JP2007311387A - Oxide magnetic material - Google Patents

Oxide magnetic material Download PDF

Info

Publication number
JP2007311387A
JP2007311387A JP2006136127A JP2006136127A JP2007311387A JP 2007311387 A JP2007311387 A JP 2007311387A JP 2006136127 A JP2006136127 A JP 2006136127A JP 2006136127 A JP2006136127 A JP 2006136127A JP 2007311387 A JP2007311387 A JP 2007311387A
Authority
JP
Japan
Prior art keywords
oxide
terms
mol
core loss
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006136127A
Other languages
Japanese (ja)
Inventor
Kenichi Murai
健一 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006136127A priority Critical patent/JP2007311387A/en
Publication of JP2007311387A publication Critical patent/JP2007311387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide magnetic material having high saturation magnetic flux density and high permeability in which increase in core loss is suppressed in the range of room temperature to 140°C or at high temperature of 100°C or above by containing CuO as a principal component. <P>SOLUTION: Low loss is ensured up to high frequency near several hundreds kHz by setting the density of sintered body at 4.95 g/cc or above and the crystal grain sizes in the range of 10-15 μm in an oxide magnetic material comprising 52.0-56.0 mol% of iron oxide in terms of Fe<SB>2</SB>O<SB>3</SB>, 8.0-13.0 mol% of zinc oxide in terms of ZnO, 0-5.0 mol% (0 is excluded) of copper oxide in terms CuO, as principal components, and the remainder of manganese oxide (MnO), and 0.005-0.05 wt.% of silicon oxide in terms of SiO<SB>2</SB>, 0.01-0.1 wt.% of calcium oxide in terms of CaO, 0.01-0.5 wt.% of niobium oxide in terms of Nb<SB>2</SB>O<SB>5</SB>, and 0.01-0.5 wt.% of cobalt oxide in terms of CoO, as secondary components. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電源トランス等に用いられる磁芯材料で、酸化物磁性材料に関するものである。   The present invention relates to a magnetic core material used for a power transformer or the like, and relates to an oxide magnetic material.

携帯機器をはじめとして、近年電子機器の小型化が急速に進歩している。そしてそれらに用いられる電源も同様の傾向にあり、電源の中で特にトランスは体積的に大きな割合を占め、また電力損失(以下、コアロスと表す)においても大きな割合を占めるため、その小型化、高効率化が急務となってきている。   In recent years, downsizing of electronic devices such as portable devices has been progressing rapidly. And the power supply used for them has the same tendency, and in particular, the transformer occupies a large volume in the power supply, and also occupies a large proportion in the power loss (hereinafter referred to as core loss). High efficiency is an urgent issue.

電源用トランスの磁芯材料として求められる特性は、駆動周波数範囲内でのコアロスが低いこと、飽和磁束密度が高いこと、透磁率が高いこと、キュリー温度が高いこと等が挙げられる。これらに加えて、更に近年ではハイブリッド車用電源トランス材や液晶デイスプレイのバックライト用インバータトランス材においては、使用する環境の温度変化が大きいため広い温度範囲内で低損失であることが求められる。   Characteristics required as a magnetic core material for power transformers include low core loss within the drive frequency range, high saturation magnetic flux density, high magnetic permeability, and high Curie temperature. In addition to these, in recent years, power transformer materials for hybrid vehicles and inverter transformer materials for backlights of liquid crystal displays are required to have low loss within a wide temperature range because of large temperature changes in the environment in which they are used.

特にコアロスが大きいと、電源としての効率が悪いだけでなく、自己発熱による熱的要因による危険性が生じる。電源の使用環境温度が100℃を中心とした温度範囲となることから、電源材として用いられるMn−Zn系フェライトのコアロスは、100℃付近で極小となる様に設計されている。即ち、使用する温度環境が低温から高温まで幅広く、過酷な条件下では、電源用トランス材料として広い温度範囲で低損失である事が必要となる。   In particular, when the core loss is large, not only the efficiency as a power source is bad, but also a danger due to thermal factors due to self-heating occurs. Since the operating environment temperature of the power source is in a temperature range centered on 100 ° C., the core loss of the Mn—Zn-based ferrite used as the power source material is designed to be minimal around 100 ° C. That is, the temperature environment to be used is wide from a low temperature to a high temperature, and under severe conditions, it is necessary for the power transformer material to have low loss over a wide temperature range.

コアロスの極小温度が使用環境温度より低いと、温度上昇によりコアロスが増大する事より熱的要因による危険性が生じる恐れがある。また逆にコアロスの極小温度が使用環境温度より高過ぎると、結晶磁気異方性定数の増大の要因となるヒステリシス損失の増大により、室温付近での損失の増大が問題となる。   If the minimum temperature of the core loss is lower than the operating environment temperature, there is a risk that the core loss will increase due to the temperature rise, resulting in a risk due to thermal factors. Conversely, if the minimum temperature of the core loss is too higher than the operating environment temperature, an increase in loss near room temperature becomes a problem due to an increase in hysteresis loss that causes an increase in the magnetocrystalline anisotropy constant.

以上の要求に対応したMn−Zn系フェライトの例が、特許文献1〜3に開示されている。何れも副成分として酸化コバルトが含有されており、特許文献1では、酸化鉄(Fe23)、酸化マンガン(MnO)、酸化亜鉛(ZnO)の主成分に、副成分として酸化コバルト(Co34)、二酸化ケイ素(SiO)、酸化カルシウム(CaO)、酸化ニオブ(Nb)、酸化ジルコニウム(ZrO)を含有させている。 Examples of Mn—Zn-based ferrite corresponding to the above requirements are disclosed in Patent Documents 1 to 3. All of them contain cobalt oxide as a subcomponent. In Patent Document 1, the main components of iron oxide (Fe 2 O 3 ), manganese oxide (MnO), and zinc oxide (ZnO) are used, and cobalt oxide (Co 3 O 4 ), silicon dioxide (SiO 2 ), calcium oxide (CaO), niobium oxide (Nb 2 O 5 ), and zirconium oxide (ZrO 2 ).

また特許文献2では、酸化鉄(Fe23)、酸化マンガン(MnO)、酸化亜鉛(ZnO)の主成分の他、副成分として酸化コバルト(CoO)、酸化ケイ素(SiO2)、酸化カルシウム(CaO)、酸化タンタル(Ta25)、酸化ジルコニウム(ZrO2)を含有させている。 In Patent Document 2, in addition to the main components of iron oxide (Fe 2 O 3 ), manganese oxide (MnO), and zinc oxide (ZnO), cobalt oxide (CoO), silicon oxide (SiO 2 ), and calcium oxide are used as subcomponents. (CaO), tantalum oxide (Ta 2 O 5 ), and zirconium oxide (ZrO 2 ) are contained.

特許文献3では、 酸化鉄(Fe23)、酸化マンガン(MnO)、酸化亜鉛(ZnO)の主成分の他、副成分として、酸化ケイ素(SiO2)、炭酸カルシウム(CaCO3)、酸化コバルト(CoO)、酸化チタン(TiO2)を含有させ、かつ焼結条件を限定している。 In Patent Document 3, in addition to the main components of iron oxide (Fe 2 O 3 ), manganese oxide (MnO), and zinc oxide (ZnO), as subcomponents, silicon oxide (SiO 2 ), calcium carbonate (CaCO 3 ), oxidation Cobalt (CoO) and titanium oxide (TiO 2 ) are contained, and sintering conditions are limited.

特開2002−231520号公報JP 2002-231520 A 特公平08−001844号公報Japanese Patent Publication No. 08-001844 特開2005−119892号公報JP 2005-119892 A

しかしながら、特許文献1〜3に記載されている副成分として酸化コバルトを含有した従来の技術では、以下に示す問題がある。酸化コバルト(CoO)は正の結晶磁気異方性定数を有するため、コアロスの温度に対する変化率を小さくしコアロスを低減させる効果はある。しかし同時に、コアロスの極小温度を低温側にシフトさせるため、高温側でのコアロスの温度に対する勾配が急峻になり、100℃以上の温度でのコアロスが大きくなり低減効果が小さくなる傾向がある。   However, the conventional techniques containing cobalt oxide as a subcomponent described in Patent Documents 1 to 3 have the following problems. Since cobalt oxide (CoO) has a positive magnetocrystalline anisotropy constant, it has the effect of reducing the core loss by reducing the rate of change of core loss with respect to temperature. However, at the same time, since the minimum temperature of the core loss is shifted to the low temperature side, the gradient with respect to the temperature of the core loss on the high temperature side becomes steep, and the core loss at a temperature of 100 ° C. or more tends to increase and the reduction effect tends to decrease.

一般に結晶磁気異方性は酸化コバルト(CoO)量の他に、Fe2+量に依存する事が知られており、酸化コバルト(CoO)含有によるコアロスの極小温度の低温側へのシフトを極力避けるすために、更にFe2+量を少なくする方向に調整する必要がある。Fe2+量を調整する手段としては、主成分組成での調整の場合、Feの比率を小さくしなければならず、焼結パタ−ンの変更の場合は、より酸化雰囲気中で焼結を行わなければならない。しかしこれら調整には限界があり、コアロスの極小温度が使用環境温度から外れるため、コアロスの低減効果は小さくなってしまう。 In general, it is known that magnetocrystalline anisotropy depends on the amount of Fe 2+ in addition to the amount of cobalt oxide (CoO), and the minimum shift of core loss due to cobalt oxide (CoO) content to the low temperature side is minimized. In order to avoid this, it is necessary to adjust the amount of Fe 2+ further. As a means for adjusting the amount of Fe 2+, the ratio of Fe 2 O 3 must be reduced in the case of adjustment with the main component composition, and in the case of changing the sintered pattern, it is more in an oxidizing atmosphere. Sintering must be performed. However, there is a limit to these adjustments, and since the minimum temperature of the core loss deviates from the use environment temperature, the effect of reducing the core loss is reduced.

前記特許文献1〜3では種々の副成分を含有させ高抵抗化を図っているが、コアロスの低減がなされているのは、高温度側では高々120℃程度となっており、それ以上の高温度でのコアロス低減は十分ではない。まして、自動車等の過酷な使用温度環境下においては、更に広い温度範囲、特に高温度でのコアロスの低減が必要となっている。   In Patent Documents 1 to 3, various subcomponents are included to increase the resistance, but the core loss is reduced to about 120 ° C. at the high temperature side, which is higher than that. The core loss reduction at temperature is not enough. Furthermore, under severe operating temperature environments such as automobiles, it is necessary to reduce core loss in a wider temperature range, particularly at high temperatures.

従って、本発明の課題は、上記の課題を解決し、室温〜140℃の範囲でコアロスを低減し、かつ高い飽和磁束密度と高透磁率を有する酸化物磁性材料を提供することにある。   Accordingly, an object of the present invention is to provide an oxide magnetic material that solves the above problems, reduces core loss in the range of room temperature to 140 ° C., and has a high saturation magnetic flux density and high magnetic permeability.

本発明は、前記課題の解決のため、主成分として、酸化鉄をFe23換算で52.0〜56.0モル%、酸化亜鉛をZnO換算で8.0〜13.0モル%、酸化銅をCuO換算で0〜5.0モル%(0を含まず)、残部が酸化マンガン(MnO)からなり、副成分として、酸化ケイ素をSiO換算で0.005〜0.05wt%、酸化カルシウムをCaO換算で0.01〜0.1wt%、酸化ニオブをNb換算で0.01〜0.5wt%、酸化コバルトをCoO換算で0.01〜0.5wt%含有してなることを特徴とする酸化物磁性材料である。 The present invention is, for solving the above problems, as a main component, 52.0 to 56.0 mol% of iron oxide calculated as Fe 2 O 3, 8.0 to 13.0 mol% of zinc oxide calculated as ZnO, 0-5.0 mol% of copper oxide in terms of CuO (not including 0), the balance being manganese oxide (MnO), as the minor component, 0.005 to 0.05% silicon oxide in terms of SiO 2, Containing 0.01 to 0.1 wt% of calcium oxide in terms of CaO, niobium oxide in an amount of 0.01 to 0.5 wt% in terms of Nb 2 O 5 , and cobalt oxide in an amount of 0.01 to 0.5 wt% in terms of CoO The oxide magnetic material is characterized by the following.

さらに、焼結体の密度が4.95g/cc以上であり、焼結体の結晶粒径が10〜15μmであることを特徴とする酸化物磁性材料である。   Further, the oxide magnetic material is characterized in that the density of the sintered body is 4.95 g / cc or more and the crystal grain size of the sintered body is 10 to 15 μm.

ここで、CuOは、スピネル格子中に固溶し電荷のバランスをとるためにFe2+をFe3+に変える作用があり、Fe23、MnOの成分比率や焼結パターンを変える事なくCoO含有によるコアロスの極小温度の低温側へのシフトを抑制できる。 Here, CuO has the effect of changing Fe 2+ to Fe 3+ in order to balance the electric charge by dissolving in the spinel lattice, and without changing the component ratio or sintering pattern of Fe 2 O 3 and MnO. The shift of the minimum temperature of the core loss due to the inclusion of CoO to the low temperature side can be suppressed.

更にCuOは焼結性を改善するため、より低温度の焼結で高密度な焼結体を得る事ができ、結晶粒径をある適度な粒径範囲内に制御しながら高密度を得ることが可能となる。また損失成分の1つであるヒステリシス損失は、粉末組成の他に結晶粒径及び焼結体密度に依存することが知られており、CuOはコアロスを低減するのに有効な成分となる。   Furthermore, since CuO improves the sinterability, it is possible to obtain a high-density sintered body by sintering at a lower temperature, and to obtain a high density while controlling the crystal grain size within a certain appropriate grain size range. Is possible. Moreover, it is known that hysteresis loss, which is one of the loss components, depends on the crystal grain size and sintered body density in addition to the powder composition, and CuO is an effective component for reducing core loss.

またSiO2、CaO、Nb25を添加し、粒界層に濃縮させる事により、比抵抗が増大し、損失成分の1つである渦電流損失を低減する事ができる。 Further, by adding SiO 2 , CaO, Nb 2 O 5 and concentrating it in the grain boundary layer, the specific resistance increases and eddy current loss, which is one of the loss components, can be reduced.

従って、本発明によれば、CuOを主成分として含有させることにより室温〜140℃の範囲で、または100℃以上の温度でのコアロスの増大を抑制することができ、かつ高い飽和磁束密度と高透磁率を有する酸化物磁性材料を提供することができる。   Therefore, according to the present invention, by containing CuO as a main component, an increase in core loss in the range of room temperature to 140 ° C. or at a temperature of 100 ° C. or higher can be suppressed, and a high saturation magnetic flux density and high An oxide magnetic material having magnetic permeability can be provided.

次に、本発明による酸化物磁性材料の実施の形態について、具体的な例を挙げて説明する。   Next, embodiments of the oxide magnetic material according to the present invention will be described with specific examples.

主成分として、Fe23、ZnO、CuO、MnOからなり、副成分として、SiO2、CaO、Nb25、CoOを含有してなる酸化物磁性材料において、Fe23を52.0〜56.0モル%、ZnOを9.0〜13.0モル%としたのは、Fe2O3が56.0モル%より多く、ZnOが13.0モル%より多いと、コアロスの極小温度が低温側にシフトし、CuOを添加しても極小温度を高温に制御できないためであり、またコアロスが急激に増大するからである。Fe23が52.0モル%より少なく、ZnOが9.0モル%より少ないと飽和磁束密度が小さく、またコアロスが急激に増大するためである。CuOを0〜5モル%(0を含まず)としたのは、CuOを含有させないと100℃以上の温度でのコアロス低減効果が得られないためであり、5モル%より多いと異常粒成長し、コアロスが急激に増大するためである。 In an oxide magnetic material composed of Fe 2 O 3 , ZnO, CuO, MnO as main components and SiO 2 , CaO, Nb 2 O 5 , CoO as subcomponents, Fe 2 O 3 is added in 52. 0 to 56.0 mol% and ZnO to 9.0 to 13.0 mol%, Fe2O3 is more than 56.0 mol%, ZnO is more than 13.0 mol%, the minimum temperature of core loss is This is because even if shifting to a low temperature side and adding CuO, the minimum temperature cannot be controlled to a high temperature, and the core loss rapidly increases. This is because when Fe 2 O 3 is less than 52.0 mol% and ZnO is less than 9.0 mol%, the saturation magnetic flux density is small and the core loss increases rapidly. The reason why CuO is 0 to 5 mol% (not including 0) is that the core loss reduction effect at a temperature of 100 ° C. or higher cannot be obtained unless CuO is contained. This is because the core loss increases rapidly.

SiOを0.005〜0.05wt%としたのは、0.005wt%より少ないと十分な比抵抗が得られずコアロスが増大するためであり、0.05wt%より多いと異常粒成長し、コアロスが急激に増大するためである。CaOを0.01〜0.1wt%としたのは、0.01wt%より少ないと十分な比抵抗が得られずコアロスが増大するためであり、0.1wt%より多いと焼結体密度が低下し、コアロスが急激に増大するためである。Nb25を0.01〜0.1wt%としたのは、0.01wt%より少ないと十分な比抵抗が得られずコアロスが増大するためであり、0.1wt%より多いと異常粒成長し、コアロスが急激に増大するためである。CoOを0.01〜0.5wt%としたのは、0.01wt%より少ないとコアロスの温度に対する変化率を十分に小さくすることができないためであり、0.5wt%より多いとコアロスが急激に増大するためである。 The reason why SiO 2 is 0.005 to 0.05 wt% is that if it is less than 0.005 wt%, sufficient specific resistance cannot be obtained and the core loss increases, and if it exceeds 0.05 wt%, abnormal grains grow. This is because the core loss increases rapidly. The reason why CaO is set to 0.01 to 0.1 wt% is that if the content is less than 0.01 wt%, sufficient specific resistance cannot be obtained and the core loss increases. This is because the core loss rapidly increases and the core loss increases rapidly. The reason why Nb 2 O 5 is set to 0.01 to 0.1 wt% is that if it is less than 0.01 wt%, sufficient specific resistance cannot be obtained and the core loss increases. This is because the core loss increases rapidly. The reason why CoO is set to 0.01 to 0.5 wt% is that if the amount is less than 0.01 wt%, the rate of change of the core loss with respect to the temperature cannot be made sufficiently small. This is because it increases.

また、焼結体の密度を4.95g/cc以上、結晶粒径を10〜15μmとすることにり、数百kHz付近の高周波領域まで低損失でかつ、室温から140℃付近の高温度までコアロスの温度に対する変化率が小さい酸化物磁性材料を得ることができる。   Further, the density of the sintered body is set to 4.95 g / cc or more and the crystal grain size is set to 10 to 15 μm, so that low loss is obtained from a high frequency region around several hundred kHz and room temperature to a high temperature around 140 ° C. An oxide magnetic material having a small change rate of core loss with respect to temperature can be obtained.

次に具体的な実施例を挙げ、本発明の酸化物磁性材料について、さらに詳しく説明する。   Next, specific examples will be given to describe the oxide magnetic material of the present invention in more detail.

主成分がFe23:51.5〜57.5モル%、ZnO:8.5〜13.5モル%、CuO:0〜5.5モル%、残部をMnOとなる様に秤量し、ボールミルを用いて混合し、大気雰囲気中850℃で2時間仮焼し、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%、CoOを0.25wt%添加した後、ボールミルで微粉砕を行った。微粉砕後、バインダーを添加し、スプレードライヤーにて造粒した。次に、φ30×φ25×5mmのトロイダル形状に成形して、酸素分圧をコントロールした還元雰囲気中1250℃で6時間焼結した。 The main components were weighed so that Fe 2 O 3 : 51.5 to 57.5 mol%, ZnO: 8.5 to 13.5 mol%, CuO: 0 to 5.5 mol%, and the balance was MnO. Mixing using a ball mill, calcining at 850 ° C. for 2 hours in an air atmosphere, 0.03 wt% of SiO 2 , 0.05 wt% of CaO, 0.05 wt% of Nb 2 O 5 , and 0 of CoO as subcomponents After adding 25 wt%, the mixture was finely pulverized with a ball mill. After fine pulverization, a binder was added and granulated with a spray dryer. Next, it was molded into a toroidal shape of φ30 × φ25 × 5 mm and sintered at 1250 ° C. for 6 hours in a reducing atmosphere in which the oxygen partial pressure was controlled.

又、従来材として同様な方法により、Fe23:53.0モル%、MnO:35.0モル%、残部をZnOの主成分組成で、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加し、同条件にて試料を作製した。 Further, by the same method as the conventional material, Fe 2 O 3 : 53.0 mol%, MnO: 35.0 mol%, the balance is the main component composition of ZnO, SiO 2 is 0.03 wt% as a subsidiary component, CaO Of 0.05 wt% and Nb 2 O 5 of 0.05 wt% were added, and a sample was manufactured under the same conditions.

次に、得られたコアに巻線をし、周波数100kHz、磁束密度200mTの測定条件下でコアロスを交流BHトレーサーより室温から140℃まで測定した。直流BHトレーサーで1194A/mでの磁束密度を100℃まで測定した。その後、インピーダンスアナライザーで透磁率の測定を行った。室温及び140℃でのコアロス、及びコアロスの極小温度、室温での100kHzの透磁率、100℃での飽和磁束密度を表1に示す。   Next, the obtained core was wound, and the core loss was measured from an AC BH tracer from room temperature to 140 ° C. under measurement conditions of a frequency of 100 kHz and a magnetic flux density of 200 mT. The magnetic flux density at 1194 A / m was measured up to 100 ° C. with a direct current BH tracer. Thereafter, the permeability was measured with an impedance analyzer. Table 1 shows the core loss at room temperature and 140 ° C., the minimum temperature of the core loss, the magnetic permeability at 100 kHz at room temperature, and the saturation magnetic flux density at 100 ° C.

Figure 2007311387
Figure 2007311387

試料1〜3は、本発明の実施例であり、試料4〜7は、主成分組成が特許請求範囲外の比較例である。また、試料29は従来例である。   Samples 1 to 3 are examples of the present invention, and samples 4 to 7 are comparative examples in which the main component composition is outside the scope of the claims. Sample 29 is a conventional example.

図1は、室温から140℃の温度範囲でのコアロスの温度特性を示した図である。表1、図1より、試料1〜3では、高い飽和磁束密度及び透磁率を示し、室温から140℃までコアロス(Pcv)が低くなっている事が分かる。   FIG. 1 is a diagram showing temperature characteristics of core loss in a temperature range from room temperature to 140 ° C. From Table 1 and FIG. 1, Samples 1 to 3 show high saturation magnetic flux density and magnetic permeability, and it is understood that the core loss (Pcv) is low from room temperature to 140 ° C.

主成分がFe23:54.0モル%、ZnO:11.0モル%、CuO:2.5モル%、残部をMnOとなる様に秤量し、ボールミルを用いて混合し、大気雰囲気中850℃で2時間仮焼し、副成分としてSiO2を0.001〜0.06wt%、CaOを0.005〜0.15wt%、Nb25を0.005〜0.15wt%、CoOを0.005〜0.55wt%した後、ボールミルで微粉砕を行った。微粉砕後、バインダーを添加し、スプレードライヤーにて造粒したその後、φ30×φ25×5mmのトロイダル形状に成形して、酸素分圧をコントロールした還元雰囲気中1250℃で6時間焼結した。 The main components were weighed so that Fe 2 O 3 : 54.0 mol%, ZnO: 11.0 mol%, CuO: 2.5 mol%, and the balance was MnO, and mixed using a ball mill. Calcination is performed at 850 ° C. for 2 hours. As auxiliary components, SiO 2 is 0.001 to 0.06 wt%, CaO is 0.005 to 0.15 wt%, Nb 2 O 5 is 0.005 to 0.15 wt%, CoO Was 0.005 to 0.55 wt%, and then pulverized with a ball mill. After finely pulverizing, a binder was added, granulated with a spray dryer, then formed into a toroidal shape of φ30 × φ25 × 5 mm, and sintered at 1250 ° C. for 6 hours in a reducing atmosphere with controlled oxygen partial pressure.

又、従来例として同様な方法により、Fe23:53.0モル%、MnO:35.0モル%、残部をZnOの主成分組成で、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加し、同条件にて試料を作製した。 In the same manner as the conventional example, Fe 2 O 3 : 53.0 mol%, MnO: 35.0 mol%, the balance is the main component composition of ZnO, SiO 2 is 0.03 wt% as a subcomponent, CaO. Of 0.05 wt% and Nb 2 O 5 of 0.05 wt% were added, and a sample was manufactured under the same conditions.

次に、得られたコアに巻線をし、周波数100kHz、磁束密度200mTの測定条件下でコアロスを交流BHトレーサーより室温から140℃まで測定した。直流BHトレーサーで1194A/mでの磁束密度を100℃まで測定した。その後、インピーダンスアナライザーで透磁率の測定を行った。室温及び140℃でのコアロス、及びコアロスの極小温度、室温での100kHzの透磁率、100℃での飽和磁束密度を表2に示す。   Next, the obtained core was wound, and the core loss was measured from an AC BH tracer from room temperature to 140 ° C. under measurement conditions of a frequency of 100 kHz and a magnetic flux density of 200 mT. The magnetic flux density at 1194 A / m was measured up to 100 ° C. with a direct current BH tracer. Thereafter, the permeability was measured with an impedance analyzer. Table 2 shows the core loss at room temperature and 140 ° C., the minimum temperature of the core loss, the magnetic permeability at 100 kHz at room temperature, and the saturation magnetic flux density at 100 ° C.

Figure 2007311387
Figure 2007311387

試料8〜15は、本発明の実施例であり、試料16〜23は、副成分組成が特許請求範囲外の比較例である。また、試料29は従来例である。表2より、試料8〜15では、室温から140℃まで低損失で、飽和磁束密度が高く、透磁率も高いことが分かる。   Samples 8 to 15 are examples of the present invention, and samples 16 to 23 are comparative examples whose subcomponent compositions are outside the scope of the claims. Sample 29 is a conventional example. Table 2 shows that Samples 8 to 15 have a low loss from room temperature to 140 ° C., a high saturation magnetic flux density, and a high magnetic permeability.

主成分がFe23:54.0モル%、ZnO:11.0モル%、CuO:2.5モル%、残部をMnOとなるように秤量し、ボールミルを用いて混合し、大気雰囲気中850℃で2時間仮焼し、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%、CoOを0.25wt%した後、ボールミルで微粉砕を行った。微粉砕後、バインダーを添加し、スプレードライヤーにて造粒した。その後、φ30×φ25×5mmのトロイダル形状に成形して、酸素分圧をコントロールした還元雰囲気中1180〜1350℃で6時間焼結した。 The main components are Fe 2 O 3 : 54.0 mol%, ZnO: 11.0 mol%, CuO: 2.5 mol%, the balance is weighed so as to be MnO, and they are mixed using a ball mill. After calcining at 850 ° C. for 2 hours, 0.03 wt% of SiO 2 , 0.05 wt% of CaO, 0.05 wt% of Nb 2 O 5 and 0.25 wt% of CoO as subcomponents are pulverized with a ball mill. Went. After fine pulverization, a binder was added and granulated with a spray dryer. Thereafter, it was formed into a toroidal shape of φ30 × φ25 × 5 mm and sintered at 1180 to 1350 ° C. for 6 hours in a reducing atmosphere in which the oxygen partial pressure was controlled.

又、従来例として同様な方法により、Fe23:53.0モル%、MnO:35.0モル%、残部:ZnOの主成分組成で、副成分としてSiO2を0.03wt%、CaOを0.05wt%、Nb25を0.05wt%添加し、同条件にて試料を作製した。 Further, as a conventional example, a main component composition of Fe 2 O 3 : 53.0 mol%, MnO: 35.0 mol%, balance: ZnO, 0.02 wt% of SiO 2 as an accessory component, CaO Of 0.05 wt% and Nb 2 O 5 of 0.05 wt% were added, and a sample was manufactured under the same conditions.

次に、得られたコアに巻線をし、周波数100kHz、磁束密度200mTの測定条件下でコアロスを交流BHトレーサーより室温から140℃まで測定した。直流BHトレーサーで1194A/mでの磁束密度を100℃まで測定した。その後、インピーダンスアナライザーで透磁率の測定を行った。室温及び140℃でのコアロス、及びコアロスの極小温度、室温での100kHzの透磁率、100℃での飽和磁束密度を表3に示す。   Next, the obtained core was wound, and the core loss was measured from an AC BH tracer from room temperature to 140 ° C. under measurement conditions of a frequency of 100 kHz and a magnetic flux density of 200 mT. The magnetic flux density at 1194 A / m was measured up to 100 ° C. with a direct current BH tracer. Thereafter, the permeability was measured with an impedance analyzer. Table 3 shows the core loss at room temperature and 140 ° C., the minimum temperature of the core loss, the magnetic permeability at 100 kHz at room temperature, and the saturation magnetic flux density at 100 ° C.

Figure 2007311387
Figure 2007311387

試料1、24、25は、本発明の実施例であり、試料26〜28は、焼結体の密度または、焼結体の結晶粒径が特許請求範囲外の比較例である。また、試料29は従来例である。表3より、焼結体密度が4.95g/cc以上、結晶粒径が10〜15μmである試料1,24,25では、室温から140℃まで低損失となっていて、飽和磁束密度が高く、透磁率も高いことが分かる。   Samples 1, 24, and 25 are examples of the present invention, and samples 26 to 28 are comparative examples in which the density of the sintered body or the crystal grain size of the sintered body is outside the scope of the claims. Sample 29 is a conventional example. From Table 3, Samples 1, 24 and 25 having a sintered body density of 4.95 g / cc or more and a crystal grain size of 10 to 15 μm have a low loss from room temperature to 140 ° C. and have a high saturation magnetic flux density. It can be seen that the magnetic permeability is also high.

本発明の実施例に係わる室温から140℃の温度範囲でのコアロスの温度特性を示す図。The figure which shows the temperature characteristic of the core loss in the temperature range from room temperature to 140 degreeC concerning the Example of this invention.

Claims (3)

主成分として、酸化鉄をFe23換算で52.0〜56.0モル%、酸化亜鉛をZnO換算で8.0〜13.0モル%、酸化銅をCuO換算で0〜5.0モル%(0を含まず)、残部が酸化マンガン(MnO)からなり、副成分として、酸化ケイ素をSiO2換算で0.005〜0.05wt%、酸化カルシウムをCaO換算で0.01〜0.1wt%、酸化ニオブをNb換算で0.01〜0.5wt%、酸化コバルトをCoO換算で0.01〜0.5wt%含有してなることを特徴とする酸化物磁性材料。 As the main component, 52.0 to 56.0 mol% of iron oxide calculated as Fe 2 O 3, zinc oxide from 8.0 to 13.0 mol% in terms of ZnO, the copper oxide in terms of CuO 0-5.0 mol% (not including 0), the balance being manganese oxide (MnO), as the minor component, 0.005 to 0.05% silicon oxide in terms of SiO 2, calcium oxide in terms of CaO from 0.01 to 0 An oxide magnetic material comprising: 1 wt%, niobium oxide in an amount of 0.01 to 0.5 wt% in terms of Nb 2 O 5 , and cobalt oxide in an amount of 0.01 to 0.5 wt% in terms of CoO. 焼結体の密度が4.95g/cc以上であることを特徴とする請求項1に記載の酸化物磁性材料。   The oxide magnetic material according to claim 1, wherein the density of the sintered body is 4.95 g / cc or more. 焼結体の結晶粒径が10〜15μmであることを特徴とする請求項1に記載の酸化物磁性材料。   2. The oxide magnetic material according to claim 1, wherein the sintered body has a crystal grain size of 10 to 15 μm.
JP2006136127A 2006-05-16 2006-05-16 Oxide magnetic material Pending JP2007311387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136127A JP2007311387A (en) 2006-05-16 2006-05-16 Oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136127A JP2007311387A (en) 2006-05-16 2006-05-16 Oxide magnetic material

Publications (1)

Publication Number Publication Date
JP2007311387A true JP2007311387A (en) 2007-11-29

Family

ID=38844009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136127A Pending JP2007311387A (en) 2006-05-16 2006-05-16 Oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2007311387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160022409A (en) * 2014-08-19 2016-03-02 현대모비스 주식회사 ferrite composition, ferrite magnetic substance using the same and method of fabricating ferrite magnetic substance
JP2018030762A (en) * 2016-08-25 2018-03-01 Jfeケミカル株式会社 MnZnCo-BASED FERRITE
JP2019199379A (en) * 2018-05-17 2019-11-21 株式会社トーキン HEAT RESISTANCE AND HIGH MAGNETIC PERMEABILITY MnZn FERRITE
WO2023182133A1 (en) * 2022-03-23 2023-09-28 戸田工業株式会社 MnZn-BASED FERRITE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198416A (en) * 1992-01-23 1993-08-06 Kawasaki Steel Corp Mn-zn based ferrite
JPH06283320A (en) * 1993-03-30 1994-10-07 Nippon Steel Corp Oxide magnetic material having high saturation flux density and its manufacture
JPH07130527A (en) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd Oxide magnetic material
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil
JP2003267777A (en) * 2002-03-15 2003-09-25 Kyocera Corp Ferrite material and ferrite core using the same
JP2004262710A (en) * 2003-02-28 2004-09-24 Jfe Chemical Corp Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198416A (en) * 1992-01-23 1993-08-06 Kawasaki Steel Corp Mn-zn based ferrite
JPH06283320A (en) * 1993-03-30 1994-10-07 Nippon Steel Corp Oxide magnetic material having high saturation flux density and its manufacture
JPH07130527A (en) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd Oxide magnetic material
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil
JP2003267777A (en) * 2002-03-15 2003-09-25 Kyocera Corp Ferrite material and ferrite core using the same
JP2004262710A (en) * 2003-02-28 2004-09-24 Jfe Chemical Corp Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160022409A (en) * 2014-08-19 2016-03-02 현대모비스 주식회사 ferrite composition, ferrite magnetic substance using the same and method of fabricating ferrite magnetic substance
KR102157808B1 (en) * 2014-08-19 2020-09-21 현대모비스 주식회사 ferrite composition, ferrite magnetic substance using the same and method of fabricating ferrite magnetic substance
JP2018030762A (en) * 2016-08-25 2018-03-01 Jfeケミカル株式会社 MnZnCo-BASED FERRITE
JP2019199379A (en) * 2018-05-17 2019-11-21 株式会社トーキン HEAT RESISTANCE AND HIGH MAGNETIC PERMEABILITY MnZn FERRITE
JP7037434B2 (en) 2018-05-17 2022-03-16 株式会社トーキン Heat resistance High magnetic permeability MnZn ferrite
WO2023182133A1 (en) * 2022-03-23 2023-09-28 戸田工業株式会社 MnZn-BASED FERRITE

Similar Documents

Publication Publication Date Title
JP5578766B2 (en) MnZn ferrite and transformer core
JP5181175B2 (en) Mn-Zn-Co ferrite
JP4129917B2 (en) Ferrite material and manufacturing method thereof
JP2007070209A (en) METHOD FOR PRODUCING Mn-Zn-BASED FERRITE
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP2007311387A (en) Oxide magnetic material
JP2006213532A (en) Mn-Zn-Co-BASED FERRITE MATERIAL
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JPH113813A (en) Ferrite material
JP5560436B2 (en) MnZnNi ferrite
JP2007297232A (en) Method for producing oxide magnetic material
JP6964556B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP5458298B2 (en) Mn-Zn ferrite material
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP6964555B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP2007031210A (en) Mn-Zn FERRITE
JP6416808B2 (en) MnZnCo ferrite
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JP5952236B2 (en) Mn-Zn-Ni ferrite and method for producing the same
JP2005272196A (en) Manganese-cobalt-zinc-based ferrite
JP2004035372A (en) Low loss ferrite material
JP2005187247A (en) Manufacturing method of low-loss oxide magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101104