JP2001233667A - Manganese-zinc-based ferrite for power supply - Google Patents

Manganese-zinc-based ferrite for power supply

Info

Publication number
JP2001233667A
JP2001233667A JP2000044081A JP2000044081A JP2001233667A JP 2001233667 A JP2001233667 A JP 2001233667A JP 2000044081 A JP2000044081 A JP 2000044081A JP 2000044081 A JP2000044081 A JP 2000044081A JP 2001233667 A JP2001233667 A JP 2001233667A
Authority
JP
Japan
Prior art keywords
mass
loss
range
power supply
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000044081A
Other languages
Japanese (ja)
Inventor
Akira Fujita
藤田  明
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000044081A priority Critical patent/JP2001233667A/en
Publication of JP2001233667A publication Critical patent/JP2001233667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an MnZn-based ferrite for a power supply suitable for applying to a switching power supply and having both low loss and a high strength. SOLUTION: This ferrite has a composition obtained by including at least one kind selected from 0.0050-0.1000 mass % of Ta2O5, 0.0100-0.1500 mass % of ZrO2, 0.0050-0.0500 mass % of Nb2O5 and 0.0050-0.0500 mass % of HfO2 with 0.0050-0.0200 mass % of Bi2O3, 0.0050-0.0500 mass % of SiO2 and 0.0200-0.2000 mass % of CaO in a basic component composed of 10.0-15.0 mol% of ZnO, 52.0-54.0 mol % of Fe2O3 and a residual amount of MnO.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スイッチング電源
用トランス等の磁心材料として好適な、強度が高くかつ
低損失な電源用MnZnフェライトに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, low-loss MnZn ferrite for a power supply, which is suitable as a magnetic core material for a switching power supply transformer or the like.

【0002】[0002]

【従来の技術】酸化物磁性材料は、フェライトと総称さ
れ、このフェライトはさらに、Baフェライト、Srフェラ
イト等の硬質磁性材料とMnZn系フェライト、NiZn系フェ
ライト等の軟質磁性材料に分けられる。軟質磁性材料と
は、非常に僅かな磁場に対しても十分に磁化する材料で
あり、電源、通信機器、計測制御機器、磁気記録および
コンピュータなどの幅広い分野で使用されている。そし
て、かような軟磁性材料に必要とされる特性としては、
保磁力が小さく透磁率が高いこと、飽和磁束密度が大き
いこと、低損失であることなどが挙げられる。
2. Description of the Related Art Oxide magnetic materials are collectively referred to as ferrites. These ferrites are further classified into hard magnetic materials such as Ba ferrite and Sr ferrite and soft magnetic materials such as MnZn ferrite and NiZn ferrite. A soft magnetic material is a material that sufficiently magnetizes even a very small magnetic field, and is used in a wide range of fields such as power supplies, communication devices, measurement and control devices, magnetic recording, and computers. And the characteristics required for such a soft magnetic material include:
Examples include low coercivity, high magnetic permeability, high saturation magnetic flux density, and low loss.

【0003】酸化物フェライト以外の軟磁性材料として
は、金属系のものがある。この金属系軟磁性材料は、飽
和磁束密度が高いため、この点酸化物系と比べると有利
ではあるが、その反面電気抵抗が低いため、高周波域で
使用する際には渦電流に起因する損失(磁気損失)が大
きくなってしまう。特に近年では、電子機器の小型化・
高密度化の要請から使用周波数の高周波化が進んでお
り、スイッチング電源等に用いられている 100 kHz程度
の周波数帯域では、従来の金属系材料では抵抗が低く、
渦電流損による発熱が大きくなるため、その使用はほと
んど不可能である。このような背景から、高周波帯域で
用いられる電源用トランスの磁心材料としては、MnZn系
フェライトを用いることが主流となっている。
As a soft magnetic material other than oxide ferrite, there is a metal-based soft magnetic material. This metallic soft magnetic material has a high saturation magnetic flux density and is therefore advantageous compared to this point oxide type.On the other hand, however, it has a low electric resistance, so when it is used in a high frequency range, the loss due to eddy currents occurs. (Magnetic loss) increases. Particularly in recent years, electronic equipment has become smaller and smaller.
Due to the demand for higher density, the operating frequency has been increasing, and in the frequency band of about 100 kHz used for switching power supplies, the resistance of conventional metallic materials is low,
It is almost impossible to use it because heat generation due to eddy current loss increases. From such a background, MnZn-based ferrite is mainly used as a magnetic core material of a power transformer used in a high frequency band.

【0004】ところで、電源用トランスの磁心材料とし
て用いられる電源用MnZn系フェライトに対しては、特に
低損失であることが要求される。磁性材料の低損失化に
ついては、損失を支配する要因として磁気異方性定数K
1 ならびに磁歪定数λが知られており、MnZn系フェライ
トにおいても、これらのパラメータが損失を最小とする
ようなMnO−ZnO−Fe2O3 三元系の組成が、従来から選
択されている。
[0004] By the way, as a core material of a power supply transformer,
Especially for power-supply MnZn-based ferrites
Low loss is required. For low loss of magnetic material
As a factor controlling the loss, the magnetic anisotropy constant K
1 In addition, the magnetostriction constant λ is known, and MnZn ferrite
These parameters also minimize the loss
MnO-ZnO-FeTwoOThree The ternary composition has been
Has been selected.

【0005】すなわち、損失が小さくなる組成領域と
は、電源用トランスの動作温度(80℃前後)において、
磁気異方性定数K1 ならびに飽和磁歪定数λs がともに
小さい三元系の組成領域である。また、MnZn系フェライ
トの損失は大きな温度依存性を有しており、損失は室温
から温度が高まるにつれて低下し、最小温度を境に増加
に転じる。電源用トランスの動作温度が50〜80℃であっ
ても、周囲の電子部品の温度上昇や使用環境温度によっ
て、トランスの温度がしばしば 100℃近くなる場合もあ
り得る。このような条件を想定し、またMnZn系フェライ
トの損失の温度依存性を考慮して、現行の電源用トラン
ス磁心材料では、損失が最小となる温度が90〜100 ℃付
近となるように材料設計されている。
In other words, the composition region where the loss is small is defined by the operating temperature (around 80 ° C.) of the power transformer.
This is a ternary composition region in which both the magnetic anisotropy constant K 1 and the saturation magnetostriction constant λs are small. Further, the loss of the MnZn-based ferrite has a large temperature dependence, and the loss decreases as the temperature increases from room temperature, and starts to increase after the minimum temperature. Even when the operating temperature of the power transformer is 50 to 80 ° C., the temperature of the transformer can often be close to 100 ° C. due to a rise in the temperature of surrounding electronic components and the use environment temperature. Considering these conditions and considering the temperature dependence of the loss of MnZn-based ferrite, the material design of the current transformer core material is such that the temperature at which the loss is minimized is around 90-100 ° C. Have been.

【0006】磁気異方性定数K1 ならびに磁歪定数λな
どは主組成によって決まり、これらが損失に影響を及ぼ
すが、MnZn系フェライトの場合は、微量添加成分によっ
ても損失が変わってくる。すなわち、焼結体の密度を向
上させるとか、粒界抵抗を高め、焼結体全体の比抵抗を
高めて渦電流損失を低減させることにより、全損失を低
減させることができる。たとえば、特開昭58−15037 号
公報や特開平3−184307号公報に開示されているよう
に、数百ppm 程度の微量添加で損失を低減させ得る添加
成分もある。
The magnetic anisotropy constant K 1 and the magnetostriction constant λ are determined by the main composition, and these influence the loss. In the case of the MnZn-based ferrite, the loss varies depending on a small amount of added components. That is, the total loss can be reduced by improving the density of the sintered body, increasing the grain boundary resistance, and increasing the specific resistance of the entire sintered body to reduce the eddy current loss. For example, as disclosed in JP-A-58-15037 and JP-A-3-184307, there are additive components that can reduce the loss by adding a small amount of about several hundred ppm.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、MnZn系
フェライトのMnO−ZnO−Fe2O3 三元系の組成によって
は、このような添加成分の添加量を増やしていくにつれ
て、焼結体の曲げ強度、抗折強度といった強度が著しく
低下し、加工時にチッピングが生じたり、最終的に製品
としたとき、あるいは部品として他の電子部品と共に電
子機器に組み込んだ際に、割れが生じることがあった。
本発明は、上記の問題を有利に解決するもので、スイッ
チング電源に適用して好適な、低損失であると同時に強
度の高い、電源用MnZn系フェライトを提案することを目
的とする。
[SUMMARY OF THE INVENTION However, depending on the composition of MnO-ZnO-Fe 2 O 3 ternary MnZn ferrite, as we increase the amount of such additional components, the bending of the sintered body Strength such as strength and bending strength was significantly reduced, chipping occurred during processing, and cracks sometimes occurred when finally manufactured as products, or when incorporated into other electronic components as electronic components with other electronic components .
SUMMARY OF THE INVENTION The present invention advantageously solves the above problems, and has as its object to propose a low-loss, high-strength MnZn-based ferrite for power supply suitable for application to a switching power supply.

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、上に
述べた課題を解決するために、添加成分の焼結体強度に
及ぼす影響について種々検討を重ねた結果、Bi2O3 を併
せて添加することによって、損失値をほとんど変化させ
ることなしに、強度を効果的に向上させ得ることの知見
を得た。本発明は、上記の知見に立脚するものである。
SUMMARY OF THE INVENTION Now, the inventors have found that in order to solve the problems described above, a result of extensive studies about the effects on the sintered body strength additive components, the Bi 2 O 3 It has been found that the strength can be effectively improved by adding them together with little change in the loss value. The present invention is based on the above findings.

【0009】すなわち、本発明は、下記の成分組成にな
る基本成分中に、Bi2O3 : 0.0050〜0.0200mass%、SiO2
: 0.0050〜0.0500mass%およびCaO : 0.0200〜0.20
00mass%と共に、Ta2O5 : 0.0050〜0.1000mass%、ZrO2
: 0.0100〜0.1500mass%、Nb2O5 : 0.0050〜0.0500ma
ss%およびHfO2 : 0.0050〜0.0500mass%のうちから選
んだ少なくとも一種を含有させたことを特徴とする電源
用MnZn系フェライトである。
Accordingly, the present invention is, in the basic component comprising a component composition below, Bi 2 O 3: 0.0050~0.0200mass% , SiO 2
: 0.0050 to 0.0500 mass% and CaO: 0.0200 to 0.20
Ta 2 O 5 : 0.0050-0.1000 mass%, ZrO 2 together with 00 mass%
: 0.0100 ~ 0.1500mass%, Nb 2 O 5 : 0.0050 ~ 0.0500ma
ss% and HfO 2: a power source for MnZn ferrite which is characterized in that is contains at least one selected from among 0.0050~0.0500mass%.

【0010】本発明のMnZn系フェライトでは、 100×10
6 N/m2以上の曲げ強度を得ることができる。また、本発
明のMnZn系フェライトにおいて、損失が最小となる温度
は80〜120℃の範囲である。
In the MnZn ferrite of the present invention, 100 × 10
A bending strength of 6 N / m 2 or more can be obtained. In the MnZn-based ferrite of the present invention, the temperature at which the loss is minimized is in the range of 80 to 120 ° C.

【0011】[0011]

【発明の実施の形態】以下、本発明において、MnZn系フ
ェライトの成分組成を上記の範囲に限定した理由につい
て説明する。まず、基本成分組成を、ZnO:10.0〜15.0
mol%、 Fe2O3:52.0〜54.0 mol%、MnO:残部の範囲
に限定した理由について説明する。前述したように、電
源用フェライトに求められる磁気特性としては、飽和磁
束密度が大きいこと、キュリー温度が高いことおよび損
失が小さいことが挙げられるが、このうち飽和磁束密度
およびキュリー温度は、基本成分であるMnO、ZnOおよ
びFe2O3 の配合比でほぼ決定される。すなわち、ZnOの
量が少ない領域では、ZnO量の増加に伴って飽和磁束密
度が増加するが、これと同時にキュリー温度は低下す
る。さらにZnO量が多くなると、飽和磁束密度が低下す
る。同じMnZn系フェライト材料であっても、高透磁率を
目的にした材料では、ZnO量を多くして飽和磁歪の小さ
い成分組成である20 mol%付近の組成を選択し、飽和磁
束密度を犠牲にしても透磁率が高くなる組成としてい
る。ここに、ZnO量が多いこの組成では焼結体密度が高
くて強度的には問題がなく、強度が問題とされるのはZn
O量が15 mol%以下の範囲である。逆に、80〜120 ℃の
温度域における損失を考慮すると、ZnO量が少ない組成
の方が有利であるが、ZnO量が10 mol%より少なくなる
と損失がかえって増大する。従って、ZnO量は10 mol%
以上、15 mol%以下の範囲とした。より好ましくは10 m
ol%以上、14 mol%以下である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the reason why the composition of the MnZn-based ferrite in the present invention is limited to the above range will be described. First, the basic component composition was changed to ZnO: 10.0 to 15.0.
mol%, Fe 2 O 3: 52.0~54.0 mol%, MnO: explained reasons for limiting the range of the balance. As described above, the magnetic properties required for power ferrites include high saturation magnetic flux density, high Curie temperature, and low loss. Of these, the saturation magnetic flux density and Curie temperature are the basic components. Is substantially determined by the mixing ratio of MnO, ZnO and Fe 2 O 3 . That is, in a region where the amount of ZnO is small, the saturation magnetic flux density increases with an increase in the amount of ZnO, but at the same time, the Curie temperature decreases. As the ZnO content further increases, the saturation magnetic flux density decreases. Even for the same MnZn-based ferrite material, if the material aimed at high magnetic permeability, increase the ZnO content and select a composition around 20 mol%, which is a component composition with small saturation magnetostriction, at the expense of saturation magnetic flux density. Even so, the composition has a high magnetic permeability. Here, in this composition having a large amount of ZnO, the density of the sintered body is high and there is no problem in the strength.
The amount of O is in the range of 15 mol% or less. Conversely, considering the loss in the temperature range of 80 to 120 ° C., a composition having a small amount of ZnO is more advantageous, but if the amount of ZnO is less than 10 mol%, the loss is rather increased. Therefore, the amount of ZnO is 10 mol%
As described above, the range is set to 15 mol% or less. More preferably 10 m
ol% or more and 14 mol% or less.

【0012】損失が最小となる温度も、先に述べたよう
に基本成分によって決まる。損失が最小となる温度を、
80〜120 ℃の範囲にするためには、ZnO:10 mol%に対
してFe2O3 は54.0 mol%程度、ZnO:15 mol%に対して
Fe2O3は52.0 mol%程度となり、この組成範囲から外れ
ると、80〜120 ℃の温度域での損失値が増大する。従っ
て、Fe2O3 量は52.0 mol%から54.0 mol%の範囲とし、
残部をMnOとしたのである。より好ましい Fe2O3量は5
2.5〜53.8 mol%である。
The temperature at which the loss is minimized also depends on the basic components as described above. The temperature at which the loss is minimized is
In order to maintain the temperature in the range of 80 to 120 ° C., about 54.0 mol% of Fe 2 O 3 and 10 mol% of ZnO:
The content of Fe 2 O 3 is about 52.0 mol%, and if it falls outside this composition range, the loss value in the temperature range of 80 to 120 ° C. increases. Therefore, the amount of Fe 2 O 3 is in the range of 52.0 mol% to 54.0 mol%,
The balance was MnO. More preferable Fe 2 O 3 amount is 5
2.5 to 53.8 mol%.

【0013】以上、基本成分に関して説明したが、次に
添加成分について説明する。まず、SiO2,CaOを含有さ
せることは、焼結性を高めかつ粒界相を高抵抗化して低
損失を実現する上で不可欠である。すなわち、SiO2は、
焼結を促進させる効果があり、この効果を引き出すため
には0.0050mass%以上含有させる必要があるが、多すぎ
ると異常粒成長を起こすため上限は0.0500mass%とし
た。ただし、この上限付近の含有量では焼結温度を下げ
る等の配慮が必要である。また、含有量が比較的多い場
合は、最適な粒界の制御が難しいので、好ましくは0.00
50〜0.0350mass%の範囲で含有させる。
The basic components have been described above. Next, additional components will be described. First, the inclusion of SiO 2 and CaO is indispensable for improving sinterability and increasing the resistance of the grain boundary phase to achieve low loss. That is, SiO 2
It has the effect of promoting sintering, and it is necessary to contain 0.0050 mass% or more in order to bring out this effect. However, if it is too much, abnormal grain growth occurs, so the upper limit was made 0.0500 mass%. However, when the content is near the upper limit, it is necessary to take measures such as lowering the sintering temperature. Further, when the content is relatively large, it is difficult to control the optimal grain boundaries, so preferably 0.00
It is contained in the range of 50 to 0.0350 mass%.

【0014】また、CaOは、SiO2と共に粒界を高抵抗化
して損失を小さくする作用があるが、含有量が0.0200ma
ss%未満ではその効果に乏しく、一方0.2000mass%を超
えると焼結性に問題が生じるので、CaO量は0.0200〜0.
2000mass%の範囲で含有させるものとした。なお、SiO2
量が少ない場合には、CaO量は0.0200〜0.1250mass%の
範囲で含有させることが好ましい。
Although CaO has the effect of increasing the resistance of the grain boundaries together with SiO 2 to reduce the loss, the content of CaO is 0.0200 ma.
If the content is less than ss%, the effect is poor, while if it exceeds 0.2000 mass%, there is a problem in sinterability.
It was contained in the range of 2000 mass%. Note that SiO 2
When the amount is small, the CaO amount is preferably contained in the range of 0.0200 to 0.1250 mass%.

【0015】さらに、これらに加えて、スピネルを形成
しない Ta2O5, ZrO2, Nb2O5, HfO2等を微量含有させる
ことにより、損失の少ない高性能な電源用MnZn系フェラ
イトとすることができる。しかしながら、発明者らの調
査によれば、含有量の増加に伴って強度が低下するこ
と、しかもかかる強度低下は、添加成分の種類によらず
含有量で決まることが明らかとなった。
Furthermore, by adding a small amount of Ta 2 O 5 , ZrO 2 , Nb 2 O 5 , HfO 2, etc. which do not form a spinel, a high-performance MnZn ferrite for power supply with little loss can be obtained. be able to. However, according to the investigation by the inventors, it has been clarified that the strength decreases with an increase in the content, and that the strength reduction is determined by the content regardless of the type of the additive component.

【0016】この原因については、欠けや割れが生じた
破面を観察したところ、粒界での割れよりも粒内での割
れが多いことから、焼結が不足しているためではなく、
結晶粒に応力が加わることに起因しているものと考えら
れる。すなわち、これらの添加成分は、粒界抵抗を高め
る効果があるが、それと同時に結晶粒に対して応力を生
み出していると考えられるのである。もっとも、これら
の添加成分を含んだものでも焼成条件次第ではそれらの
応力を少なくすることは可能である。例えば、焼結を進
ませる焼成初期に、昇温に時間をかけると共に、焼成後
の冷却速度を遅らせることにより、添加成分の粒界偏析
を軽減して結晶粒にかかる歪みを最小限にすることがで
きる。ただし、その場合は、焼成時間が長くなり、実際
の生産工程では能率の面から好ましくない。
The reason for this is that the observation of the fractured surface where chipping or cracking has occurred is not due to insufficient sintering because there are more cracks in the grains than in the grain boundaries.
This is considered to be due to stress being applied to the crystal grains. That is, it is considered that these added components have an effect of increasing the grain boundary resistance, but at the same time, generate stress on the crystal grains. However, even those containing these additional components can reduce their stress depending on the firing conditions. For example, in the early stage of sintering to advance sintering, take time to raise the temperature and delay the cooling rate after sintering to reduce grain boundary segregation of added components and minimize strain on crystal grains. Can be. However, in that case, the firing time becomes long, which is not preferable in an actual production process from the viewpoint of efficiency.

【0017】そこで、発明者らは、この点について鋭意
研究を重ねた結果、上記した粒界抵抗を高める元素と共
に、Bi2O3 を併せて含有させることが、この問題の解決
に極めて有効であることを突き止めた。このように、粒
界抵抗を高める元素と共に、Bi2O3 を複合含有させるこ
とが、本発明の最大の特徴であり、かくして損失を増大
させることなしに、強度の有利な向上が達成されるので
ある。しかしながら、Bi2O3 含有量があまりに少ないと
強度改善効果がなく、逆に多すぎると異常粒成長を引き
起こして損失の急激な増大を招くことから、Bi2O3 量は
0.0050〜0.0200mass%の範囲で含有させるものとした。
Therefore, the present inventors have conducted intensive studies on this point, and as a result, it is extremely effective to solve the problem by including Bi 2 O 3 together with the above-mentioned element for increasing the grain boundary resistance. I found something. Thus, it is the greatest feature of the present invention to contain Bi 2 O 3 in combination with the element that increases the grain boundary resistance, and thus an advantageous improvement in strength is achieved without increasing loss. It is. However, Bi 2 O 3 content is too small, no strength improving effect, since it leads to a sharp increase in loss caused too much when abnormal grain growth Conversely, Bi 2 O 3 amount
The content was set in the range of 0.0050 to 0.0200 mass%.

【0018】なお、上記した各種の粒界抵抗改善成分の
適正含有量については次のとおりである。Ta2O5 は、Si
O2, CaOとの共存下で比抵抗の増大に有効に寄与する
が、含有量が0.0050mass%に満たないとその添加効果に
乏しく、一方 0.1000mass %を超えると逆に損失の増大
を招く。従って、Ta2O5 は0.0050〜0.1000mass%の範囲
で含有させるものとした。より好ましい範囲は0.0100〜
0.0800mass%である。ZrO2は、Ta2O5 と同様、SiO2, Ca
Oとの共存下で、粒界の抵抗を高めて高周波域での損失
の低減に有効に寄与する。抵抗増加の割合は Ta2O5と比
べると幾分低いけれども、損失低減の寄与は大きく、特
に最小温度付近から高温側での損失低減に寄与してい
る。ここに、ZrO2量が0.0100mass%未満ではその効果に
乏しく、一方0.1500mass%を超えると逆に比抵抗を高め
る効果が低減し、損失が増大するので、ZrO2量は0.0100
〜0.1500mass%の範囲とした。より好ましくは、0.0100
〜0.1000mass%の範囲である。Nb2O5 は、SiO2, CaOと
粒界相を形成し、粒界抵抗を高めて損失低減に有効に寄
与する。しかしながら、含有量が0.0050mass%未満では
その効果に乏しく、一方0.0500mass%を超えると過剰に
粒界相に析出し、かえって損失の増大を招くので、Nb2O
5 量は0.0050〜0.0500mass%の範囲に限定した。最も顕
著な効果が得られるのは0.0500〜0.0250mass%の範囲で
ある。HfO2は、ZrO2と同様、粒界抵抗を高める働きがあ
る。しかしながら、あまりに少ないと損失改善効果に乏
しく、一方多すぎると損失が増大するので、0.0050〜0.
0500mass%の範囲に限定した。また、比較的高価な元素
であるので、0.0050〜0.0300mass%の範囲で添加するの
が好ましい。本発明のMnZn系フェライトは、低損失であ
るので、電源用として最適である。
The proper contents of the various components for improving the grain boundary resistance described above are as follows. Ta 2 O 5 is Si
It effectively contributes to an increase in specific resistance in the presence of O 2 and CaO. However, if the content is less than 0.0050 mass%, the effect of its addition is poor. On the other hand, if the content exceeds 0.1000 mass%, loss increases. . Therefore, Ta 2 O 5 is assumed to be contained in the range of 0.0050~0.1000mass%. A more preferred range is from 0.0100 to
0.0800 mass%. ZrO 2 is, like Ta 2 O 5 , SiO 2 , Ca
In the coexistence with O, the resistance of the grain boundary is increased, which effectively contributes to the reduction of loss in a high frequency range. Although the ratio of the increase in resistance is somewhat lower than that of Ta 2 O 5 , the contribution of the loss reduction is large, particularly from the minimum temperature to the high temperature side. Here, poor in its effect ZrO 2 content is less than 0.0100Mass%, whereas when it exceeds 0.1500Mass% reduces the effect of increasing the specific resistance Conversely, since loss increases, ZrO 2 amount 0.0100
It was in the range of 0.1500 mass%. More preferably, 0.0100
It is in the range of ~ 0.1000 mass%. Nb 2 O 5 forms a grain boundary phase with SiO 2 and CaO, increases grain boundary resistance and effectively contributes to loss reduction. However, poor its effect is less than the content 0.0050 mass%, whereas when it exceeds 0.0500Mass% excess precipitated in the grain boundary phase, so rather causes an increase in losses, Nb 2 O
The amount of 5 was limited to the range of 0.0050 to 0.0500 mass%. The most remarkable effect is obtained in the range of 0.0500 to 0.0250 mass%. HfO 2 has the function of increasing the grain boundary resistance, like ZrO 2 . However, if the amount is too small, the loss improving effect is poor, while if the amount is too large, the loss increases.
The range was limited to 0500 mass%. Since it is a relatively expensive element, it is preferable to add it in the range of 0.0050 to 0.0300 mass%. Since the MnZn-based ferrite of the present invention has low loss, it is most suitable for a power supply.

【0019】[0019]

【実施例】実施例1 最終的に表1に示す組成となるように、基本成分の原料
を配合したのち、ボールミルを用いて湿式混合を16時間
かけて行い、その後乾燥した。この混合粉を、大気雰囲
気中にて 970℃、2時間仮焼した。ついで、この仮焼粉
に対し、SiO2,CaC03, Bi2O3, Ta2O5 およびHfO2をそれ
ぞれ、SiO2:0.08mass%、CaC03 :0.13mass%、Bi2O
3 :0.0150mass%、Ta2O5 :0.04mass%およびHfO2:0.
02mass%となるように添加し、再度ボールミルを用いて
湿式混合粉砕した後、乾燥した。この粉末に、5mass%
ポリビニルアルコール水溶液を10mass%加えたのち、造
粒してから、外径:36mm、内径:24mm、高さ:12mmのリ
ングおよび長さ:60mm、幅:12mm、厚さ:6mmの直方体
に成形し、酸素分圧を制御した窒素・空気混合ガス雰囲
気中にて1330℃、3時間の焼成を行った。この時、全体
の焼成時間は10時間であった。
EXAMPLES Example 1 After the raw materials of the basic components were finally blended so as to have the composition shown in Table 1, wet mixing was performed using a ball mill for 16 hours, and then dried. This mixed powder was calcined in an air atmosphere at 970 ° C. for 2 hours. Then, SiO 2 , CaC 0 3 , Bi 2 O 3 , Ta 2 O 5 and HfO 2 were added to the calcined powder, SiO 2 : 0.08 mass%, CaC 0 3 : 0.13 mass%, Bi 2 O, respectively.
3: 0.0150mass%, Ta 2 O 5: 0.04mass% and HfO 2: 0.
It was added so as to have a concentration of 02 mass%, wet-mixed and pulverized again using a ball mill, and then dried. 5 mass% to this powder
After adding 10% by mass of an aqueous solution of polyvinyl alcohol, the mixture is granulated and then molded into a rectangular parallelepiped having an outer diameter of 36 mm, an inner diameter of 24 mm, a height of 12 mm and a length of 60 mm, a width of 12 mm and a thickness of 6 mm. Then, firing was performed at 1330 ° C. for 3 hours in a nitrogen / air mixed gas atmosphere in which the oxygen partial pressure was controlled. At this time, the entire baking time was 10 hours.

【0020】[0020]

【表1】 [Table 1]

【0021】このようにして得られた焼結体リング試料
に、巻線を施し(1次側:5巻・2次側:5巻)、周波
数:100 kHz 、最大磁束密度:200 mTの条件下における
損失を、交流BHトレーサーにより0〜120 ℃の温度範
囲にわたって測定した。温度に対する損失の変化を図1
に示す。また、直方体試料は、長さ:50mm、幅:10mm、
厚さ:5mmの直方体に加工し、JIS C 2561で定義された
3点曲げ試験を行った。この強度試験結果を、ZnO量と
の関係で図2に示す。また、比較のため、上に述べた組
成でBi2O3 のみを除外した組成で作製した直方体試料の
強度について測定した結果も併せて示す。
The sintered ring sample thus obtained is wound (primary side: 5 windings, secondary side: 5 windings) under the following conditions: frequency: 100 kHz, maximum magnetic flux density: 200 mT. The loss below was measured by an AC BH tracer over a temperature range of 0-120 ° C. Figure 1 shows the change in loss with temperature
Shown in The rectangular parallelepiped sample has a length of 50 mm, a width of 10 mm,
A rectangular parallelepiped having a thickness of 5 mm was processed and subjected to a three-point bending test defined in JIS C 2561. FIG. 2 shows the results of the strength test in relation to the amount of ZnO. In addition, for comparison, the results of the measurement of the strength of a rectangular parallelepiped sample manufactured with the above-described composition excluding only Bi 2 O 3 are also shown.

【0022】図1から明らかなように、本発明の成分組
成範囲を満足するものはいずれも、約90℃前後で損失が
最小となり、またその絶対値も小さくなっている。ま
た、図2に示したように、ZnOの増加に伴って強度は変
化するが、本発明の組成範囲内のものは、適正なZnO量
範囲において十分に高い強度が得られたのに対し、Bi2O
3 を除外した組成では、強度が不足している。
As is evident from FIG. 1, all of the components satisfying the component composition range of the present invention have a minimum loss at about 90 ° C., and their absolute values are also small. Further, as shown in FIG. 2, although the strength changes with an increase in ZnO, those in the composition range of the present invention obtained sufficiently high strength in an appropriate ZnO amount range, Bi 2 O
The composition excluding 3 has insufficient strength.

【0023】実施例2 最終組成としてZnO: Fe2O3:MnOが11.7:52.9:35.4
のモル比となるように調整した主成分組成について、実
施例1と同様に仮焼粉を作製し、表2で示した各種酸化
物を添加したのち、粉砕、成形したものを、酸素分圧を
制御した窒素・空気混合ガス中にて1200〜1350℃の温度
で2〜6時間焼成した。このようにして得られた焼結体
試料に、実施例1と同様に巻き線を施し、周波数:100k
Hz、最大磁束密度:200 mTの条件下での損失を測定し
た。90℃における損失値Pcvを表2に示す。また、実施
例1と同様に直方体の焼結体試料について3点曲げ強度
試験を行い、その強度σ3bも表2に併せて示す。
Example 2 ZnO: Fe 2 O 3 : MnO was 11.7: 52.9: 35.4 as the final composition.
A calcined powder was prepared in the same manner as in Example 1 with respect to the main component composition adjusted to have a molar ratio of, and various oxides shown in Table 2 were added thereto. Was calcined at a temperature of 1200 to 1350 ° C. for 2 to 6 hours in a mixed gas of nitrogen and air. The sintered body sample thus obtained was wound in the same manner as in Example 1, and the frequency: 100 k
Hz, the maximum magnetic flux density: The loss under the condition of 200 mT was measured. Table 2 shows the loss value Pcv at 90 ° C. Further, a three-point bending strength test was performed on the rectangular parallelepiped sintered body sample in the same manner as in Example 1, and the strength σ 3b is also shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、本発明の成分組
成範囲を満足するものはいずれも、低損失であり、また
Bi2O3 の添加効果によって強度も 100×106 N/m2以上と
なっている。
As is evident from Table 2, those satisfying the component composition range of the present invention have low loss,
The strength is also 100 × 10 6 N / m 2 or more due to the effect of adding Bi 2 O 3 .

【0026】[0026]

【発明の効果】かくして、本発明によれば、スイッチン
グ電源トランス等の磁心材料に適した、低損失でかつ強
度の高い電源用MnZnフェライトを安定して得ることがで
き、その工業的価値は極めて大きい。
Thus, according to the present invention, a low-loss and high-strength MnZn ferrite for a power supply suitable for a magnetic core material such as a switching power supply transformer can be stably obtained, and its industrial value is extremely high. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 周波数:100kHz、最大磁束密度:200 mTの条
件下での損失を、測定温度をパラメータとして示したグ
ラフである。
FIG. 1 is a graph showing a loss under a condition of a frequency: 100 kHz and a maximum magnetic flux density: 200 mT, using a measured temperature as a parameter.

【図2】 3点曲げ強度とMnZnフェライト中のZnO量と
の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the three-point bending strength and the amount of ZnO in MnZn ferrite.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA07 AB01 AD03 AE02 4G018 AA01 AA08 AA11 AA16 AA18 AA19 AA21 AA25 AA31 AA37 AB02 AC01 AC05 AC14 5E041 AB02 CA03 NN02  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4G002 AA07 AB01 AD03 AE02 4G018 AA01 AA08 AA11 AA16 AA18 AA19 AA21 AA25 AA31 AA37 AB02 AC01 AC05 AC14 5E041 AB02 CA03 NN02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の成分組成になる基本成分中に、 Bi2O3 : 0.0050〜0.0200mass%、 SiO2 : 0.0050〜0.0500mass%および CaO : 0.0200〜0.2000mass%と共に、 Ta2O5 : 0.0050〜0.1000mass%、 ZrO2 : 0.0100〜0.1500mass%、 Nb2O5 : 0.0050〜0.0500mass%および HfO2 : 0.0050〜0.0500mass% のうちから選んだ少なくとも一種を含有させたことを特
徴とする電源用MnZn系フェライト。
1. A basic component comprising a component composition below, Bi 2 O 3: 0.0050~0.0200mass% , SiO 2: 0.0050~0.0500mass% and CaO: with 0.0200~0.2000mass%, Ta 2 O 5: 0.0050~0.1000mass%, ZrO 2: 0.0100~0.1500mass% , Nb 2 O 5: 0.0050~0.0500mass% and HfO 2: characterized that it contained at least one selected from among 0.0050~0.0500Mass% MnZn ferrite for power supply.
JP2000044081A 2000-02-22 2000-02-22 Manganese-zinc-based ferrite for power supply Pending JP2001233667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044081A JP2001233667A (en) 2000-02-22 2000-02-22 Manganese-zinc-based ferrite for power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044081A JP2001233667A (en) 2000-02-22 2000-02-22 Manganese-zinc-based ferrite for power supply

Publications (1)

Publication Number Publication Date
JP2001233667A true JP2001233667A (en) 2001-08-28

Family

ID=18566903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044081A Pending JP2001233667A (en) 2000-02-22 2000-02-22 Manganese-zinc-based ferrite for power supply

Country Status (1)

Country Link
JP (1) JP2001233667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424573A (en) * 2011-09-05 2012-04-25 苏州冠达磁业有限公司 Wide-temperature range low-loss Mn-Zn ferrite and its preparation method
US8404142B2 (en) * 2008-01-23 2013-03-26 Jfe Chemical Corporation MnZn ferrite and a transformer magnetic core
CN109626985A (en) * 2019-01-29 2019-04-16 山东春光磁电科技有限公司 Ultrahigh frequency high-impedance MnZn ferrite material
CN112723873A (en) * 2021-02-05 2021-04-30 天通控股股份有限公司 Broadband high-impedance high-permeability MnZn soft magnetic ferrite and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272918A (en) * 1994-03-31 1995-10-20 Kawasaki Steel Corp High-permeability magnetic material
JPH0845725A (en) * 1994-07-29 1996-02-16 Sumitomo Special Metals Co Ltd Low loss oxide material
JPH08169756A (en) * 1994-12-19 1996-07-02 Kawasaki Steel Corp Low loss manganese-zinc ferrite core and its production
JPH10335130A (en) * 1997-06-03 1998-12-18 Kawasaki Steel Corp Mn-zn ferrite material
JPH11135317A (en) * 1997-08-29 1999-05-21 Tdk Corp Manganese, zinc-based ferrite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272918A (en) * 1994-03-31 1995-10-20 Kawasaki Steel Corp High-permeability magnetic material
JPH0845725A (en) * 1994-07-29 1996-02-16 Sumitomo Special Metals Co Ltd Low loss oxide material
JPH08169756A (en) * 1994-12-19 1996-07-02 Kawasaki Steel Corp Low loss manganese-zinc ferrite core and its production
JPH10335130A (en) * 1997-06-03 1998-12-18 Kawasaki Steel Corp Mn-zn ferrite material
JPH11135317A (en) * 1997-08-29 1999-05-21 Tdk Corp Manganese, zinc-based ferrite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404142B2 (en) * 2008-01-23 2013-03-26 Jfe Chemical Corporation MnZn ferrite and a transformer magnetic core
CN102424573A (en) * 2011-09-05 2012-04-25 苏州冠达磁业有限公司 Wide-temperature range low-loss Mn-Zn ferrite and its preparation method
CN109626985A (en) * 2019-01-29 2019-04-16 山东春光磁电科技有限公司 Ultrahigh frequency high-impedance MnZn ferrite material
CN112723873A (en) * 2021-02-05 2021-04-30 天通控股股份有限公司 Broadband high-impedance high-permeability MnZn soft magnetic ferrite and preparation method thereof
CN112723873B (en) * 2021-02-05 2023-06-02 天通控股股份有限公司 Broadband high-impedance high-permeability MnZn soft magnetic ferrite and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3968188B2 (en) Ferrite
JP2007150006A (en) Magnetic property recovery method of ferrite core
JP3917216B2 (en) Low loss ferrite core material
JP5089963B2 (en) Method for producing MnZnNi ferrite
JPH06120022A (en) Oxide magnetic material
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP2001342058A (en) METHOD FOR PRODUCING MnZn-BASED FERRITE, MnZn-BASED FERRITE, AND FERRITE CORE FOR POWER SOURCE
JP2000331817A (en) Ferrite
JP3597673B2 (en) Ferrite material
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP2001261344A (en) Mn-zn ferrite and method of producing the same
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2001233667A (en) Manganese-zinc-based ferrite for power supply
JP2008169072A (en) Mn-Zn FERRITE
JP3597666B2 (en) Mn-Ni ferrite material
JP3790606B2 (en) Mn-Co ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP6416808B2 (en) MnZnCo ferrite
KR101990781B1 (en) Ferrite and transformer
JP2019006668A (en) MnZnNiCo-BASED FERRITE AND PRODUCTION METHOD THEREFOR
JP2019199378A (en) MnZnNiCo-based ferrite and method for producing the same
JP2001261345A (en) Mn-zn ferrite and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005