manganese oxide, or zinc oxide, which is the basic component as the starting material, or a compound that is not limited to these and that can be converted to the oxide of the basic component by firing, and whose impurity concentration is as low as possible It is essential. Even if the impurities are of the same kind as the additive element intentionally added, there is no exception. If the starting material contains a large amount of impurities, these often remain in the crystal grains even after calcination and firing, achieving the ideal microstructure described above. Can not do it.
【0021】一方、焼成条件では特に冷却過程中の温度
制御と酸素分圧制御を厳密に調整し、焼結体の酸化度を
制御することが重要である。焼成段階では結晶粒が成長
しそれとともに粒界が形成されるが、冷却過程で結晶粒
界近傍の酸化あるいは還元反応、すなわち酸素の結晶粒
内への吸収あるいは結晶粒界からの放出が起こる。この
際に酸素の出入りとともにこれら添加元素の移動も起こ
ると考えられ、適切な酸化雰囲気を選定することによ
り、添加元素の粒界偏析をシャープにすることができ
る。On the other hand, under the firing conditions, it is important to control the oxidation degree of the sintered body by strictly adjusting the temperature control and the oxygen partial pressure control during the cooling process. In the firing step, crystal grains grow and grain boundaries are formed with it, but during the cooling process, oxidation or reduction reaction near the crystal grain boundaries, that is, absorption of oxygen into the crystal grains or release from the crystal grain boundaries occurs. At this time, it is considered that the movement of these additional elements occurs with the inflow and outflow of oxygen, and the grain boundary segregation of the additional elements can be sharpened by selecting an appropriate oxidizing atmosphere.
【0022】具体的な焼成方法としては、焼成後の冷却
過程の1100〜950℃において酸素分圧1.0%以
下の雰囲気下で20分〜5時間保持する。一定温度で保
持することにより添加元素の粒界への濃化を実現できる
と考えられる。保持時間を長く取ることにより濃化の度
合いも高くなる。一定温度で保持する場合と同等の効果
があるのは、冷却過程中1100〜800℃のある温度
範囲で冷却速度0.5〜2℃/時とする冷却をとること
である。As a specific firing method, the temperature is maintained at 1100 to 950 ° C. in the cooling process after firing for 20 minutes to 5 hours in an atmosphere having an oxygen partial pressure of 1.0% or less. It is considered that the addition element can be concentrated to the grain boundary by keeping it at a constant temperature. The longer the holding time, the higher the degree of thickening. The effect equivalent to the case of holding at a constant temperature is to perform cooling at a cooling rate of 0.5 to 2 ° C./hour in a certain temperature range of 1100 to 800 ° C. during the cooling process.
【0023】冷却条件を変えた実験の結果から、本発明
における副成分元素が結晶粒界に濃化する傾向がでるの
は1100℃以下であり、また拡散がすみやかに起こる
のは800℃以上であると考えられるので、この温度範
囲で一部あるいは全部冷却速度を0.5〜2℃/時に遅
くすることにより粒界の偏析度を高められる。From the results of the experiments under different cooling conditions, the tendency of the subcomponent element in the present invention to concentrate at the grain boundaries is 1100 ° C. or lower, and the diffusion occurs promptly at 800 ° C. or higher. Since it is considered that there is some, it is possible to increase the degree of segregation of grain boundaries by slowing the cooling rate partially or entirely at 0.5 to 2 ° C./hour in this temperature range.
【0024】[0024]
〔実施例1〕最終組成としてFe2 O3 :53.5mo
l%、MnO:34.5mol%、ZnO:12.0m
ol%となる基本成分の原料を配合した後、ボールミル
を用いて湿式混合を12時間かけて行い、その後乾燥し
た。原料の選択の際には不純物濃度がSiO2 :20p
pm以下のものを選んだ。この混合粉を大気雰囲気で9
50℃で3時間の仮焼を行った。この仮焼粉に対し、S
iO2 :0.0025重量%、CaO:0.1重量%、
Nb2 O5 :0.025重量%となるようにSiO2 、
CaOおよびNb2 O5 を添加し、再度ボールミルを用
いて湿式混合粉砕して乾燥させた。この粉末にポリビニ
ルアルコール5重量%水溶液10重量%を加えた後、3
0メッシュのふるいを通過させて造粒した。この造粒粉
を外径36mm、内径24m、高さ12mmのリングに
成形し、酸素分圧を制御した窒素・空気混合ガス中で1
300℃、3時間の焼成を行った。焼成後の冷却過程に
おいて、900〜1150℃のいずれかの温度で、雰囲
気中の酸素分圧を0.01〜1.2%に切り替え、その
条件下に10分〜5時間保持し、その後炉冷した試料を
作製した。このようにして得られた焼結体試料に巻線を
施し(1次側5巻、2次側5巻)、100kHzの周波
数で最大磁束密度200mTの条件下で、電力損失を交
流BHトレーサにより90℃で測定した。また各試料に
ついて焼結体から薄板状に切り出したものからイオンミ
リングによる観察試料を作製した。元素分布は電解放射
型透過電子顕微鏡のEDXを用いて調べた。表1に各試
料の半値幅および電力損失値を示す。また図1〜3にそ
れぞれ試料No.1、No.3、No.5の結晶粒界に
おける各副成分元素の濃度分布を示す。[Example 1] Fe 2 O 3 : 53.5mo as the final composition
1%, MnO: 34.5 mol%, ZnO: 12.0 m
After blending the raw materials of the basic components to be ol%, wet mixing was performed for 12 hours using a ball mill, and then dried. When selecting the raw material, the impurity concentration is SiO 2 : 20 p
Those below pm were selected. 9 this mixed powder in the atmosphere
Calcination was performed at 50 ° C. for 3 hours. For this calcined powder, S
iO 2: 0.0025 weight%, CaO: 0.1% by weight,
Nb 2 O 5 : SiO 2 to be 0.025 wt%,
CaO and Nb 2 O 5 were added, and the mixture was again wet mixed and ground using a ball mill and dried. After adding 5% by weight of polyvinyl alcohol and 10% by weight of an aqueous solution to this powder, 3
Granulate by passing through a 0 mesh sieve. This granulated powder was molded into a ring having an outer diameter of 36 mm, an inner diameter of 24 m, and a height of 12 mm, and 1
Baking was performed at 300 ° C. for 3 hours. In the cooling process after firing, the oxygen partial pressure in the atmosphere was switched to 0.01 to 1.2% at any temperature of 900 to 1150 ° C., and the conditions were maintained for 10 minutes to 5 hours, and then the furnace was used. A cooled sample was prepared. The sintered body sample thus obtained was wound (5 windings on the primary side and 5 windings on the secondary side), and the power loss was measured by an AC BH tracer under the condition of a maximum magnetic flux density of 200 mT at a frequency of 100 kHz. It was measured at 90 ° C. Further, an observation sample by ion milling was prepared from each sample cut out from a sintered body in a thin plate shape. The element distribution was investigated using EDX of a field emission transmission electron microscope. Table 1 shows the full width at half maximum and the power loss value of each sample. In addition, in each of FIGS. 1, No. 3, No. 5 shows the concentration distribution of each subcomponent element in the crystal grain boundary of No. 5.
【0025】表1に示した結果から明らかなように、本
願発明方法にしたがって焼成後の冷却過程の1100〜
950℃において、酸素分圧1.0%以下の雰囲気下に
20分〜5時間保持されたMn−Zn系ソフトフェライ
トは、各副成分元素の濃度分布の半値幅が10nm以下
で粒界に高濃度に偏析し、電力損失が大きく改善されて
いる。As is clear from the results shown in Table 1, 1100 to 1010 of the cooling process after firing according to the method of the present invention.
At 950 ° C., the Mn—Zn-based soft ferrite retained in an atmosphere with an oxygen partial pressure of 1.0% or less for 20 minutes to 5 hours has a half-value width of the concentration distribution of each subcomponent element of 10 nm or less and a high value at the grain boundary. It is segregated to the concentration and the power loss is greatly improved.
【0026】〔実施例2〕実施例1と同様にして作製し
た外径36mm、内径24m、高さ12mmのリング状
成形体を酸素分圧を制御した窒素・空気混合ガス中で1
300℃、3時間焼成した。焼成後の冷却過程におい
て、1100〜900℃ないし1000〜800℃にお
ける冷却速度を0.5、1.0、2.0ないし5.0℃
/時とし以後炉冷した。なお、上記温度範囲以降の雰囲
気中の酸素濃度は0.01%以下とした。このようにし
て得られた焼結体試料の電力損失および各副成分元素の
濃度分布の半値幅を実施例1と同様にして測定し、表2
に示した。Example 2 A ring-shaped compact having an outer diameter of 36 mm, an inner diameter of 24 m, and a height of 12 mm produced in the same manner as in Example 1 was placed in a mixed gas of nitrogen and air with controlled oxygen partial pressure.
It was baked at 300 ° C. for 3 hours. In the cooling process after firing, the cooling rate at 1100 to 900 ° C to 1000 to 800 ° C is 0.5, 1.0, 2.0 to 5.0 ° C.
/ Hour and cooled thereafter. The oxygen concentration in the atmosphere after the above temperature range was 0.01% or less. The power loss and the half-value width of the concentration distribution of each sub-component element of the sintered body sample thus obtained were measured in the same manner as in Example 1, and Table 2
It was shown to.
【0027】これらの結果から、本願発明にしたがって
焼成後の冷却過程の1100〜800℃において、酸素
分圧を1.0%以下とし、かつ冷却速度を0.5〜2℃
/時としたMn−Zn系ソフトフェライトは、各副成分
元素の濃度分布の半値幅が10nm以下で粒界に高濃度
に偏析し、電力損失が大きく改善される。 〔実施例3〕実施例1と同様にして作製した最終組成と
してFe2 O3 :53.5mol%、MnO:34.5
mol%、ZnO:12.0mol%となる基本成分の
仮焼粉に、表3に示すように、各種添加元素を添加し、
実施例1と同様に外径36mm、内径24m、高さ12
mmのリング状成形体を作製し、酸素分圧を制御した窒
素・空気混合ガス中で1300℃、3時間焼成した後、
1100℃において雰囲気中の酸素分圧を1.0%以下
に切り替え、1100〜900℃までの冷却速度を1.
0℃/時とし、その後炉冷した。このようにして得られ
た焼結体試料の電力損失および各副成分元素の濃度分布
の半値値を実施例1と同様にして測定し、表3に示し
た。From these results, the oxygen partial pressure is 1.0% or less and the cooling rate is 0.5 to 2 ° C. at 1100 to 800 ° C. in the cooling process after firing according to the present invention.
The Mn-Zn-based soft ferrite set to / hour segregates to a high concentration at the grain boundary when the half-value width of the concentration distribution of each sub-component element is 10 nm or less, and the power loss is greatly improved. Example 3 Example 1 Fe 2 O as the final composition was prepared in the same manner as 3: 53.5mol%, MnO: 34.5
As shown in Table 3, various additive elements were added to the calcined powder of the basic component of which mol% and ZnO: 12.0 mol%,
Similar to Example 1, outer diameter 36 mm, inner diameter 24 m, height 12
mm ring-shaped compact was prepared, and the mixture was fired in a nitrogen / air mixed gas whose oxygen partial pressure was controlled at 1300 ° C. for 3 hours.
At 1100 ° C., the oxygen partial pressure in the atmosphere was switched to 1.0% or less, and the cooling rate from 1100 to 900 ° C. was 1.
The temperature was set to 0 ° C./hour, and then the furnace was cooled. The power loss and the half value of the concentration distribution of each sub-component element of the thus obtained sintered body sample were measured in the same manner as in Example 1 and shown in Table 3.
【0028】表3の結果から、本発明の組成のMn−Z
n系ソフトフェライトは、本発明の冷却条件で冷却する
ことにより、各副成分元素の濃度分布の半値幅が10n
m以下で粒界に高濃度に偏析し、電力損失が大きく改善
されている。 〔実施例4〕実施例3に用いたリング状成形体と同一の
成分および形状を有するリング状成形体を作成し、酸素
分圧制御した窒素・空気混合ガス中で1300℃、3時
間焼成した後、1000℃において雰囲気中の酸素分圧
を0.01%に切り替え、その条件下に2時間保持し、
その後炉冷した試料を作製した。このようにして得られ
た焼結体試料の電力損失および各副成分元素の濃度分布
の半値幅を実施例1と同様にして測定、表4に示した。From the results shown in Table 3, Mn-Z having the composition of the present invention was obtained.
When the n-type soft ferrite is cooled under the cooling conditions of the present invention, the half-value width of the concentration distribution of each sub-component element is 10 n.
When it is less than m, it segregates to a high concentration in the grain boundary, and the power loss is greatly improved. [Example 4] A ring-shaped molded product having the same components and shapes as those of the ring-shaped molded product used in Example 3 was prepared and fired in a nitrogen / air mixed gas whose oxygen partial pressure was controlled at 1300 ° C for 3 hours. Then, the oxygen partial pressure in the atmosphere was switched to 0.01% at 1000 ° C., and the condition was maintained for 2 hours.
Then, a furnace-cooled sample was prepared. The power loss and the half-value width of the concentration distribution of each sub-component element of the thus obtained sintered body sample were measured in the same manner as in Example 1 and shown in Table 4.
【0029】これらの結果から、本願発明にしたがう組
成のMn−Zn系ソフトフェライトは、本願発明にした
がう冷却条件で冷却することにより、各副成分元素の濃
度分布の半値幅が10nm以下で粒界に高濃度に偏析
し、電力損失が大きく改善されている。From these results, the Mn-Zn system soft ferrite having the composition according to the present invention was cooled under the cooling conditions according to the present invention, and the half-width of the concentration distribution of each sub-component element was 10 nm or less and the grain boundary was reduced. Segregated to a high concentration and the power loss was greatly improved.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【表4】 [Table 4]
【0034】[0034]
【発明の効果】本発明によれば、副成分元素の粒界偏析
を高めることにより、スイッチング電源トランス等の磁
芯に適した、従来の材料と比較して格段と電力損失の少
ないMn−Zn系フェライトを提供することができる。According to the present invention, by increasing the grain boundary segregation of the sub-component element, Mn-Zn suitable for a magnetic core of a switching power supply transformer and having a much smaller power loss than conventional materials. A system ferrite can be provided.
【図面の簡単な説明】[Brief description of drawings]
【図1】結晶粒界における副成分元素の濃度分布を示す
グラフである。FIG. 1 is a graph showing a concentration distribution of a sub-component element at a grain boundary.
【図2】結晶粒界における副成分元素の濃度分布を示す
グラフである。FIG. 2 is a graph showing a concentration distribution of a sub-component element at a grain boundary.
【図3】結晶粒界における副成分元素の濃度分布を示す
グラフである。FIG. 3 is a graph showing a concentration distribution of a sub-component element at a grain boundary.
Claims (7)
し、その濃度分布の半値幅が10nm以下であることを
特徴とする低損失Mn−Znフェライトコア。1. A MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0.040 wt% CaO: 0.02 A low-loss Mn-Zn ferrite core containing 0.1 to 0.20% by weight of these sub-component elements segregated at grain boundaries and having a half-value width of the concentration distribution of 10 nm or less.
る請求項1記載の低損失Mn−Znフェライトコア。2. As a subcomponent, Nb 2 O 5 : 0.001 to 0.04% by weight Ta 2 O 5 : 0.001 to 0.4% by weight ZrO 2 : 0.001 to 0.05% by weight V The low loss Mn-Zn ferrite core according to claim 1, containing at least one selected from 2 O 5 : 0.001 to 0.03% by weight.
ように原料粉末を調整し、混合し、仮焼し、粉砕し、つ
いで成形したのち、焼成することを特徴とする低損失M
n−Znフェライトコアの製造方法。3. A low loss M characterized in that raw material powders are adjusted so as to be the main component and subcomponents according to claim 1, mixed, calcined, crushed, molded, and then fired.
Manufacturing method of n-Zn ferrite core.
り、焼成後の冷却過程の1100〜800℃における酸
素分圧を1.0%以下とし、かつ冷却速度を0.5〜2
℃/時とすることを特徴とする低損失Mn−Znフェラ
イトコアの製造方法。4. MnO as main components: 25~40mol% ZnO: 6~25mol% Fe 2 O 3: SiO the balance subcomponent 2: 0.002 to 0.040 wt% CaO: 0.02 to 0.20 In producing a low-loss Mn-Zn ferrite core composed of 10% by weight, the oxygen partial pressure at 1100 to 800 ° C in the cooling process after firing was 1.0% or less, and the cooling rate was 0.5 to 2
And a low loss Mn-Zn ferrite core manufacturing method.
nフェライトコアの製造に当り、焼成後の冷却過程の1
100〜800℃における酸素分圧を1.0%以下と
し、かつ冷却速度を0.5〜2℃/時とすることを特徴
とする低損失Mn−Znフェライトコアの製造方法。5. MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0.040 wt% CaO: 0.02 containing 0.20 wt%, further Nb 2 O 5 as an auxiliary component: 0.001 to 0.04 wt% Ta 2 O 5: 0.001 to 0.4 wt% ZrO 2: .001 to 0 0.05% by weight V 2 O 5 : low loss Mn-Z containing at least one selected from 0.001 to 0.03% by weight
When manufacturing n-ferrite core, one of the cooling process after firing
A method for producing a low-loss Mn-Zn ferrite core, wherein the oxygen partial pressure at 100 to 800 ° C is 1.0% or less and the cooling rate is 0.5 to 2 ° C / hour.
り、焼成後の冷却過程の1100〜950℃における酸
素分圧を1.0%以下とし、この雰囲気下に20分〜5
時間保持することを特徴とする低損失Mn−Znフェラ
イトコアの製造方法。6. MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: SiO the balance subcomponent 2: 0.002 to 0.040 wt% CaO: 0.02-0. In producing a low-loss Mn-Zn ferrite core composed of 20% by weight, the oxygen partial pressure at 1100 to 950 ° C in the cooling process after firing was set to 1.0% or less, and the atmosphere was kept under this atmosphere for 20 minutes to 5 minutes.
A method for producing a low-loss Mn-Zn ferrite core, which is characterized by holding for a time.
nフェライトコアの製造に当たり、焼成後の冷却過程の
1100〜950℃における酸素分圧を1.0%以下と
しこの雰囲気下に20分〜5時間保持することを特徴と
する低損失Mn−Znフェライトコアの製造方法。7. MnO as main components: 25~40mol% ZnO: 6~25mol% and Fe 2 O 3: wherein the remaining portion, SiO 2 as subcomponent: 0.002 to 0.040 wt% CaO: 0.02 containing 0.20 wt%, further Nb 2 O 5 as an auxiliary component: 0.001 to 0.04 wt% Ta 2 O 5: 0.001 to 0.4 wt% ZrO 2: .001 to 0 0.05% by weight V 2 O 5 : low loss Mn-Z containing at least one selected from 0.001 to 0.03% by weight
In producing the n-ferrite core, the oxygen partial pressure at 1100 to 950 ° C. in the cooling process after firing is set to 1.0% or less, and the n-ferrite core is kept in this atmosphere for 20 minutes to 5 hours. Core manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6315034A JPH08169756A (en) | 1994-12-19 | 1994-12-19 | Low loss manganese-zinc ferrite core and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6315034A JPH08169756A (en) | 1994-12-19 | 1994-12-19 | Low loss manganese-zinc ferrite core and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08169756A true JPH08169756A (en) | 1996-07-02 |
Family
ID=18060633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6315034A Pending JPH08169756A (en) | 1994-12-19 | 1994-12-19 | Low loss manganese-zinc ferrite core and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08169756A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233667A (en) * | 2000-02-22 | 2001-08-28 | Kawasaki Steel Corp | Manganese-zinc-based ferrite for power supply |
US6402979B1 (en) | 1999-08-26 | 2002-06-11 | Tdk Corporation | Magnetic ferrite material and manufacture method thereof |
EP1286366A2 (en) * | 2001-08-22 | 2003-02-26 | Minebea Co., Ltd. | Mn-Zn ferrite and coil component with magnetic core made of same |
US6627103B2 (en) | 2000-03-31 | 2003-09-30 | Tdk Corporation | Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies |
WO2004063117A1 (en) * | 2003-01-10 | 2004-07-29 | Tdk Corporation | Method for producing ferrite material and ferrite material |
CN100334035C (en) * | 2003-01-10 | 2007-08-29 | Tdk株式会社 | Ferrite material and method of manufacturing the same |
US7294284B2 (en) | 2004-01-30 | 2007-11-13 | Tdk Corporation | Method for producing Mn-Zn ferrite |
JP2010206064A (en) * | 2009-03-05 | 2010-09-16 | Tdk Corp | Radio wave absorber and method of manufacturing the same |
CN117658615A (en) * | 2023-12-12 | 2024-03-08 | 南通冠优达磁业股份有限公司 | Preparation and application of doped manganese-zinc ferrite core |
-
1994
- 1994-12-19 JP JP6315034A patent/JPH08169756A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6402979B1 (en) | 1999-08-26 | 2002-06-11 | Tdk Corporation | Magnetic ferrite material and manufacture method thereof |
JP2001233667A (en) * | 2000-02-22 | 2001-08-28 | Kawasaki Steel Corp | Manganese-zinc-based ferrite for power supply |
US6627103B2 (en) | 2000-03-31 | 2003-09-30 | Tdk Corporation | Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies |
US6991742B2 (en) | 2001-08-22 | 2006-01-31 | Minebea Co., Ltd. | Mn-Zn ferrite and coil component with magnetic core made of same |
EP1286366A3 (en) * | 2001-08-22 | 2003-10-22 | Minebea Co., Ltd. | Mn-Zn ferrite and coil component with magnetic core made of same |
EP1286366A2 (en) * | 2001-08-22 | 2003-02-26 | Minebea Co., Ltd. | Mn-Zn ferrite and coil component with magnetic core made of same |
WO2004063117A1 (en) * | 2003-01-10 | 2004-07-29 | Tdk Corporation | Method for producing ferrite material and ferrite material |
CN100334035C (en) * | 2003-01-10 | 2007-08-29 | Tdk株式会社 | Ferrite material and method of manufacturing the same |
US7481946B2 (en) | 2003-01-10 | 2009-01-27 | Tdk Corporation | Method for producing ferrite material and ferrite material |
US7294284B2 (en) | 2004-01-30 | 2007-11-13 | Tdk Corporation | Method for producing Mn-Zn ferrite |
JP2010206064A (en) * | 2009-03-05 | 2010-09-16 | Tdk Corp | Radio wave absorber and method of manufacturing the same |
CN117658615A (en) * | 2023-12-12 | 2024-03-08 | 南通冠优达磁业股份有限公司 | Preparation and application of doped manganese-zinc ferrite core |
CN117658615B (en) * | 2023-12-12 | 2024-06-11 | 南通冠优达磁业股份有限公司 | Preparation and application of doped manganese-zinc ferrite core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5332254B2 (en) | Ferrite sintered body | |
JP3968188B2 (en) | Ferrite | |
JP4523430B2 (en) | High saturation magnetic flux density Mn-Zn-Ni ferrite | |
JP3584438B2 (en) | Mn-Zn ferrite and method for producing the same | |
EP1547988A1 (en) | Ferrite material | |
JP2004217452A (en) | Ferrite material and method of manufacturing the same | |
JP5089963B2 (en) | Method for producing MnZnNi ferrite | |
JP3917216B2 (en) | Low loss ferrite core material | |
JPH08169756A (en) | Low loss manganese-zinc ferrite core and its production | |
JP3418827B2 (en) | Mn-Zn ferrite and method for producing the same | |
JPH08191011A (en) | Mn-zn-co based ferrite magnetic core material | |
JP3597673B2 (en) | Ferrite material | |
JP2004161593A (en) | Ferritic material | |
JPH06310320A (en) | Oxide magnetic substance material | |
JP2004247370A (en) | MnZn FERRITE | |
JP2000340419A (en) | Manganese zinc system ferrite core and its manufacture | |
JP3597665B2 (en) | Mn-Ni ferrite material | |
JP4303443B2 (en) | Ferrite material manufacturing method | |
JP2004247371A (en) | MnZn FERRITE | |
JP3790606B2 (en) | Mn-Co ferrite material | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
JPH07130527A (en) | Oxide magnetic material | |
JP7406022B1 (en) | MnZnCo ferrite | |
JPH10270231A (en) | Mn-ni ferrite material | |
JP3654303B2 (en) | Low loss magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |