JP2021183556A - MnZnNiCo-BASED FERRITE AND METHOD FOR PRODUCING THE SAME - Google Patents

MnZnNiCo-BASED FERRITE AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2021183556A
JP2021183556A JP2021070672A JP2021070672A JP2021183556A JP 2021183556 A JP2021183556 A JP 2021183556A JP 2021070672 A JP2021070672 A JP 2021070672A JP 2021070672 A JP2021070672 A JP 2021070672A JP 2021183556 A JP2021183556 A JP 2021183556A
Authority
JP
Japan
Prior art keywords
mnznnico
less
based ferrite
temperature
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021070672A
Other languages
Japanese (ja)
Other versions
JP7470081B2 (en
Inventor
直樹 曽我
Naoki Soga
由紀子 中村
Yukiko Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Publication of JP2021183556A publication Critical patent/JP2021183556A/en
Application granted granted Critical
Publication of JP7470081B2 publication Critical patent/JP7470081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a MnZnNiCo-based ferrite material that has a small absolute value of iron loss in a wide temperature range of a room temperature to 100°C when driving at high frequency of 500 kHz while maintaining high saturation magnetic flux density until a transformer operation temperature (approximately 80°C) in a high-density loading state, in order to downsize a power supply of an electronic component and increase the performance thereof.SOLUTION: A MnZnNiCo-based ferrite material comprises: Fe2O3, ZnO, NiO, CoO and manganese oxide as fundamental components; and SiO2, CaO and Nb2O5 of predefined amounts with respect to the fundamental components, as accessory components. In addition, an amount of Cl, Sr and Ba each is suppressed to a predefined amount or less with respect to the fundamental components, and sintering density of the MnZnNiCo-based ferrite material is defined in the range of more than 4.85 Mg/m3 and 5.00 Mg/m3 or less.SELECTED DRAWING: None

Description

本発明は、特にスイッチング電源向けのトランスの磁心に適したMnZnNiCo系フェライトおよびその製造方法に関するものである。 The present invention relates to MnZnNiCo-based ferrite particularly suitable for the magnetic core of a transformer for a switching power supply and a method for manufacturing the same.

磁性材料は、大きく分けて、酸化物系磁性材料と金属系軟磁性材料とがある。
酸化物系磁性材料は、Ba系フェライトやSr系フェライト等の硬質磁性材料と、MnZn系フェライトやNiZn系フェライト等の軟質磁性材料とに分類される。
Magnetic materials are roughly classified into oxide-based magnetic materials and metal-based soft magnetic materials.
Oxide-based magnetic materials are classified into hard magnetic materials such as Ba-based ferrite and Sr-based ferrite, and soft magnetic materials such as MnZn-based ferrite and NiZn-based ferrite.

ここで、金属系軟磁性材料は、酸化物系のものと比べて飽和磁束密度が高いという特長を有する反面、電気抵抗が小さい。そのため、高周波領域で使用する場合には、発生する渦電流に起因して鉄損が大きくなってしまうという問題がある。故に、電子機器の小型化・高密度化の要請から使用周波数の高周波化が進んでいる近年において、例えば、100kHz程度の高周波数帯域において用いられるスイッチング電源等においては、金属系軟磁性材料を用いることはほとんどない。 Here, the metal-based soft magnetic material has a feature that the saturation magnetic flux density is higher than that of the oxide-based material, but the electric resistance is small. Therefore, when used in a high frequency region, there is a problem that iron loss becomes large due to the generated eddy current. Therefore, in recent years, the frequency used has been increasing due to the demand for miniaturization and high density of electronic devices. For example, in a switching power supply used in a high frequency band of about 100 kHz, a metal-based soft magnetic material is used. There are few things.

一方、上記酸化物磁性材料のうち、軟質磁性材料は、わずかな磁場に対しても容易に磁化する材料であるため、電源や、通信機器、計測制御機器、磁気記録およびコンピュータなどの広い分野に用いられ、特に、高周波数帯域で用いられる電源用トランスの磁心材料には、鉄損が小さい軟質磁性材料のMnZn系フェライトが主に用いられてきた。 On the other hand, among the above-mentioned oxide magnetic materials, the soft magnetic material is a material that easily magnetizes even with a slight magnetic field, and therefore is widely used in a wide range of fields such as power supplies, communication equipment, measurement control equipment, magnetic recording, and computers. MnZn-based ferrite, which is a soft magnetic material with a small iron loss, has been mainly used as the magnetic core material of the power transformer used in the high frequency band.

このMnZn系フェライトには、電気抵抗率が0.01〜0.05Ω・m程度と低いため渦電流損が高いという問題があった。そのため、電気抵抗をさらに高めて渦電流損を低減し、全体として鉄損をさらに低減して発熱量を抑えた磁性材料が望まれていた。
この問題に対して、例えば、特許文献1には、MnZn系フェライトに、副成分として酸化カルシウムや酸化ケイ素などの酸化物を微量添加して粒界に偏析させ、粒界抵抗を高めて、全体としての抵抗率を数Ω・m以上と高めることにより解消する技術が開示されている。
This MnZn-based ferrite has a problem that the eddy current loss is high because the electrical resistivity is as low as about 0.01 to 0.05Ω · m. Therefore, there has been a demand for a magnetic material in which the electric resistance is further increased to reduce the eddy current loss, and the iron loss is further reduced as a whole to suppress the calorific value.
To solve this problem, for example, in Patent Document 1, a small amount of an oxide such as calcium oxide or silicon oxide is added to MnZn-based ferrite as an auxiliary component to segregate it at the grain boundaries to increase the grain boundary resistance as a whole. Disclosed is a technique for solving the problem by increasing the resistivity of calcium oxide to several Ω · m or more.

さらに、上記電源用としてのMnZn系フェライトは、特に、飽和磁束密度Bsが高いこと、キュリー温度Tcが高いこと、および磁気損失Pcvが低いことが要求されているが、これら飽和磁束密度Bsや、キュリー温度Tcは、ほぼ主成分の組成により決まることが知られている。また、MnZn系フェライトを含む酸化物フェライト化合物は、フェリ磁性を示し、磁気モーメントを有する金属原子の種類ならびにそれが占める位置により飽和磁束密度、キュリー温度が変化することが知られている。 Further, the MnZn-based ferrite for the power source is required to have a high saturation magnetic flux density Bs, a high Curie temperature Tc, and a low magnetic loss Pcv. It is known that the Curie temperature Tc is almost determined by the composition of the main component. Further, it is known that an oxide ferrite compound containing MnZn-based ferrite exhibits ferrimagnetism, and the saturation magnetic flux density and Curie temperature change depending on the type of metal atom having a magnetic moment and the position occupied by the metal atom.

また、酸化物系フェライトの飽和磁束密度は、温度の上昇と共に減少し、磁気が消失する温度であるキュリー温度でゼロとなるので、キュリー温度が高いほど、室温からトランス動作温度までの飽和磁束密度を高く維持できることが知られている。なお、飽和磁束密度に関する技術としては、例えば、特許文献2に、Fe量を増やすことにより飽和磁束密度を高めることができる旨開示されている。 In addition, the saturation magnetic flux density of oxide-based ferrite decreases with increasing temperature and becomes zero at the Curie temperature, which is the temperature at which magnetism disappears. Therefore, the higher the Curie temperature, the more the saturation magnetic flux density from room temperature to the transformer operating temperature. It is known that the temperature can be kept high. As a technique relating to the saturation magnetic flux density, for example, Patent Document 2 discloses that the saturation magnetic flux density can be increased by increasing the amount of Fe 2 O 3.

特公昭36−002283号公報Special Publication No. 36-002283 特開平11−329822号公報Japanese Unexamined Patent Publication No. 11-329822 特公平8−1844号公報Special Fair 8-1844 Gazette 特公平04−033755号公報Special Fair 04-033755 Gazette 特開2019−6668号公報Japanese Unexamined Patent Publication No. 2019-6668 特開2019−199378号公報Japanese Unexamined Patent Publication No. 2019-199378

「The Effect of Cobalt subusutitutions on some properties of manganese zinc ferrites」,A.D.Giles and F.F.Westendorp:J.Phys.D:Appl.Phys.9(1976)2117"The Effect of Cobalt substations on some properties of manganese zinc ferrites", A.I. D. Giles and F. F. Westendorp: J.M. Phys. D: Appl. Phys. 9 (1976) 2117 「Low−loss Power Ferrites for frequencies up to 500kHz」,T.G.W.Stijintjes and J.J.Roelofsma;Adv.Cer.16(1986)493"Low-loss Power Ferrites for frequencies up to 500 kHz", T.I. G. W. Stijintjes and J. J. Roelofsma; Adv. Cer. 16 (1986) 493

ところが、近年、電子機器の電源部分は、小型化の要請に応えるために、各種部品が、さらに高密度に積載される傾向にある。そして、かかる高密度な積載状態では、各種部品の発熱により、フェライトコアが使用される温度、すなわちトランスの動作温度は、80℃にも達する。 However, in recent years, in order to meet the demand for miniaturization of the power supply portion of electronic devices, various parts tend to be loaded at a higher density. In such a high-density loading state, the temperature at which the ferrite core is used, that is, the operating temperature of the transformer reaches 80 ° C. due to the heat generation of various parts.

また、それらの鉄損に関しては、小型化を実現するための駆動周波数の高周波化や様々な周囲温度での省エネルギーのため、最大磁束密度50mT、周波数500kHzで測定した、0〜100℃における鉄損が100kW/m以下で、かつ鉄損極小温度での鉄損値は75kW/m以下の性能のものが求められてきている。 Regarding those iron losses, the iron loss at 0 to 100 ° C. measured at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz is to increase the drive frequency to achieve miniaturization and to save energy at various ambient temperatures. There is a demand for a performance of 100 kW / m 3 or less and an iron loss value of 75 kW / m 3 or less at the minimum iron loss temperature.

しかしながら、上記特許文献1に記載された技術では、小型化を実現するための駆動周波数の高周波化に関しては特に言及がなされていない。 However, in the technique described in Patent Document 1, there is no particular mention of increasing the drive frequency in order to realize miniaturization.

また、上記特許文献2に記載された技術では、80℃(磁化力1200A/m)という所定の高温条件での動作に関しては特に言及がなされていない。 Further, in the technique described in Patent Document 2, no particular reference is made to the operation under a predetermined high temperature condition of 80 ° C. (magnetization force 1200 A / m).

さらに、特許文献3には、500kHzの高周波で、かつ20〜120℃の温度範囲で鉄損を低減させる技術が開示されているものの、かかる鉄損の絶対値は大きく、かつ、飽和磁束密度については特に言及がなされていない。 Further, although Patent Document 3 discloses a technique for reducing iron loss at a high frequency of 500 kHz and in a temperature range of 20 to 120 ° C., the absolute value of such iron loss is large and the saturation magnetic flux density is increased. Is not specifically mentioned.

ここで、フェライトの鉄損を支配する因子の1つに、磁気異方性定数Kがある。鉄損は、この磁気異方性定数Kの温度変化にともなって変化し、K=0となる温度で極小となる。したがって、フェライトの鉄損の温度変化を小さくするには、磁気異方性定数Kの温度依存性(鉄損温度係数)を小さくする必要がある。 Here, one of the factors governing the core loss of ferrite, and magnetic anisotropy constant K 1. The iron loss changes with the temperature change of the magnetic anisotropy constant K 1 , and becomes the minimum at the temperature where K 1 = 0. Therefore, to reduce the temperature change of the ferrite core loss, it is necessary to reduce the temperature dependence of the magnetic anisotropy constant K 1 (the core loss temperature coefficient).

磁気異方性定数Kは、主相であるフェライトのスピネル化合物を構成する元素の種類によりほぼ決定され、MnZn系フェライトの場合、Coイオンを導入することによりその温度依存性を小さくし、鉄損温度係数の絶対値を小さくすることができる(例えば、非特許文献1および2参照)。これにより、室温〜100℃付近での鉄損が小さく、かつ、その前後の温度範囲でも鉄損が比較的小さいフェライト材料を得ることが可能となる。 The magnetic anisotropy constant K 1 is almost determined by the types of elements constituting the spinel compound of ferrite, which is the main phase. In the case of MnZn-based ferrite, the temperature dependence is reduced by introducing Co ions, and iron is used. The absolute value of the temperature coefficient of loss can be reduced (see, for example, Non-Patent Documents 1 and 2). This makes it possible to obtain a ferrite material having a small iron loss in the vicinity of room temperature to 100 ° C. and a relatively small iron loss even in the temperature range before and after that.

かかる技術に関しては、例えば、特許文献4には、Fe、ZnO、MnOを主成分とし、CoOを0.01mol%以上0.5mol%未満含有するMnZnCo系フェライトは、従来以上に広い温度範囲でK=0となり、高い透磁率と低い損失が広い温度範囲で実現できることが開示されている。
また、特許文献4に記載されたフェライトでは、同文献の第1図に示されているように、コア損失の極小温度が低温度側に移行した事例が紹介されている。
Regarding such a technique, for example, in Patent Document 4, MnZnCo-based ferrite containing Fe 2 O 3 , ZnO, and MnO as main components and containing 0.01 mol% or more and less than 0.5 mol% of CoO has a wider temperature than before. It is disclosed that K 1 = 0 in the range, and high magnetic permeability and low loss can be realized in a wide temperature range.
Further, in the ferrite described in Patent Document 4, as shown in FIG. 1 of the same document, an example in which the minimum temperature of the core loss shifts to the low temperature side is introduced.

しかし、特許文献4に記載のようにCoを加えることは、含有される不純物の影響によって、焼成温度や焼成雰囲気の酸素濃度の僅かな変動に起因して、鉄損温度係数や鉄損が極小となる温度が変動するだけでなく、鉄損の絶対値が大きく劣化したりするという別の問題が生じることがある。 However, when Co is added as described in Patent Document 4, the iron loss temperature coefficient and iron loss are minimized due to slight fluctuations in the firing temperature and the oxygen concentration in the firing atmosphere due to the influence of the contained impurities. Not only does the temperature fluctuate, but another problem may arise in which the absolute value of iron loss deteriorates significantly.

したがって、上記したような従来技術(特許文献1〜4)では、100kHz程度の高周波数帯域では、概ね問題がないものの、電子部品の電源の小型化、高効率化のために必要な、高密度な積載状態のトランス動作温度まで高い飽和磁束密度を維持したまま、500kHzで高周波駆動した際に0〜100℃の広い温度範囲で、磁気の低損失を示す、と言った特性を有するフェライト材料はいずれも実現できていない。 Therefore, in the above-mentioned conventional techniques (Patent Documents 1 to 4), there is almost no problem in a high frequency band of about 100 kHz, but the high density required for miniaturization and high efficiency of the power supply of electronic components. Ferrite materials that exhibit low magnetic loss over a wide temperature range of 0 to 100 ° C when driven at high frequencies at 500 kHz while maintaining a high saturation magnetic flux density up to the transformer operating temperature in a loaded state. Neither has been realized.

これに対し、特許文献5および6に記載の発明は、これらの問題を解決することを目途としている。
しかしながら、特許文献5では、100kHz程度の駆動周波数での鉄損値は改善されるものの、500kHz程度の高周波での鉄損値は大きいという問題や、最大磁束密度50mT、周波数500kHzで測定した、0〜100℃における鉄損が100kW/m以下で、かつ鉄損極小温度での鉄損値が75kW/m以下という特性値を同時には満たせないという問題が残っていた。
また、特許文献6では、焼結密度が比較的小さいため(4.65〜4.85Mg/m3)、得られるフェライト材料の焼成時の積載位置による特性バラツキが小さいなどの不安定要素がある。
On the other hand, the inventions described in Patent Documents 5 and 6 aim to solve these problems.
However, in Patent Document 5, although the iron loss value at a drive frequency of about 100 kHz is improved, the iron loss value at a high frequency of about 500 kHz is large, and the maximum magnetic flux density is 50 mT and the frequency is 500 kHz. There remains a problem that the characteristic value that the iron loss at ~ 100 ° C. is 100 kW / m 3 or less and the iron loss value at the minimum iron loss temperature is 75 kW / m 3 or less cannot be satisfied at the same time.
Further, in Patent Document 6, since the sintering density is relatively small (4.65 to 4.85 Mg / m 3 ), there are unstable factors such as small variation in characteristics depending on the loading position of the obtained ferrite material at the time of firing. ..

本発明は、上記の現状に鑑み開発されたもので、電子部品の電源の小型化、高効率化のために、高密度な積載状態のトランス動作温度(80℃)まで高い飽和磁束密度を維持したまま、500kHzの高周波駆動した際に0〜100℃の広い温度範囲で鉄損の絶対値が小さく、かつ焼結密度が比較的大きく、フェライト材料の焼成時の積載位置による特性バラツキが小さいMnZnNiCo系フェライト材料を提供することを目的とする。 The present invention has been developed in view of the above-mentioned current situation, and maintains a high saturation magnetic flux density up to the transformer operating temperature (80 ° C.) in a high-density loaded state in order to reduce the size and efficiency of the power supply of electronic components. MnZnNiCo has a small absolute value of iron loss in a wide temperature range of 0 to 100 ° C., a relatively large sintering density, and a small variation in characteristics depending on the loading position during firing of ferrite materials when driven at a high frequency of 500 kHz. It is an object of the present invention to provide a system ferrite material.

発明者らは、従来技術が抱える上記問題点を解決するため、基本成分であるFe、ZnO、NiO、CoOおよびMnOといった成分の含有量が、飽和磁束密度や鉄損、およびそれらの温度特性に及ぼす影響について詳細に調査すると共に、添加成分である種々の金属酸化物および種々の製造条件により得られる焼結体の結晶粒界相が、飽和磁束密度や鉄損、並びにそれらの温度特性、および、焼結密度に及ぼす影響について鋭意研究を重ねた。 In order to solve the above-mentioned problems of the prior art, the inventors have set the contents of the basic components such as Fe 2 O 3 , ZnO, NiO, CoO and MnO to the saturation magnetic flux density, iron loss, and their. In addition to investigating the effects on temperature characteristics in detail, the grain boundary phase of the sintered body obtained by various metal oxides as additive components and various production conditions is determined by the saturation magnetic flux density, iron loss, and their temperatures. We have conducted extensive research on the characteristics and the effect on the sintering density.

その結果、前記問題を解決するには、MnZnNiCo系フェライトにおける上記基本成分を適性範囲に制御した上で、その範囲に応じて、添加成分である副成分の選択とその量を適正範囲に制御すること、および焼成温度を高くするとともに所定の温度までの冷却速度を一段早くして結晶粒界相を適正に制御すること、並びに、特定の元素の含有量を低減する必要があることをそれぞれ見出した。 As a result, in order to solve the above problem, the basic component in the MnZnNiCo-based ferrite is controlled within an appropriate range, and then the selection of the sub-component as an additive component and the amount thereof are controlled within an appropriate range according to the range. It was found that it is necessary to raise the firing temperature and further increase the cooling rate to a predetermined temperature to properly control the grain boundary phase, and to reduce the content of specific elements. rice field.

特に、フェライト原料である酸化鉄として、Cl含有量が 500mass ppm以下の酸化鉄を用いると共に、最終焼結体中のCl含有量を80mass ppm以下に抑制することが、本発明の効果の発現に極めて有効であることを見出し、本発明を完成させた。また、かかる効果の発現には、Srの含有量を10.0mass ppm以下とし、さらにBaの含有量を10.0mass ppm以下とする必要があることも併せて見出した。 In particular, it is necessary to use iron oxide having a Cl content of 500 mass ppm or less as the iron oxide as a ferrite raw material and to suppress the Cl content in the final sintered body to 80 mass ppm or less in order to realize the effect of the present invention. We have found it extremely effective and have completed the present invention. It was also found that the Sr content should be 10.0 mass ppm or less and the Ba content should be 10.0 mass ppm or less in order to achieve such an effect.

本発明は、上記の知見に基づき、さらに検討を加えて完成されたもので、本発明の要旨構成は次のとおりである。
1.基本成分、副成分および不可避的不純物からなるMnZnNiCo系フェライトにおいて、前記基本成分を、Fe:53.00〜57.00mol%、ZnO:4.00〜11.00mol%、NiO:0.50〜4.00mol%およびCoO:0.10〜0.50mol%残部はMnOとし、前記副成分を、前記基本成分に対し、SiO:50〜500mass ppm、CaO:200〜2000mass ppmおよびNb:50〜500mass ppmとし、さらに、前記不可避的不純物におけるCl、SrおよびBaをそれぞれ、前記基本成分に対しCl:80mass ppm以下、Sr:10.0mass ppm以下およびBa:10.0mass ppm以下に抑制して含み、焼結密度が4.85Mg/m超、5.00Mg/m以下であって、80℃における磁化力1200A/mでの飽和磁束密度が400mT以上であり、かつ最大磁束密度が50mTで、周波数が500kHzのときの、0〜100℃における鉄損が100kW/m以下であって鉄損極小温度での鉄損が75kW/m以下であることを特徴とするMnZnNiCo系フェライト。
The present invention has been completed with further studies based on the above findings, and the gist structure of the present invention is as follows.
1. 1. Basic components, in MnZnNiCo ferrite consisting subcomponent and unavoidable impurities, the basic component, Fe 2 O 3: 53.00~57.00mol% , ZnO: 4.00~11.00mol%, NiO: 0. 50 to 4.00 mol% and CoO: 0.10 to 0.50 mol% The balance is MnO, and the sub-components are SiO 2 : 50 to 500 mass ppm, CaO: 200 to 2000 mass ppm and Nb 2 with respect to the basic component. O 5 : 50 to 500 mass ppm, and Cl, Sr and Ba in the unavoidable impurities are Cl: 80 mass ppm or less, Sr: 10.0 mass ppm or less and Ba: 10.0 mass ppm or less, respectively, with respect to the basic component. The sintering density is more than 4.85 Mg / m 3 and 5.00 Mg / m 3 or less, and the saturation magnetic flux density at a magnetization force of 1200 A / m at 80 ° C. is 400 mT or more and the maximum. When the magnetic flux density is 50 mT and the frequency is 500 kHz, the iron loss at 0 to 100 ° C. is 100 kW / m 3 or less, and the iron loss at the minimum iron loss temperature is 75 kW / m 3 or less. MnZnNiCo-based ferrite.

2.前記1に記載のMnZnNiCo系フェライトを製造する方法であって、基本成分となるFe、Zn、Ni、CoおよびMn原料を、混合し、仮焼して、粉砕した後、さらに副成分となるSi、CaおよびNb原料を混合して、粉砕し、次いで、成形し、焼成後、冷却する工程を有し、前記Fe原料を酸化鉄とし、該酸化鉄中のCl含有量を500mass ppm以下として、前記焼成の最高温度を1250℃超とし、さらに該最高温度から1100℃までの間を150℃/h以上の速度で冷却することを特徴とするMnZnNiCo系フェライトの製造方法。 2. 2. The method for producing an MnZnNiCo-based ferrite according to 1 above, wherein Fe, Zn, Ni, Co and Mn raw materials as basic components are mixed, calcined, pulverized, and then Si as a sub-component. , Ca and Nb raw materials are mixed, crushed, then molded, fired, and then cooled. The Fe raw material is iron oxide, and the Cl content in the iron oxide is 500 mass ppm or less. A method for producing a MnZnNiCo-based ferrite, which comprises setting the maximum firing temperature to more than 1250 ° C. and further cooling the temperature between the maximum temperature and 1100 ° C. at a rate of 150 ° C./h or higher.

3.前記最高温度から1100℃までの間を150〜350℃/hの速度で冷却することを特徴とする前記2に記載のMnZnNiCo系フェライトの製造方法。 3. 3. 2. The method for producing MnZnNiCo-based ferrite according to 2 above, which comprises cooling from the maximum temperature to 1100 ° C. at a rate of 150 to 350 ° C./h.

4.前記最高温度を1250℃超、1350℃以下とすることを特徴とする前記2または3に記載のMnZnNiCo系フェライトの製造方法。 4. The method for producing MnZnNiCo-based ferrite according to 2 or 3 above, wherein the maximum temperature is more than 1250 ° C and 1350 ° C or less.

本発明によれば、高密度な積載状態のトランス動作温度(80℃)に達するまで高い飽和磁束密度を維持したまま、500kHzの高周波駆動をした場合に、広い温度範囲で磁気損失が小さく、かつ焼結密度が大きく、フェライト材料の焼成時の積載位置による特性バラツキが小さいMnZnNiCo系フェライトを提供することができる。
また、本発明は、高周波での磁気特性が優れているので、特に、電源トランスを小型化し、低鉄損化することができる。
According to the present invention, when a high frequency drive of 500 kHz is performed while maintaining a high saturation magnetic flux density until the transformer operating temperature (80 ° C.) in a high-density loaded state is reached, the magnetic loss is small in a wide temperature range and the magnetic loss is small. It is possible to provide MnZnNiCo-based ferrite having a high sintering density and a small variation in characteristics depending on the loading position at the time of firing the ferrite material.
Further, since the present invention has excellent magnetic characteristics at high frequencies, it is possible to reduce the size of the power transformer and reduce the iron loss.

以下、本発明を具体的に説明する。
本発明のMnZnNiCo系フェライトは、高周波駆動の際の鉄損を低減しさらにかかる鉄損の温度特性を最適化する観点から、Fe、ZnO、NiOおよびCoOを以下の適正量とし、残部がMnOからなる基本成分を有していることが肝要である。
Hereinafter, the present invention will be specifically described.
MnZnNiCo ferrite of the present invention, from the viewpoint of optimizing the temperature characteristics of reduced further according iron loss and iron loss during high frequency driving, Fe 2 O 3, ZnO, and following proper amount of NiO and CoO, the balance It is important that has a basic component consisting of MnO.

まず、本発明のMnZnNiCo系フェライトの基本成分について具体的に説明する。
Fe:基本成分中53.00〜57.00mol%
Feは、80℃磁化力1200A/mの飽和磁束密度を400mT以上とするために、基本成分中のmol比率で53.00mol%以上とする必要がある。一方、Feは、基本成分中のmol比率で57.00mol%を超えると、鉄損が大きくなり過ぎる。そのため、上限を57.00mol%とする。好ましくは、53.00mol%以上57.00mol%未満、より好ましくは54.50〜56.95mol%の範囲である。
First, the basic components of the MnZnNiCo-based ferrite of the present invention will be specifically described.
Fe 2 O 3 : 53.00 to 57.00 mol% in the basic components
Fe 2 O 3 needs to have a mol ratio of 53.00 mol% or more in the basic component in order to have a saturation magnetic flux density of 1200 A / m at 80 ° C. of 400 mT or more. On the other hand, when Fe 2 O 3 exceeds 57.00 mol% in mol ratio in the basic component, the iron loss becomes too large. Therefore, the upper limit is set to 57.00 mol%. It is preferably in the range of 53.00 mol% or more and less than 57.00 mol%, more preferably 54.50 to 56.95 mol%.

ZnO:基本成分中4.00〜11.00mol%
ZnOは、鉄損を小さくし、かつ、最大磁束密度が50mTで周波数が500kHzにおいて、0〜100℃での幅広い温度範囲の損失を小さく維持するために、その添加量を基本成分中のmol比率で4.00〜11.00mol%の範囲とする必要がある。好ましくは5.50〜8.50mol%、さらに好ましくは、6.00〜8.00mol%の範囲である。
ZnO: 4.00-11.00 mol% of the basic components
ZnO is added in a mol ratio in the basic component in order to reduce iron loss and maintain a small loss in a wide temperature range from 0 to 100 ° C. at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz. It should be in the range of 4.00 to 11.00 mol%. It is preferably in the range of 5.50 to 8.50 mol%, more preferably 6.0 to 8.00 mol%.

NiO:基本成分中0.50〜4.00mol%
NiOは、80℃磁化力1200A/mの飽和磁束密度を400mT以上とし、かつ、鉄損を小さくし、さらに、最大磁束密度が50mTで周波数が500kHzおいて、0〜100℃での幅広い温度範囲の損失を小さく維持するために、その添加量を基本成分中のmol比率で0.50〜4.00mol%の範囲とする必要がある。好ましくは、1.50〜3.50mol%の範囲であり、さらに好ましくは1.00〜3.00mol%の範囲である。加えて、より好ましくは1.45〜3.00mol%の範囲であり、最も好ましくは1.50〜3.00mol%の範囲である。
NiO: 0.50 to 4.00 mol% of the basic ingredients
NiO has a saturation magnetic flux density of 1200 A / m at 80 ° C. and a saturation magnetic flux density of 400 mT or more, reduces iron loss, and has a maximum magnetic flux density of 50 mT and a frequency of 500 kHz, and has a wide temperature range from 0 to 100 ° C. In order to keep the loss small, it is necessary to add the amount in the range of 0.50 to 4.00 mol% in terms of the mol ratio in the basic component. It is preferably in the range of 1.50 to 3.50 mol%, and more preferably in the range of 1.00 to 3.00 mol%. In addition, it is more preferably in the range of 1.45 to 3.00 mol%, and most preferably in the range of 1.50 to 3.00 mol%.

CoO:基本成分中0.10〜0.50mol%
CoOは、特公昭52−4753号公報に記載されたように、透磁率の温度係数を小さくする働きもある。しかしながら、CoOを過剰に含む場合、鉄損の温度係数が室温以上で正となって熱暴走を起すだけでなく、経時変化が大きくなって望ましくない。よって、CoOは、基本成分中のmol比率で0.50mol%を上限とする。一方、CoOは、添加量が少ないと温度係数の改善効果が小さくなって、鉄損値の改善が望めない。よって、CoOは、基本成分中のmol比率で0.10mol%を下限とする。
CoO: 0.10 to 0.50 mol% in the basic ingredients
CoO also has a function of reducing the temperature coefficient of magnetic permeability, as described in Japanese Patent Publication No. 52-4753. However, when CoO is excessively contained, not only the temperature coefficient of iron loss becomes positive at room temperature or higher and thermal runaway occurs, but also the change with time becomes large, which is not desirable. Therefore, the upper limit of CoO is 0.50 mol% in terms of the mol ratio in the basic component. On the other hand, when the amount of CoO added is small, the effect of improving the temperature coefficient becomes small, and improvement of the iron loss value cannot be expected. Therefore, the lower limit of CoO is 0.10 mol% as the mol ratio in the basic component.

本発明のフェライトは、MnZnNiCo系フェライトであり、上記Fe、ZnO、NiOおよびCoO以外の基本成分の残部は、マンガン酸化物(MnO)である。MnOの好ましい範囲は基本成分中のmol比率で31.50〜40.00mol%であり、さらに好ましくは31.80〜39.80mol%である。加えて、最も好ましくは31.80〜37.40mol%である。 Ferrite of the present invention is a MnZnNiCo ferrite, the Fe 2 O 3, ZnO, basic components other than the NiO and CoO balance being manganese oxide (MnO). The preferable range of MnO is 31.50 to 40.00 mol% in mol ratio in the basic component, and more preferably 31.80 to 39.80 mol%. In addition, it is most preferably 31.80 to 37.40 mol%.

以上、本発明のMnZnNiCo系フェライトの基本成分について説明したが、本発明の、MnZnNiCo系フェライトは、上記基本成分のほかに、以下の添加成分を副成分として含有する必要がある。すなわち、本発明のフェライトの基本成分であるFe、ZnO、MnO、NiOおよびCoOは、スピネル構造を形成するものであるが、これに、スピネルを形成しないSiO、CaOおよびNb等の副成分を複合添加して、より鉄損の小さい高性能のMnZnNiCo系フェライトとすることができる。なお、スピネルを形成しないTa、ZrOおよびV等の成分をさらに微量添加してもよい。 The basic components of the MnZnNiCo-based ferrite of the present invention have been described above, but the MnZnNiCo-based ferrite of the present invention needs to contain the following additive components as subcomponents in addition to the above basic components. That is, Fe 2 O 3 , ZnO, MnO, NiO and CoO, which are the basic components of the ferrite of the present invention, form a spinel structure, but SiO 2 , CaO and Nb 2 O which do not form a spinel are formed therein. A high-performance MnZnNiCo-based ferrite having a smaller iron loss can be obtained by compound-adding an auxiliary component such as 5. In addition, components such as Ta 2 O 5 , ZrO 2 and V 2 O 5 that do not form spinel may be further added in a small amount.

SiO:前記基本成分に対して50〜500mass ppm
SiOは、CaOと共に粒界に高抵抗相を形成して、鉄損の低減に寄与する。しかし、添加量が50mass ppm未満ではその添加効果は小さい。一方、500mass ppmを超えて含有すると、焼結時に異常粒成長を起こして鉄損を大幅に増大させる。したがって、SiOは、前記基本成分に対して50〜500mass ppmの範囲で添加する必要がある。なお、焼結体組織中の異常粒の発生をより厳密に管理するには50〜300mass ppmの範囲が好ましい。さらに、70〜300mass ppmの範囲がより好ましい。
SiO 2 : 50 to 500 mass ppm with respect to the basic component
SiO 2 forms a high resistance phase at the grain boundaries together with CaO, and contributes to the reduction of iron loss. However, if the addition amount is less than 50 mass ppm, the addition effect is small. On the other hand, if it is contained in excess of 500 mass ppm, abnormal grain growth occurs during sintering and iron loss is significantly increased. Therefore, SiO 2 needs to be added in the range of 50 to 500 mass ppm with respect to the basic component. The range of 50 to 300 mass ppm is preferable in order to more strictly control the generation of abnormal particles in the sintered body structure. Further, the range of 70 to 300 mass ppm is more preferable.

CaO:前記基本成分に対して200〜2000mass ppm
CaOは、SiOと共存した場合、粒界抵抗を高めて低鉄損化に寄与するが、添加量が200mass ppm未満では、その効果は小さい。一方、2000mass ppmより多くなると、鉄損は逆に増大する。したがって、CaOは、前記基本成分に対して200〜2000mass ppmの範囲で添加する必要がある。より低鉄損なフェライトを得るためには、CaOは、200〜1500mass ppmの範囲が好ましい。さらに、400〜1500mass ppmの範囲がより好ましい。
CaO: 200-2000 mass ppm for the basic component
When CaO coexists with SiO 2, it increases the grain boundary resistance and contributes to lower iron loss, but when the addition amount is less than 200 mass ppm, the effect is small. On the other hand, when it becomes more than 2000 mass ppm, the iron loss increases conversely. Therefore, CaO needs to be added in the range of 200 to 2000 mass ppm with respect to the basic component. In order to obtain a ferrite having a lower iron loss, CaO is preferably in the range of 200 to 1500 mass ppm. Further, the range of 400 to 1500 mass ppm is more preferable.

Nb:前記基本成分に対して50〜500mass ppm
Nbは、SiOおよびCaOの共存下で、比抵抗の増大に有効に寄与するが、含有量が50mass ppmに満たないと、その添加効果に乏しい。一方、500mass ppmを超えると、鉄損の増大を招くことになる。したがって、Nbは、前記基本成分に対して50〜500mass ppmの範囲で添加する必要がある。より低鉄損なフェライトを得るためには、Nbは、50〜350mass ppmの範囲が好ましく、50〜300mass ppmの範囲がより好ましい。さらに、60〜270mass ppmの範囲が最も好ましい。
Nb 2 O 5 : 50 to 500 mass ppm for the basic component
Nb 2 O 5 effectively contributes to an increase in resistivity in the coexistence of SiO 2 and CaO, but its addition effect is poor when the content is less than 50 mass ppm. On the other hand, if it exceeds 500 mass ppm, the iron loss will increase. Therefore, Nb 2 O 5 needs to be added in the range of 50 to 500 mass ppm with respect to the basic component. In order to obtain a ferrite having a lower iron loss, Nb 2 O 5 is preferably in the range of 50 to 350 mass ppm, more preferably in the range of 50 to 300 mass ppm. Further, the range of 60 to 270 mass ppm is most preferable.

また、本発明におけるフェライトの焼結密度は、4.85Mg/m超、5.00Mg/m以下の範囲とする。4.85Mg/m以下の場合、所定の強度が保持できないことと、焼成時の積載位置による特性バラツキが大きくなる場合が発生する。一方、5.00Mg/mを超えると、高周波駆動の際の鉄損が大きくなってしまうからである。より低鉄損で高強度のフェライトを得るためには、焼結密度を4.85Mg/m超、4.95Mg/m以下の範囲とする。好ましくは4.86〜4.95Mg/mの範囲である。 The sintered density of the ferrite in the present invention, 4.85Mg / m 3 greater than the 5.00 mg / m 3 or less. If it is 4.85 Mg / m 3 or less, the predetermined strength may not be maintained and the characteristics may vary greatly depending on the loading position at the time of firing. On the other hand, if it exceeds 5.00 Mg / m 3 , the iron loss during high frequency driving becomes large. To obtain a high strength ferrite at lower core loss, the sintered density 4.85Mg / m 3 greater than the 4.95 mg / m 3 or less. It is preferably in the range of 4.86 to 4.95 Mg / m 3.

なお、本発明におけるMnZnNiCo系フェライトは、前記基本成分、前記副成分および以下の不可避的不純物からなっている。
すなわち、本発明におけるMnZnNiCo系フェライトの前記基本成分および副成分以外の成分は、不可避的不純物である。この不可避的不純物は、Cl、Sr、Ba、PおよびB等が例示される。そして、以下に記載するように、Cl、SrおよびBaは、特に、所定量以下に抑制される必要がある成分である。なお、不可避的不純物の含有量は少なければ少ないほどよく、0mass %であることは好ましいが、本発明では0.01mass %以下程度まで許容される。
The MnZnNiCo-based ferrite in the present invention comprises the basic component, the sub-component, and the following unavoidable impurities.
That is, the components other than the basic component and the sub-component of the MnZnNiCo-based ferrite in the present invention are unavoidable impurities. Examples of this unavoidable impurity include Cl, Sr, Ba, P and B. And, as described below, Cl, Sr and Ba are components that need to be suppressed to a predetermined amount or less in particular. The smaller the content of unavoidable impurities, the better, and it is preferable that the content is 0 mass%, but in the present invention, it is allowed to be about 0.01 mass% or less.

Cl:80mass ppm以下
焼結体組織中の異常粒の発生や、結晶粒の粒度分布ばらつきなどを抑制し、焼結体コアの密度低下による飽和磁束密度の低下を抑制するには、原料酸化鉄中のClを500mass ppm以下に低減すると共に、焼成後の最終焼結体、すなわち、MnZnNiCo系フェライト中に残存するCl量を80mass ppm以下に抑制する必要がある。好ましくは75mass ppm以下である。
なお、原料酸化鉄中に含まれるClは、上記焼成中に揮発させることで上記範囲とすることができるが、高純度の酸化鉄を選択すると、上記揮発させる条件が不要なので、焼成時間が短くても上記成分組成範囲とすることができる。
Cl: 80 mass ppm or less To suppress the generation of abnormal grains in the sintered structure and the variation in particle size distribution of crystal grains, and to suppress the decrease in saturation magnetic flux density due to the decrease in the density of the sintered core, iron oxide as a raw material It is necessary to reduce the amount of Cl in the sinter to 500 mass ppm or less, and to suppress the amount of Cl remaining in the final sintered body after firing, that is, the MnZnNiCo-based ferrite to 80 mass ppm or less. It is preferably 75 mass ppm or less.
The Cl contained in the raw material iron oxide can be in the above range by volatilizing it during the firing, but if high-purity iron oxide is selected, the firing time is short because the conditions for volatilization are unnecessary. However, it can be within the above component composition range.

Sr:10.0mass ppm以下、Ba:10.0mass ppm以下
前述したように、本発明のMnZnNiCo系フェライトは、基本成分であるFe、ZnO、MnO、NiOおよびCoOの組成を前記範囲にそれぞれ制御することに加えて、副成分としてSiO、CaOおよびNbOを、適正量、複合添加することが必要である。また、0〜100℃の温度域で、低鉄損を安定して実現するには、Clに加えて微量成分として含有されるSrおよびBaの含有量を上記のとおりに制限することが必要である。
Sr: 10.0mass ppm or less, Ba: 10.0mass ppm or less As described above, the MnZnNiCo-based ferrite of the present invention has the composition of the basic components Fe 2 O 3 , ZnO, MnO, NiO and CoO in the above range. In addition to controlling each, it is necessary to add SiO 2 , CaO and Nb 2 O as auxiliary components in appropriate amounts in a complex manner. Further, in order to stably realize low iron loss in the temperature range of 0 to 100 ° C., it is necessary to limit the contents of Sr and Ba contained as trace components in addition to Cl as described above. be.

ここで、SrやBaは、スピネル構造を取らず、六方晶系フェライト、いわゆるハードフェライトを形成するときに用いられる元素である。これらSrやBaが、最終焼結体であるMnZnNiCo系フェライトの磁気特性、特に0〜100℃の温度域での鉄損や透磁率に影響を及ぼす機構については、まだ明確に解明されたわけではないが、発明者らは以下のように考えている。
すなわち、本発明のMnZnNiCo系フェライトのように磁気異方性に大きな影響を及ぼすCoが含有されている場合には、これらSrやBaが、Coとの間に相互作用を生じることで鉄損値が低減しにくくなるためと考えられる。
Here, Sr and Ba are elements that do not have a spinel structure and are used when forming hexagonal ferrite, so-called hard ferrite. The mechanism by which these Sr and Ba affect the magnetic properties of the MnZnNiCo-based ferrite, which is the final sintered body, especially the iron loss and magnetic permeability in the temperature range of 0 to 100 ° C. has not been clarified yet. However, the inventors think as follows.
That is, when Co that has a great influence on magnetic anisotropy is contained like MnZnNiCo-based ferrite of the present invention, these Sr and Ba interact with Co to cause an iron loss value. It is thought that this is because it becomes difficult to reduce.

本発明のように、0〜100℃の広い温度域で低鉄損を実現するために、SrおよびBaの含有量は、それぞれ10.0mass ppm以下とする必要がある。SrおよびBaは、いずれも10.0mass ppmを超えて含有されていると、所定の低鉄損値が得られないからである。よって、SrおよびBaの含有量はそれぞれ10.0mass ppm以下の範囲に抑制する。さらに低鉄損を実現するには、SrおよびBaの含有量はそれぞれ7.0mass ppm以下の範囲に抑えるのが好ましい。 As in the present invention, in order to realize low iron loss in a wide temperature range of 0 to 100 ° C., the contents of Sr and Ba need to be 10.0 mass ppm or less, respectively. This is because if both Sr and Ba are contained in excess of 10.0 mass ppm, a predetermined low iron loss value cannot be obtained. Therefore, the contents of Sr and Ba are suppressed to the range of 10.0 mass ppm or less, respectively. Further, in order to realize low iron loss, it is preferable to keep the Sr and Ba contents in the range of 7.0 mass ppm or less, respectively.

なお、SrおよびBaについては、主成分の原料である酸化鉄(Fe)、酸化亜鉛(ZnO)、および酸化マンガン(MnO)に含まれることがある。そのため、SrおよびBaの含有量の異なる種々の酸化鉄、酸化亜鉛および酸化マンガン原料を、その使用量を調整することで、SrおよびBaの含有量を調整することもできる。 Note that the Sr and Ba, iron oxide (Fe 2 O 3) as a raw material for the main component, zinc oxide (ZnO), and may be included in the manganese oxide (MnO). Therefore, the contents of Sr and Ba can be adjusted by adjusting the amounts of various iron oxide, zinc oxide and manganese oxide raw materials having different contents of Sr and Ba.

次に、本発明におけるMnZnNiCo系フェライトの製造方法について、説明する。
本発明のMnZnNiCo系フェライトは、まず、Fe、ZnO、MnO、NiOおよびCoOの粉末原料を、本発明に規定する所定比率となるように秤量し、これらを十分に混合して仮焼し、粉砕して仮焼粉を得る。
その際、Fe原料である酸化鉄(Fe)中のCl含有量を500mass ppm以下に抑制することが肝要である。そのためには、たとえば塩化鉄の焙焼法で得られた酸化鉄を洗浄するなどの方法で調整する。なお、フェライト用酸化鉄中のCl含有量は、JIS K1462(1981年)で0.15%(=1500ppm)以下とされているが、本発明では、前述のとおり、焼結体コアの密度低下による飽和磁束密度の低下を抑制するため、さらに低減する必要がある。
Next, a method for producing MnZnNiCo-based ferrite in the present invention will be described.
MnZnNiCo ferrite of the present invention, first, Fe 2 O 3, ZnO, MnO, a powder raw material of NiO and CoO, were weighed to make a predetermined ratio specified in the present invention, calcining a mixture of these well And crush to obtain ferric powder.
At that time, it is important to suppress the Cl content in iron oxide (Fe 2 O 3 ), which is a Fe raw material, to 500 mass ppm or less. For that purpose, for example, the iron oxide obtained by the iron chloride roasting method is washed. The Cl content in iron oxide for ferrite is 0.15% (= 1500 ppm) or less in JIS K1462 (1981), but in the present invention, as described above, the density of the sintered core is reduced. In order to suppress the decrease in saturation magnetic flux density due to the above, it is necessary to further reduce it.

次いで、上記仮焼粉に、前述した副成分を、本発明に規定する所定の比率となるように加えて混合し、さらに粉砕する。この粉砕作業においては、添加した成分の濃度に偏りがないよう、充分に均質化する必要がある。その後、粉砕した仮焼粉の粉末に、ポリビニルアルコール等の有機物バインダーを添加して、造粒し、さらに圧力を加えて所定の形状に成形し、次いで、焼成して焼結体(製品)とする。 Next, the above-mentioned sub-ingredients are added to the temporary baking powder so as to have a predetermined ratio specified in the present invention, mixed, and further pulverized. In this pulverization work, it is necessary to sufficiently homogenize so that the concentration of the added component is not biased. After that, an organic binder such as polyvinyl alcohol is added to the crushed calcined powder, granulated, and further pressure is applied to form a predetermined shape, which is then fired to form a sintered body (product). do.

ここで、前記焼成の条件は、最高温度から1100℃までのすべての温度域での冷却速度を150℃/h以上とする冷却工程を含む条件とすることが肝要である。かかる冷却工程を含む条件とすることで、本発明のフェライトの焼結密度と所望の粒界相の形成との両立が得られるからである。一方、かかる冷却速度の上限は、特に限定されないが、冷却能力増強にかかるコスト等の観点から350℃/h程度が好ましい。なお、かかる冷却速度は、160〜350℃/hがより好ましく、185〜350℃/hがさらに好ましく、200〜340℃/hが最も好ましい。また、上記冷却速度の揺らぎは、前記本発明の構成要件を満足するMnZnNiCo系フェライトが得られる程度であれば許容される。
さらに、上記粒界相は、微量成分として添加したSiO、Ca、Nbなどの成分が、薄く、高濃度かつ均一に析出して形成されるものであって、焼成時の冷却速度を制御することで、所望の酸化状態を得ることができ、絶縁性を向上できるものになる。そして、本発明の効果が得られる上記粒界相は、本発明の上記組成および上記冷却工程を含む焼成条件を用いることで効果的に得られるものである。
Here, it is important that the firing conditions include a cooling step in which the cooling rate in all temperature ranges from the maximum temperature to 1100 ° C. is 150 ° C./h or more. This is because the conditions including such a cooling step can achieve both the sintering density of the ferrite of the present invention and the formation of a desired grain boundary phase. On the other hand, the upper limit of the cooling rate is not particularly limited, but is preferably about 350 ° C./h from the viewpoint of the cost for increasing the cooling capacity. The cooling rate is more preferably 160 to 350 ° C./h, further preferably 185 to 350 ° C./h, and most preferably 200 to 340 ° C./h. Further, the fluctuation of the cooling rate is permissible as long as MnZnNiCo-based ferrite satisfying the constituent requirements of the present invention can be obtained.
Further, the grain boundary phase is formed by uniformly precipitating components such as SiO 2 , Ca, and Nb 2 O 5 added as trace components in a thin, high concentration, and uniformly, and the cooling rate at the time of firing. By controlling the above, a desired oxidation state can be obtained and the insulating property can be improved. The grain boundary phase from which the effect of the present invention can be obtained can be effectively obtained by using the composition of the present invention and the firing conditions including the cooling step.

前記焼成のその他の条件は、前記したフェライトの焼結密度と粒界相が得られれば、特に限定はされないが、最高温度は1250℃超とすることが肝要である。1250℃以下では、所望の焼結密度が得られないからである。一方、最高温度の上限は特に限定しないが、加熱によるコスト等の観点から1350℃以下が好ましい。なお、かかる最高温度は1260〜1350℃の範囲がより好ましく、1260〜1340℃が最も好ましい。
また、最高温度の保持時間を1〜8時間の範囲、最高温度での酸素濃度を1〜10vol%の範囲とすることが好ましい。前記したフェライトの焼結密度と粒界相が効果的に得られるからである。なお、前記焼成の本明細に記載のないその他の条件は常法に従えば良い。
The other conditions of the firing are not particularly limited as long as the above-mentioned ferrite sintering density and grain boundary phase can be obtained, but it is important that the maximum temperature is more than 1250 ° C. This is because the desired sintering density cannot be obtained at 1250 ° C. or lower. On the other hand, the upper limit of the maximum temperature is not particularly limited, but is preferably 1350 ° C. or lower from the viewpoint of cost due to heating and the like. The maximum temperature is more preferably in the range of 1260 to 1350 ° C, most preferably 1260 to 1340 ° C.
Further, it is preferable that the maximum temperature holding time is in the range of 1 to 8 hours and the oxygen concentration at the maximum temperature is in the range of 1 to 10 vol%. This is because the above-mentioned ferrite sintering density and grain boundary phase can be effectively obtained. Other conditions not described in the present specification for the firing may be in accordance with a conventional method.

かくして得られたMnZnNiCo系フェライトは、前記粒界相を有しているため、高焼結密度を維持したまま、高周波での鉄損に大きな影響を与える渦電流損失が小さくなり、従来のMnZn系フェライトではその実現が極めて困難であった、80℃における磁化力1200A/mでの飽和磁束密度が400mT以上、好ましくは425mT以上で、かつ最大磁束密度50mT、周波数500kHzで測定した0〜100℃における鉄損が100kW/m以下で、さらには最大磁束密度50mT、周波数500kHzで測定した鉄損が最小となる温度(本発明において鉄損極小温度ともいう)での鉄損が75kW/m以下の特性値を有し、高密度な積載状態のトランス動作温度(80℃)まで高い飽和磁束密度を維持したまま、500kHzで高周波駆動する場合であっても、広い温度範囲で磁気損失が小さく、かつ、強度が大きく、焼成時の積載位置による特性バラツキが小さな、本発明のMnZnNiCo系フェライトとなる。 Since the MnZnNiCo-based ferrite thus obtained has the grain boundary phase, the eddy current loss that greatly affects the iron loss at high frequencies is reduced while maintaining the high sintering density, and the conventional MnZn-based ferrite is used. It was extremely difficult to realize this with ferrite, and the saturation magnetic flux density at a magnetization force of 1200 A / m at 80 ° C. was 400 mT or more, preferably 425 mT or more, and the maximum magnetic flux density was 50 mT and the frequency was measured at 0 to 100 ° C. The iron loss is 100 kW / m 3 or less, and the iron loss at the temperature at which the iron loss is minimized (also referred to as the iron loss minimum temperature in the present invention) measured at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz is 75 kW / m 3 or less. Even when driving at a high frequency of 500 kHz while maintaining a high saturation magnetic flux density up to the transformer operating temperature (80 ° C) in a high-density loaded state, the magnetic loss is small over a wide temperature range. In addition, the MnZnNiCo-based ferrite of the present invention has high strength and small variation in characteristics depending on the loading position during firing.

その他の、MnZnNiCo系フェライト粉を製造する工程および焼結体(MnZnNiCo系フェライト)を製造する工程は、特に限定はなく、いわゆる常法に従えば良い。 The other steps of producing the MnZnNiCo-based ferrite powder and the sintered body (MnZnNiCo-based ferrite) are not particularly limited and may follow a so-called conventional method.

以下、本発明について確認した実施例について説明する。
(実施例1)
Fe、ZnO、MnO、NiOおよびCoOの基本成分を、表1−1および表2−1に示す種々の組成となるように原料を混合した。なお、これら原料は不純物の含有量が異なるものを使用した。
上記混合後、930℃で3時間の仮焼を行い、粉砕し、仮焼粉を得た。この得られた仮焼粉に、副成分としてSiO、CaOおよびNbを、前記基本成分に対し表1−1および表2−1に示した量となるように添加し、ボールミルで10時間粉砕し粉砕粉とした。ついで、この粉砕粉にバインダーとしてポリビニルアルコールを添加し、造粒して造粒粉とした後、この造粒粉を、外径:36mm、内径:24mm、高さ:12mmのリング状に成形して成形体とした。その後、この成形体に、酸素分圧を1〜5vol%の範囲に制御した窒素と空気の混合ガス中、表1−1および表2−1に示した最高温度で3時間の焼成を施した。最後に、表1−1および表2−1に示した速度で最高温度から1100℃までの冷却をしてリング状試料(フェライト焼結体)を得た。なお、表1−1および表2−1における、酸化鉄中のCl量、焼結体中のCl量、Sr量、Ba量は蛍光X線分析により常法に従い測定し、前記基本成分に対する比率を計算して求めた。また、表1−2および表2−2における、焼結密度は上記リング状試料をアルキメデス法に従い測定した。
上記のようにして得たリング状試料に、1次側20巻・2次側40巻の巻線を施し、20〜200℃において、直流BHループトレーサーで1200A/mの磁界をかけたときの磁束密度を測定した。この大きさの磁界では、磁束はほぼ飽和しており、この時の磁束密度の値が飽和磁束密度と考えられるからである。
また、1次側5巻・2次側5巻の巻線を施し、交流BHループトレーサーを用いて、温度を変化させて周波数500kHzで磁束密度50mTまで励磁したときの鉄損を測定した。
Hereinafter, examples confirmed for the present invention will be described.
(Example 1)
The raw materials of the basic components of Fe 2 O 3 , ZnO, MnO, NiO and CoO were mixed so as to have various compositions shown in Table 1-1 and Table 2-1. As these raw materials, those having different impurities contents were used.
After the above mixing, calcination was performed at 930 ° C. for 3 hours and pulverized to obtain a calcination powder. SiO 2 , CaO and Nb 2 O 5 as subcomponents were added to the obtained calcination powder in the amounts shown in Table 1-1 and Table 2-1 with respect to the basic components, and the ball mill was used. It was crushed for 10 hours to obtain crushed powder. Then, polyvinyl alcohol is added as a binder to the crushed powder, and the granulated powder is granulated to obtain a granulated powder, and then the granulated powder is formed into a ring shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 12 mm. It was made into a molded body. Then, this molded product was calcined at the maximum temperature shown in Table 1-1 and Table 2-1 in a mixed gas of nitrogen and air in which the oxygen partial pressure was controlled in the range of 1 to 5 vol% for 3 hours. .. Finally, a ring-shaped sample (ferrite sintered body) was obtained by cooling from the maximum temperature to 1100 ° C. at the speeds shown in Table 1-1 and Table 2-1. The amount of Cl in iron oxide, the amount of Cl in the sintered body, the amount of Sr, and the amount of Ba in Tables 1-1 and 2-1 were measured by a fluorescent X-ray analysis according to a conventional method, and the ratios to the basic components were measured. Was calculated and calculated. The sintering densities in Tables 1-2 and 2-2 were measured by measuring the ring-shaped sample according to the Archimedes method.
When the ring-shaped sample obtained as described above is wound with 20 turns on the primary side and 40 turns on the secondary side and a magnetic field of 1200 A / m is applied by a DC BH loop tracer at 20 to 200 ° C. The magnetic flux density was measured. This is because the magnetic flux is almost saturated in a magnetic field of this magnitude, and the value of the magnetic flux density at this time is considered to be the saturated magnetic flux density.
Further, 5 windings on the primary side and 5 windings on the secondary side were applied, and an AC BH loop tracer was used to measure the iron loss when the temperature was changed and the magnetic flux density was excited to 50 mT at a frequency of 500 kHz.

上記測定結果に基づき、フェライト焼結体の密度、80℃での飽和磁束密度、鉄損極小温度、ならびに0℃、100℃および鉄損極小温度における鉄損値(以下、単に物性値といった場合はかかる6項目の物性値を指す)を、それぞれ表1−2および表2−2に記載した。ここで、表1−1,2のNo.1−1〜1−27は、本発明に適合する発明例を、一方、表2−1,2のNo.2−1〜2−28は、本発明の範囲から外れた比較例を示したものである。なお、表1−1,2のNo.1−1〜1−19は、焼成中の最高温度を1300℃とし、表1−1,2のNo.1−20〜1−23は、焼成中の最高温度をそれぞれ1260℃、1275℃、1325℃および1340℃のいずれかの温度に変化させた例を示した。また、表1−1,2のNo.1−24〜1−26は冷却速度を変化させた例、表1−1,2のNo.1−27は酸化鉄中のCl量を低減させた例をそれぞれ示している。 Based on the above measurement results, the density of the ferrite sintered body, the saturation magnetic flux density at 80 ° C., the iron loss minimum temperature, and the iron loss value at 0 ° C., 100 ° C. and the iron loss minimum temperature (hereinafter, simply referred to as physical property values). Refers to the physical property values of these 6 items) are shown in Table 1-2 and Table 2-2, respectively. Here, No. 1 and 1 and 2 in Tables 1 and 2. 1-1 to 1-27 are examples of inventions conforming to the present invention, while Nos. 1-1 and 2 in Tables 21 and 2. 2-1 to 2-28 show comparative examples outside the scope of the present invention. In addition, No. In 1-1 to 1-19, the maximum temperature during firing was set to 1300 ° C. 1-20 to 1-23 showed an example in which the maximum temperature during firing was changed to any of 1260 ° C, 1275 ° C, 1325 ° C and 1340 ° C, respectively. In addition, No. 1 and 1 and 2 in Tables 1 and 2. 1-24 to 1-26 are examples in which the cooling rate was changed, Nos. 1 and 2 in Tables 1 and 2. 1-27 shows an example in which the amount of Cl in iron oxide was reduced.

表1−1,2および表2−1,2の記載からわかるように、Fe、ZnO、MnO、NiOおよびCoOの基本成分とSiO、CaOおよびNbの副成分の組成をそれぞれ適切に選んだ上で、フェライト原料である酸化鉄として、Cl含有量が 500mass ppm以下の酸化鉄を用いると共に、最終焼結体中のCl含有量を80mass ppm以下に抑制し、さらに、SrおよびBaを10.0mass ppm以下に制御した発明例のMnZnNiCo系フェライトは、本発明の焼成条件下で、いずれも、焼結密度が4.85Mg/m3超、5.00Mg/m3以下の範囲となっている。また、磁化力1200A/m、測定温度80℃での飽和磁束密度が400mT以上となっている。さらに、最大磁束密度50mT、周波数500kHzで測定した、0および100℃における鉄損は100kW/m以下で、鉄損極小温度における鉄損は75kW/m以下となっている。
これらのことから、本発明に従えば、焼結密度と飽和磁束密度を高く維持したまま、0〜100℃の温度域で鉄損の低いMnZnNiCo系フェライト材が得られることが分かる。
As can be seen from the descriptions in Tables 1-1 and 2 and Tables 2-1 and 2 , the composition of the basic components of Fe 2 O 3 , ZnO, MnO, NiO and CoO and the sub-components of SiO 2, CaO and Nb 2 O 5 As iron oxide as a ferrite raw material, iron oxide having a Cl content of 500 mass ppm or less is used, and the Cl content in the final sintered body is suppressed to 80 mass ppm or less. MnZnNiCo ferrite of the invention examples of controlling the Sr and Ba below 10.0 mass ppm is the firing conditions of the present invention, both the sintered density of 4.85Mg / m 3 greater, 5.00 mg / m 3 or less It is in the range of. Further, the saturation magnetic flux density at a magnetization force of 1200 A / m and a measurement temperature of 80 ° C. is 400 mT or more. Further, the iron loss at 0 and 100 ° C. measured at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz is 100 kW / m 3 or less, and the iron loss at the minimum iron loss temperature is 75 kW / m 3 or less.
From these facts, it can be seen that according to the present invention, a MnZnNiCo-based ferrite material having low iron loss can be obtained in the temperature range of 0 to 100 ° C. while maintaining high sintering density and saturation magnetic flux density.

一方、本発明の成分組成をいずれか満たさない比較例のMnZnNiCo系フェライトは、いずれも、最大磁束密度50mT、周波数500kHzで測定した、0および100℃の何れかの温度での鉄損値が100kW/mを超えている。また、鉄損極小温度での鉄損値は、いずれも、75kW/mを超えたものしか得られていない。 On the other hand, the MnZnNiCo-based ferrites of the comparative examples, which do not satisfy any of the component compositions of the present invention, have an iron loss value of 100 kW at any temperature of 0 or 100 ° C. measured at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz. / m 3 a is over. Further, the iron loss value at the minimum iron loss temperature is only obtained in excess of 75 kW / m 3.

Figure 2021183556
Figure 2021183556

Figure 2021183556
Figure 2021183556

Figure 2021183556
Figure 2021183556

Figure 2021183556
Figure 2021183556

(実施例2)
以下、焼成の積載位置による特性値のバラツキを確認した実施例について説明する。
Fe、ZnO、MnO、NiOおよびCoOの基本成分を、表1−1の試料No.1−20に示す組成となるように原料を混合した。上記混合後、930℃で3時間の仮焼を行い、粉砕し、仮焼粉を得た。この得られた仮焼粉に、副成分としてSiO、CaOおよびNbを、前記基本成分に対し表1−1の試料No.1−20に示した量となるように添加し、ボールミルで10時間粉砕し粉砕粉とした。
ついで、この粉砕粉にバインダーとしてポリビニルアルコールを添加し、造粒して造粒粉とした後、この造粒粉を、外径:36mm、内径:24mm、高さ:12mmのリング状に成形して、192個の成形体を作製した。
上記192個の成形体を300mm角の焼成台板上に、平面:8行×8列,高さ:3段重ねで積載した。ついで、酸素分圧を1〜5vol%の範囲に制御した窒素と空気の混合ガス中、表1−1の試料No.1−20に示した最高温度で3時間の焼成を施した。最後に、表1−1の試料No.1−20に示した速度で、上記最高温度から1100℃まで冷却して、リング状試料(フェライト焼結体)を得た。
(Example 2)
Hereinafter, an example in which the variation in the characteristic value depending on the loading position of firing is confirmed will be described.
The basic components of Fe 2 O 3 , ZnO, MnO, NiO and CoO were added to the sample No. 1 in Table 1-1. The raw materials were mixed so as to have the composition shown in 1-20. After the above mixing, calcination was performed at 930 ° C. for 3 hours and pulverized to obtain a calcination powder. In the obtained calcined powder, SiO 2 , CaO and Nb 2 O 5 were added as auxiliary components to the sample No. 1 in Table 1-1 with respect to the basic components. It was added in the amount shown in 1-20 and pulverized with a ball mill for 10 hours to obtain pulverized powder.
Then, polyvinyl alcohol was added as a binder to the pulverized powder, and the granulated powder was granulated to obtain granulated powder, and then the granulated powder was formed into a ring shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 12 mm. 192 molded bodies were produced.
The above 192 molded bodies were loaded on a 300 mm square firing base plate in a plane: 8 rows × 8 columns and a height: 3 layers. Then, in the mixed gas of nitrogen and air in which the oxygen partial pressure was controlled in the range of 1 to 5 vol%, the sample No. in Table 1-1. Baking was performed at the maximum temperature shown in 1-20 for 3 hours. Finally, the sample No. in Table 1-1. A ring-shaped sample (ferrite sintered body) was obtained by cooling from the above maximum temperature to 1100 ° C. at the speed shown in 1-20.

前記物性値を、前記実施例1に記載の方法でそれぞれ測定し、各物性値の焼成の積載位置によるバラツキ(最大値−最小値)を求めた。それぞれの結果を、試料No.1−20として表3に示す。
また、表1−1の試料No.1−21、試料No.1−22、試料No.1−23および表2−1の試料No.2−27についても、同様の手順で試料を作製し、各物性値のバラツキ(最大値−最小値)をそれぞれ求めた。それぞれの結果を、試料No.1−21、試料No.1−22、試料No.1−23および試料No.2−27として表3に併記する。
The physical property values were measured by the method described in Example 1, and the variation (maximum value-minimum value) of each physical property value depending on the loading position of firing was determined. Each result is presented in Sample No. It is shown in Table 3 as 1-20.
In addition, the sample No. in Table 1-1. 1-21, sample No. 1-22, Sample No. Sample Nos. 1-23 and Table 2-1. For 2-27, samples were prepared in the same procedure, and the variation (maximum value-minimum value) of each physical property value was determined. Each result is presented in Sample No. 1-21, sample No. 1-22, Sample No. 1-23 and sample No. It is also shown in Table 3 as 2-27.

Figure 2021183556
Figure 2021183556

前記実施例1の結果および表3に記載した結果より、発明例(試料No.1−20、試料No.1−21、試料No.1−22および試料No.1−23)は比較例(試料No.2−27)に比べて、各物性値が優れた値になっているだけでなく、各物性値のバラツキも小さいことが分かる。 From the results of Example 1 and the results shown in Table 3, the invention examples (Sample No. 1-20, Sample No. 1-21, Sample No. 1-22 and Sample No. 1-23) are comparative examples (sample No. 1-20, sample No. 1-21, sample No. 1-22 and sample No. 1-23). It can be seen that not only the physical property values are superior to those of Sample No. 2-27), but also the variation of the physical property values is small.

(実施例3)
以下、1100℃までの冷却速度を規定する技術的意味を明確にするための実験を行い、かかる実験の結果、明確になった技術的意味を実験結果と共に説明する。
Fe、ZnO、MnO、NiOおよびCoOの基本成分を、表4−1に示す組成となるように原料を混合した。
上記混合後、930℃で3時間の仮焼を行い、粉砕し、仮焼粉を得た。この得られた仮焼粉に、副成分としてSiO、CaOおよびNbを、前記基本成分に対し表4−1に示した量となるように添加し、ボールミルで10時間粉砕し粉砕粉とした。ついで、この粉砕粉にバインダーとしてポリビニルアルコールを添加し、造粒して造粒粉とした後、この造粒粉を、外径:36mm、内径:24mm、高さ:12mmのリング状に成形して成形体とした。その後、この成形体に、酸素分圧を1〜5vol%の範囲に制御した窒素と空気の混合ガス中、表4−1に示した最高温度で3時間の焼成を施した。
次に、表4−1に示した速度で上記最高温度から1200℃まで冷却し、さらに表4−1に示した速度で1200℃から1100℃まで冷却して、リング状試料(フェライト焼結体)を得た。なお、表4−1における、酸化鉄中のCl量、焼結体中のCl量、Sr量、Ba量、および、焼結密度は、実施例1と同様の方法で測定した。
さらに、前記物性値を、実施例1と同様の方法で測定した。それぞれの測定結果を表4−2に示す。
(Example 3)
Hereinafter, an experiment will be conducted to clarify the technical meaning that defines the cooling rate up to 1100 ° C., and the technical meaning clarified as a result of the experiment will be described together with the experimental result.
The raw materials of the basic components of Fe 2 O 3 , ZnO, MnO, NiO and CoO were mixed so as to have the composition shown in Table 4-1.
After the above mixing, calcination was performed at 930 ° C. for 3 hours and pulverized to obtain a calcination powder. SiO 2 , CaO and Nb 2 O 5 as auxiliary components were added to the obtained calcined powder in the amounts shown in Table 4-1 with respect to the basic components, and the mixture was pulverized by a ball mill for 10 hours. It was made into powder. Then, polyvinyl alcohol is added as a binder to the crushed powder, and the granulated powder is granulated to obtain a granulated powder, and then the granulated powder is formed into a ring shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 12 mm. It was made into a molded body. Then, this molded product was calcined at the maximum temperature shown in Table 4-1 for 3 hours in a mixed gas of nitrogen and air in which the oxygen partial pressure was controlled in the range of 1 to 5 vol%.
Next, the ring-shaped sample (ferrite sintered body) is cooled from the above maximum temperature to 1200 ° C. at the speed shown in Table 4-1 and further cooled from 1200 ° C. to 1100 ° C. at the speed shown in Table 4-1. ) Was obtained. The amount of Cl in iron oxide, the amount of Cl in the sintered body, the amount of Sr, the amount of Ba, and the sintering density in Table 4-1 were measured by the same method as in Example 1.
Further, the physical property values were measured by the same method as in Example 1. The results of each measurement are shown in Table 4-2.

Figure 2021183556
Figure 2021183556

Figure 2021183556
Figure 2021183556

比較例である試料4−1、4−2のMnZnNiCo系フェライトは、いずれも、最大磁束密度50mT、周波数500kHzで測定した、0および100℃の何れかの温度での鉄損値が100kW/mを超えている。また、鉄損極小温度での鉄損値は、いずれも、75kW/mを超えたものしか得られていない。 The MnZnNiCo-based ferrites of Samples 4-1 and 4-2, which are comparative examples, have an iron loss value of 100 kW / m at any temperature of 0 or 100 ° C. measured at a maximum magnetic flux density of 50 mT and a frequency of 500 kHz. It is over 3. Further, the iron loss value at the minimum iron loss temperature is only obtained in excess of 75 kW / m 3.

かかる実施例3の結果により、前記最高温度から1100℃までの間を所定の速度で冷却することは、特に、高密度な積載状態のトランス動作温度(80℃)に達するまで高い飽和磁束密度を維持したまま、500kHzの高周波駆動をした場合に、広い温度範囲で磁気損失を抑制するための重要な要件であることが分かる。 According to the result of the third embodiment, cooling from the maximum temperature to 1100 ° C. at a predetermined rate causes a particularly high saturation magnetic flux density until the transformer operating temperature (80 ° C.) in a high-density loaded state is reached. It can be seen that it is an important requirement for suppressing magnetic loss in a wide temperature range when driving at a high frequency of 500 kHz while maintaining the temperature.

本発明は、飽和磁束密度が高く、500kHzといった高周波であっても、広い温度範囲で磁気損失の小さいMnZnNiCo系フェライトを提供することができるので、車載機器、産業機器などで使用が増加しているSiCやGaN半導体デバイスを用いた高周波駆動電源などに広く応用することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a MnZnNiCo-based ferrite having a high saturation magnetic flux density and a small magnetic loss in a wide temperature range even at a high frequency of 500 kHz, and is therefore increasingly used in in-vehicle equipment, industrial equipment, and the like. It can be widely applied to high-frequency drive power supplies using SiC and GaN semiconductor devices.

Claims (4)

基本成分、副成分および不可避的不純物からなるMnZnNiCo系フェライトにおいて、
前記基本成分を、
Fe:53.00〜57.00mol%、
ZnO:4.00〜11.00mol%、
NiO:0.50〜4.00mol%および
CoO:0.10〜0.50mol%
残部はMnO
とし、
前記副成分を、前記基本成分に対し、
SiO:50〜500mass ppm、
CaO:200〜2000mass ppmおよび
Nb:50〜500mass ppm
とし、
さらに、前記不可避的不純物におけるCl、SrおよびBaをそれぞれ、前記基本成分に対し
Cl:80mass ppm以下、
Sr:10.0mass ppm以下および
Ba:10.0mass ppm以下
に抑制して含み、
焼結密度が4.85Mg/m超、5.00Mg/m以下であって、80℃における磁化力1200A/mでの飽和磁束密度が400mT以上であり、かつ最大磁束密度が50mTで、周波数が500kHzのときの、0〜100℃における鉄損が100kW/m以下であって鉄損極小温度での鉄損が75kW/m以下であることを特徴とするMnZnNiCo系フェライト。
In MnZnNiCo-based ferrite consisting of basic components, sub-components and unavoidable impurities,
The basic ingredients
Fe 2 O 3 : 53.00 to 57.00 mol%,
ZnO: 4.00-11.00 mol%,
NiO: 0.50 to 4.00 mol% and CoO: 0.10 to 0.50 mol%
The rest is MnO
year,
The sub-component with respect to the basic component
SiO 2 : 50-500 mass ppm,
CaO: 200-2000 mass ppm and Nb 2 O 5 : 50-500 mass ppm
year,
Further, Cl, Sr and Ba in the unavoidable impurities are each set to Cl: 80 mass ppm or less with respect to the basic component.
Sr: 10.0mass ppm or less and Ba: 10.0mass ppm or less are suppressed and included.
The sintering density is more than 4.85 Mg / m 3 and 5.00 Mg / m 3 or less, the saturation magnetic flux density at a magnetization force of 1200 A / m at 80 ° C. is 400 mT or more, and the maximum magnetic flux density is 50 mT. A MnZnNiCo-based ferrite characterized in that the iron loss at 0 to 100 ° C. is 100 kW / m 3 or less and the iron loss at the minimum iron loss temperature is 75 kW / m 3 or less when the frequency is 500 kHz.
請求項1に記載のMnZnNiCo系フェライトを製造する方法であって、基本成分となるFe、Zn、Ni、CoおよびMn原料を、混合し、仮焼して、粉砕した後、さらに副成分となるSi、CaおよびNb原料を混合して、粉砕し、次いで、成形し、焼成後、冷却する工程を有し、
前記Fe原料を酸化鉄とし、該酸化鉄中のCl含有量を500mass ppm以下として、
前記焼成の最高温度を1250℃超とし、さらに該最高温度から1100℃までの間を150℃/h以上の速度で冷却することを特徴とするMnZnNiCo系フェライトの製造方法。
The method for producing an MnZnNiCo-based ferrite according to claim 1, wherein Fe, Zn, Ni, Co and Mn raw materials, which are basic components, are mixed, calcined, pulverized, and then further become a sub-component. It has the steps of mixing Si, Ca and Nb raw materials, crushing, then molding, firing and then cooling.
The Fe raw material is iron oxide, and the Cl content in the iron oxide is 500 mass ppm or less.
A method for producing MnZnNiCo-based ferrite, which comprises setting the maximum temperature of calcination to more than 1250 ° C. and further cooling from the maximum temperature to 1100 ° C. at a rate of 150 ° C./h or more.
前記最高温度から1100℃までの間を150〜350℃/hの速度で冷却することを特徴とする請求項2に記載のMnZnNiCo系フェライトの製造方法。 The method for producing MnZnNiCo-based ferrite according to claim 2, wherein the mixture is cooled from the maximum temperature to 1100 ° C. at a rate of 150 to 350 ° C./h. 前記最高温度を1250℃超、1350℃以下とすることを特徴とする請求項2または3に記載のMnZnNiCo系フェライトの製造方法。 The method for producing an MnZnNiCo-based ferrite according to claim 2 or 3, wherein the maximum temperature is more than 1250 ° C and 1350 ° C or less.
JP2021070672A 2020-05-21 2021-04-19 MnZnNiCo-based ferrite and its manufacturing method Active JP7470081B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089167 2020-05-21
JP2020089167 2020-05-21

Publications (2)

Publication Number Publication Date
JP2021183556A true JP2021183556A (en) 2021-12-02
JP7470081B2 JP7470081B2 (en) 2024-04-17

Family

ID=78767114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070672A Active JP7470081B2 (en) 2020-05-21 2021-04-19 MnZnNiCo-based ferrite and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7470081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450841B1 (en) 2023-02-17 2024-03-15 Jfeケミカル株式会社 Granulated powder for MnZn-based ferrite and its manufacturing method, and MnZn-based ferrite and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968188B2 (en) 1999-03-30 2007-08-29 Jfeケミカル株式会社 Ferrite
JP4279995B2 (en) 2001-02-07 2009-06-17 Tdk株式会社 MnZn ferrite
JP2006290632A (en) 2005-04-05 2006-10-26 Hitachi Metals Ltd Ferrite sintered compact, method for producing the same, and electronic component using the same
JP6416808B2 (en) 2016-02-15 2018-10-31 Jfeケミカル株式会社 MnZnCo ferrite
JP6964556B2 (en) 2017-06-23 2021-11-10 Jfeケミカル株式会社 MnZnNiCo-based ferrite and its manufacturing method
JP6964555B2 (en) 2018-05-16 2021-11-10 Jfeケミカル株式会社 MnZnNiCo-based ferrite and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450841B1 (en) 2023-02-17 2024-03-15 Jfeケミカル株式会社 Granulated powder for MnZn-based ferrite and its manufacturing method, and MnZn-based ferrite and its manufacturing method

Also Published As

Publication number Publication date
JP7470081B2 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP2005213100A (en) METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP2022003690A (en) Magnetic core arranged by use of manganese zinc-based ferrite
JP4554960B2 (en) Mn-Co-Zn ferrite
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP5181175B2 (en) Mn-Zn-Co ferrite
JP2004217452A (en) Ferrite material and method of manufacturing the same
JP7470081B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2004161593A (en) Ferritic material
JP6964555B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP6964556B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP5560436B2 (en) MnZnNi ferrite
JP4656958B2 (en) Mn-Co-Zn ferrite
JP2007311387A (en) Oxide magnetic material
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2022156991A (en) Ferrite composition, electronic component and power supply
JP6416808B2 (en) MnZnCo ferrite
JP5458298B2 (en) Mn-Zn ferrite material
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP2000327411A (en) Production of nickel - zinc based ferrite
JP5952236B2 (en) Mn-Zn-Ni ferrite and method for producing the same
US20230290554A1 (en) SINTERED MnZn FERRITE AND ITS PRODUCTION METHOD
JP6454309B2 (en) MnZnCo ferrite
JPH10270231A (en) Mn-ni ferrite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240405

R150 Certificate of patent or registration of utility model

Ref document number: 7470081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150