JP4813016B2 - High saturation magnetic flux density Mn-Zn-Ni ferrite - Google Patents

High saturation magnetic flux density Mn-Zn-Ni ferrite Download PDF

Info

Publication number
JP4813016B2
JP4813016B2 JP2003420414A JP2003420414A JP4813016B2 JP 4813016 B2 JP4813016 B2 JP 4813016B2 JP 2003420414 A JP2003420414 A JP 2003420414A JP 2003420414 A JP2003420414 A JP 2003420414A JP 4813016 B2 JP4813016 B2 JP 4813016B2
Authority
JP
Japan
Prior art keywords
ferrite
flux density
magnetic flux
magnetic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003420414A
Other languages
Japanese (ja)
Other versions
JP2005179103A (en
Inventor
藤田  明
聡志 後藤
Original Assignee
Jfeフェライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeフェライト株式会社 filed Critical Jfeフェライト株式会社
Priority to JP2003420414A priority Critical patent/JP4813016B2/en
Publication of JP2005179103A publication Critical patent/JP2005179103A/en
Application granted granted Critical
Publication of JP4813016B2 publication Critical patent/JP4813016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、スイッチング電源等の電源トランス、特にフライバック方式の電源トランス等に用いて好適な、磁気損失が低く、高い飽和磁束密度を有するMn-Zn-Ni系フェライトに関するものである。   The present invention relates to an Mn—Zn—Ni ferrite having a low magnetic loss and a high saturation magnetic flux density, which is suitable for use in a power supply transformer such as a switching power supply, particularly a flyback power supply transformer.

フェライトと称される酸化物磁性材料は、Ba系フェライトやSr系フェライトなどの硬質磁性材料と、Mn-Zn系フェライトやNi-Zn系フェライトなどの軟質磁性材料とに分類される。このうち軟質磁性材料は、非常にわずかな磁場に対しても十分に磁化するため、電源や通信機器、計測制御機器、コンピュータなど多方面にわたって用いられている。そのため、斯かる軟質磁性材料には、保磁力が小さく透磁率が高いこと、飽和磁束密度が大きいこと、磁気損失が低いことなど多くの特性が要求される。   Oxide magnetic materials called ferrite are classified into hard magnetic materials such as Ba ferrite and Sr ferrite and soft magnetic materials such as Mn-Zn ferrite and Ni-Zn ferrite. Among these, soft magnetic materials are sufficiently magnetized even with a very small magnetic field, and thus are used in various fields such as power supplies, communication devices, measurement control devices, and computers. Therefore, such soft magnetic materials are required to have many characteristics such as low coercive force and high magnetic permeability, high saturation magnetic flux density, and low magnetic loss.

軟質磁性材料には、上記酸化物系のフェライト以外にも、金属系の磁性材料がある。金属系軟磁性材料は、飽和磁束密度が高いという特長を有している反面、電気抵抗が低いため、高周波帯域で使用する場合には、渦電流に起因する損失が大きくなり、低損失を維持することができない。そのため、電子機器の小型化・高密度化に伴って使用周波数帯域の高周波化が進む今日では、金属系磁性材料は、例えばスイッチング電源等に用いられているような100kHz以上の周波数帯域では用いることはできない。このような背景から、現在、高周波帯域で使用される電源用トランスの磁心材料には、酸化物系のフェライト、中でもMn-Zn系フェライトが主に用いられている。   In addition to the oxide ferrite, the soft magnetic material includes a metal magnetic material. Metallic soft magnetic materials have the feature of high saturation magnetic flux density, but their electrical resistance is low, so when used in the high frequency band, loss due to eddy currents increases and maintains low loss. Can not do it. For this reason, with the trend toward higher frequency in the use frequency band as electronic devices become smaller and higher in density, metal-based magnetic materials should be used in a frequency band of 100 kHz or higher, such as those used for switching power supplies. I can't. Against this background, oxide-based ferrites, especially Mn-Zn-based ferrites, are mainly used as the magnetic core material for power transformers used in the high frequency band.

さて、上記電源用としてのMn-Zn系フェライトは、特に、飽和磁束密度Bsが高いこと、キュリー温度Tcが高いことおよび磁気損失Pcvが低いことが要求される。これらの特性のうち、飽和磁束密度Bsを高めるには、フェライトコアの焼結体の密度を高めることが有効であり、この焼結体の密度は主に製造条件により決定される。また、焼結体の密度が同じであれば、飽和磁束密度は、基本成分の組成により決まる。さらに、この酸化物系フェライトは、フェリ磁性を示し、磁気モーメントを有する金属原子の種類ならびにそれが占める位置によっても飽和磁束密度が変化することが知られている。   The Mn-Zn ferrite for power supply is required to have a high saturation magnetic flux density Bs, a high Curie temperature Tc, and a low magnetic loss Pcv. Among these characteristics, it is effective to increase the density of the ferrite core sintered body in order to increase the saturation magnetic flux density Bs, and the density of the sintered body is mainly determined by the manufacturing conditions. If the sintered bodies have the same density, the saturation magnetic flux density is determined by the composition of the basic component. Further, it is known that this oxide-based ferrite exhibits ferrimagnetism, and the saturation magnetic flux density varies depending on the type of metal atom having a magnetic moment and the position occupied by the metal atom.

ところで、電子機器の電源部分は、小型化の要請に応えるために各種部分が高密度に積載される傾向にあり、各種部品の発熱により、フェライトコアが使用される温度、即ち、動作温度は80〜100℃にも達する。これに対して、酸化物系フェライトの飽和磁束密度は、温度の上昇とともに減少し、磁気が消失する温度であるキュリー温度でゼロとなる。したがって、酸化物系フェライトが有するキュリー温度は高ければ高いほど、室温からトランス動作温度(80〜100℃)までの飽和磁束密度を高く維持することができる。一般に、基本成分であるFe23の量が多いほど、キュリー温度が高く、飽和磁束密度も高くなることが知られており、例えば、特許文献1の発明では、Fe23量を増やすことにより飽和磁束密度を高めている。 By the way, power supply parts of electronic devices tend to be loaded with various parts at high density in order to meet the demand for miniaturization, and the temperature at which the ferrite core is used due to heat generation of various parts, that is, the operating temperature is 80 It reaches ~ 100 ° C. On the other hand, the saturation magnetic flux density of the oxide ferrite decreases with increasing temperature and becomes zero at the Curie temperature, which is the temperature at which magnetism disappears. Therefore, the higher the Curie temperature of the oxide ferrite, the higher the saturation magnetic flux density from room temperature to the transformer operating temperature (80-100 ° C.) can be maintained. In general, it is known that the larger the amount of Fe 2 O 3 as a basic component, the higher the Curie temperature and the higher the saturation magnetic flux density. For example, in the invention of Patent Document 1, the amount of Fe 2 O 3 is increased. This increases the saturation magnetic flux density.

また、フェライトの磁気損失Pcvについては、それを支配する因子として、磁気異方性定数K1ならびに飽和磁歪定数λsが知られており、従来から、Mn-Zn系フェライトにおいては、これらのパラメータを小さくするようなMnO−ZnO−Fe23三元系の組成領域が選択されている。すなわち、磁気損失が小さくなる組成領域とは、電源用トランスの動作温度(80〜100℃)において、磁気異方性定数K1ならびに飽和磁歪定数λsがともに小さい三元系組成領域であると言える。具体的には、Mn-Zn系フェライトの場合、Fe23:52〜54mol%、ZnO:10〜16mol%付近の組成領域である。したがって、磁気損失は、この領域から外れるほど増加の一途をたどる。 As for the magnetic loss Pcv of ferrite, the magnetic anisotropy constant K 1 and the saturation magnetostriction constant λs are known as factors governing it. Conventionally, these parameters have been set for Mn-Zn ferrite. The composition region of the MnO-ZnO-Fe 2 O 3 ternary system that is made small is selected. That is, the composition region in which the magnetic loss is small can be said to be a ternary composition region in which both the magnetic anisotropy constant K 1 and the saturation magnetostriction constant λs are small at the operating temperature (80 to 100 ° C.) of the power transformer. . Specifically, in the case of Mn—Zn ferrite, the composition region is around Fe 2 O 3 : 52 to 54 mol% and ZnO: 10 to 16 mol%. Therefore, the magnetic loss keeps increasing as it goes out of this region.

また、上記Mn-Zn系フェライトの磁気損失Pcvは、温度による変化が大きいため、動作温度付近で磁気異方性定数K1がゼロとなるよう、基本成分の組成範囲を選択しているが、従来のMn-Zn系フェライト(MnO−ZnO−Fe23三元系フェライト)においては、飽和磁束密度を高めるためにFe23量を増していくと、磁気損失が最小となる温度は低温側に移行する。そのため、Fe23量を増加し、磁気損失が最小となる温度が室温付近まで低下した場合には、動作温度(80℃〜100℃)での磁気損失は非常に大きな値となる。しかしながら、Fe23の量を従来のFe23の組成領域を超えて60mol%以上にすると、磁気損失が最小となる温度が逆に上昇に転じることが知られている(非特許文献1参照)。したがって、Fe23量の多い組成領域でも、基本成分を調整することにより、動作温度付近での磁気損失を最小とすることができる可能性がある。 In addition, since the magnetic loss Pcv of the Mn—Zn ferrite greatly varies depending on the temperature, the composition range of the basic component is selected so that the magnetic anisotropy constant K 1 becomes zero near the operating temperature. In the conventional Mn-Zn ferrite (MnO-ZnO-Fe 2 O 3 ternary ferrite), the temperature at which the magnetic loss is minimized as the amount of Fe 2 O 3 is increased to increase the saturation magnetic flux density. Move to low temperature side. For this reason, when the amount of Fe 2 O 3 is increased and the temperature at which the magnetic loss is minimized decreases to near room temperature, the magnetic loss at the operating temperature (80 ° C. to 100 ° C.) becomes a very large value. However, when the amount of Fe 2 O 3 is more than 60 mol% beyond the composition range of the conventional Fe 2 O 3, it is known that the temperature at which the magnetic loss is minimized turns to increase in the opposite (non-patent literature 1). Therefore, even in a composition region having a large amount of Fe 2 O 3 , there is a possibility that magnetic loss near the operating temperature can be minimized by adjusting the basic components.

一方、従来のMn-Zn系フェライトにNiOを加えると、磁性イオンであるNi2+イオンがフェライトのスピネル化合物の格子点に入り込むことにより、他の格子点にある磁性イオンとの相互作用を介して磁気異方性定数K1ならびに飽和磁歪定数λsが変化し、磁気損失に対する最適組成範囲が変化する結果、磁気損失が最小となる温度が上昇する。従って、NiOを加える場合には、磁気損失が最小となる温度を動作温度に保持するために、Fe23を増やす必要があり、その分、飽和磁束密度、キュリー温度を高めることができる(例えば、特許文献2参照。)。
特開平11-329822号公報 特開平10−64715号公報 K.Ohta,「Magnetocrystalline Anisotropy and Magnetic Permeability of Mn-Zn-Fe ferrites」,J.Phys.Soc.Japan,18(1963)685
On the other hand, when NiO is added to the conventional Mn-Zn ferrite, Ni 2+ ions, which are magnetic ions, enter the lattice points of the spinel compound of ferrite, thereby interacting with magnetic ions at other lattice points. As a result, the magnetic anisotropy constant K 1 and the saturation magnetostriction constant λ s change, and the optimum composition range for the magnetic loss changes. As a result, the temperature at which the magnetic loss is minimized increases. Therefore, when NiO is added, it is necessary to increase Fe 2 O 3 in order to maintain the temperature at which the magnetic loss is minimized at the operating temperature, and accordingly, the saturation magnetic flux density and the Curie temperature can be increased ( For example, see Patent Document 2.)
Japanese Patent Laid-Open No. 11-329822 Japanese Patent Laid-Open No. 10-64715 K. Ohta, “Magnetocrystalline Anisotropy and Magnetic Permeability of Mn-Zn-Fe ferrites”, J. Phys. Soc. Japan, 18 (1963) 685

ところが、従来のMnO−ZnO−Fe23三元系フェライトにおいては、飽和磁束密度を高めるためにFe23量の多い組成(>60mol%)を選択すると、磁気損失が最小となる温度を動作温度付近とすることができる反面、飽和磁歪定数λsに対する最適組成からは外れるため、磁気損失の絶対値は増大する。したがって、高い飽和磁束密度を確保するために磁気損失を犠牲にするか、あるいは磁気損失を優先して飽和磁束密度を従来材並みの値で満足するかのいずれかを選択するしかないという問題があった。 However, in the conventional MnO—ZnO—Fe 2 O 3 ternary ferrite, the temperature at which the magnetic loss is minimized when a composition with a large amount of Fe 2 O 3 (> 60 mol%) is selected to increase the saturation magnetic flux density. However, since it deviates from the optimum composition for the saturation magnetostriction constant λs, the absolute value of the magnetic loss increases. Therefore, there is a problem that one has to choose between sacrificing magnetic loss in order to ensure high saturation magnetic flux density, or satisfying saturation magnetic flux density at the same value as conventional materials in favor of magnetic loss. there were.

本発明の目的は、電源用トランス、特にフライバック方式のスイッチング電源用トランスに用いて好適な、低い磁気損失と高い飽和磁束密度とを兼ね備えたMn-Zn-Ni系フェライトを提供することにある。   An object of the present invention is to provide an Mn-Zn-Ni-based ferrite having both a low magnetic loss and a high saturation magnetic flux density, which is suitable for a power supply transformer, particularly a flyback type switching power supply transformer. .

発明者らは、従来のMnO−ZnO−Fe23三元系フェライトが抱える上記問題点を解決するために、Fe23量が60mol%を超える組成において、三元系以外の成分を加えた場合の飽和磁束密度と磁気損失との関係を調査した結果、NiOを基本成分に加えることにより、飽和磁束密度を高い値に維持したまま磁気損失を低減することができること、および、基本成分に加える添加成分と添加量を適正にすることにより、磁気損失をさらに低減できることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems that the conventional MnO—ZnO—Fe 2 O 3 ternary ferrite has, the inventors have added a component other than the ternary system in a composition in which the amount of Fe 2 O 3 exceeds 60 mol%. As a result of investigating the relationship between the saturation magnetic flux density and the magnetic loss when added, it is possible to reduce the magnetic loss while maintaining the saturation magnetic flux density at a high value by adding NiO to the basic component, and the basic component The present inventors have found that magnetic loss can be further reduced by making the additive component and addition amount to be appropriate, and the present invention has been completed.

すなわち本発明は、Fe、ZnO、NiOおよびMnOを基本成分とするMn−Zn−Ni系フェライトであって、その組成がFe:60超〜68mol%、ZnO:8超〜16mol%、NiO:6.5〜12mol%、残部MnOからなり、このフェライト中にはさらに、SiO:0.005〜0.05mass%、CaO:0.020〜0.20mass%を含有すると共に、Ta、ZrO、Nb、V、HfO、TiOおよびSnOのうちから選ばれる1種または2種以上を下記の範囲で含有し、100℃における飽和磁束密度が460mT以上、周波数100kHz、最大磁束密度200mTでの100℃における磁気損失Pcvが1120kW/m以下であることを特徴とする高飽和磁束密度Mn−Zn−Ni系フェライトである。

Ta:0.0050〜0.10mass%
ZrO:0.010〜0.15mass%
Nb:0.0050〜0.05mass%
:0.001〜0.05mass%
HfO:0.0050〜0.050mass%
TiO:0.010〜0.30mass%
SnO:0.010〜2.0mass%
That is, the present invention is a Mn—Zn—Ni-based ferrite containing Fe 2 O 3 , ZnO, NiO and MnO as basic components, the composition of which is Fe 2 O 3 : more than 60 to 68 mol%, ZnO: more than 8 16mol%, NiO: 6.5~12mol%, the balance being MnO, further to this ferrite, SiO 2: 0.005~0.05mass%, CaO : with containing 0.020~0.20Mass% , Ta 2 O 5 , ZrO 2 , Nb 2 O 5 , V 2 O 5 , HfO 2 , TiO 2, and SnO 2 are contained in the following range, and saturated at 100 ° C. the magnetic flux density is more than 460MT, frequency 100kHz, the magnetic loss Pcv at 100 ° C. at a maximum magnetic flux density 200mT is 1120 kW / m 3 or less this A high saturation magnetic flux density Mn-Zn-Ni ferrite characterized by.
Ta 2 O 5 : 0.0050 to 0.10 mass%
ZrO 2 : 0.010 to 0.15 mass%
Nb 2 O 5: 0.0050~0.05mass%
V 2 O 5: 0.001~0.05mass%
HfO 2 : 0.0050 to 0.050 mass%
TiO 2 : 0.010 to 0.30 mass%
SnO 2 : 0.010 to 2.0 mass%

本発明によれば、磁気損失が低くて飽和磁束密度が高く、しかも直流重畳特性が良好なMn-Zn-Ni系フェライトを提供することができるので、スイッチング電源トランスの磁心、特に、フライバック方式の電源トランス等の磁心に用いて好適であり、特に、発熱量を増やすことなくトランスを小型化することができる。   According to the present invention, it is possible to provide an Mn-Zn-Ni ferrite having a low magnetic loss, a high saturation magnetic flux density, and a good direct current superposition characteristic. In particular, the transformer can be miniaturized without increasing the amount of heat generated.

軟質磁性材料であるMn-Zn系フェライトに求められる磁気特性としては、飽和磁束密度が大きいこと、キュリー温度が高いこと、磁気損失が小さいことが挙げられる。これらの特性は、基本成分であるMnO:ZnO:Fe23の比でほぼ決まる。従来の電源用Mn-Zn系フェライトで採用されていた組成領域(Fe23:52〜54mol%、ZnO:4〜16mol%)では、Fe23量の増加に伴い飽和磁束密度が増加し、キュリー温度も上昇するが、磁気異方性定数K1がゼロとなる温度、すなわち磁気損失が最小となる温度が低下するため、動作温度での磁気損失が増大する。一方、ZnOの量を増加すると、磁気損失が最小となる温度が低温側に移行するため、この温度を動作温度付近に維持するためには相対的にFe23の量を少なくする必要があり、飽和磁束密度の低下を招く。また、ZnO量の増加に伴い、キュリー温度も低下する。 Magnetic properties required for Mn-Zn ferrite, which is a soft magnetic material, include high saturation magnetic flux density, high Curie temperature, and low magnetic loss. These characteristics are substantially determined by the ratio of the basic component MnO: ZnO: Fe 2 O 3 . In the composition regions (Fe 2 O 3 : 52 to 54 mol%, ZnO: 4 to 16 mol%) used in conventional Mn-Zn ferrites for power supplies, the saturation magnetic flux density increases as the amount of Fe 2 O 3 increases. and, although the Curie temperature increases, the temperature at which the magnetic anisotropy constant K 1 becomes zero, that is, the temperature at which the magnetic loss is minimized to decrease the magnetic loss at the operating temperature is increased. On the other hand, when the amount of ZnO is increased, the temperature at which the magnetic loss is minimized shifts to the low temperature side. Therefore, in order to maintain this temperature near the operating temperature, it is necessary to relatively reduce the amount of Fe 2 O 3. There is a decrease in saturation magnetic flux density. In addition, the Curie temperature decreases as the amount of ZnO increases.

一方、Mn-Zn系フェライトにおいて、Fe23の量を60mol%超え含有させた場合には、磁気異方性定数K1がゼロとなる温度がトランス動作温度(80〜100℃)付近となる組成領域においても、Fe23量の増加にともない飽和磁束密度が増加し、キュリー温度も上昇するようになる。すなわち、従来のFe23量が60mol%以下のMn-Zn系フェライトとは逆に、Fe23量を増やすと、磁気損失が最小となる温度は高温側へシフトする。しかし、この組成領域では飽和磁歪定数λsが大きくなるため、磁気損失値は従来の組成と比べると格段に大きな値となる。 On the other hand, in the Mn-Zn ferrite, when the Fe 2 O 3 content exceeds 60 mol%, the temperature at which the magnetic anisotropy constant K 1 becomes zero is near the transformer operating temperature (80 to 100 ° C.). Even in the composition region, the saturation magnetic flux density increases and the Curie temperature also increases as the amount of Fe 2 O 3 increases. That is, contrary to the conventional Mn—Zn ferrite having an Fe 2 O 3 content of 60 mol% or less, when the Fe 2 O 3 content is increased, the temperature at which the magnetic loss is minimized shifts to the high temperature side. However, since the saturation magnetostriction constant λs is large in this composition region, the magnetic loss value is much larger than that of the conventional composition.

そこで、発明者らは、Fe23を60mol%を超えて含有させたMn-Zn系フェライトに、さらにNiOを加えた時の影響について検討した。その結果、Fe23が60mol%超えのMn-Zn系フェライトにNiOを加えた場合には、磁気損失が最小となる温度が上昇し、この温度を動作温度付近に維持するためには、Fe23量を減らす必要があり、その分、飽和磁束密度は若干低下する。しかし、このNiOの添加量を適正範囲とすれば、飽和磁束密度が低下することなく、磁気損失を低減することができることを新たに見出し、本発明を開発するに至った。 Therefore, the inventors examined the effect of adding NiO to Mn—Zn ferrite containing Fe 2 O 3 in excess of 60 mol%. As a result, when NiO is added to Mn-Zn ferrite with Fe 2 O 3 exceeding 60 mol%, the temperature at which the magnetic loss is minimized rises, and in order to maintain this temperature near the operating temperature, It is necessary to reduce the amount of Fe 2 O 3, and accordingly, the saturation magnetic flux density slightly decreases. However, when the addition amount of NiO is within an appropriate range, it has been newly found that magnetic loss can be reduced without lowering the saturation magnetic flux density, and the present invention has been developed.

次に、本発明において、基本成分の組成を上記範囲に限定する理由について説明する。
Fe23:60超〜68mol%
Fe23は、60mol%を超える領域では、その量が多いほど飽和磁束密度が高くなり、磁気損失も下がる傾向にある。しかし、Fe23が多すぎると磁気損失が最小となる温度が高温側に移行し過ぎて、トランス動作温度での磁気損失が増大する。そのため、Fe23含有量の上限は68mol%とする。一方、Fe23が少なくなると、損失が最小となる温度が逆に低温側に移行し、同じく動作温度での損失が増大するため、下限は60mol%超えとする。なお、NiOを多く含む場合には、磁気損失が最小となる温度は高温側に変化するため、この温度を変えないためにはFe23を少なくする必要がある。好ましくは、60〜65mol%である。
Next, the reason why the composition of the basic component is limited to the above range in the present invention will be described.
Fe 2 O 3 : more than 60 to 68 mol%
When the amount of Fe 2 O 3 exceeds 60 mol%, the saturation magnetic flux density increases and the magnetic loss tends to decrease as the amount increases. However, if there is too much Fe 2 O 3, the temperature at which the magnetic loss is minimized shifts to the high temperature side, and the magnetic loss at the transformer operating temperature increases. Therefore, the upper limit of the Fe 2 O 3 content is 68 mol%. On the other hand, when Fe 2 O 3 decreases, the temperature at which the loss is minimized shifts to the low temperature side, and the loss at the operating temperature also increases. Therefore, the lower limit is set to exceed 60 mol%. In the case where NiO is contained in a large amount, the temperature at which the magnetic loss is minimized changes to the high temperature side, and in order not to change this temperature, Fe 2 O 3 needs to be reduced. Preferably, it is 60-65 mol%.

ZnO:8超〜16mol%
ZnOは、Feが60mol%を超えるフェライトでは、含有量が10mol%付近で飽和磁束密度が最大となるので、8mol%超え16mol%以下の範囲とする。好ましくは、10〜14mol%である
ZnO: More than 8 to 16 mol%
With respect to ZnO, in the case of ferrite in which Fe 2 O 3 exceeds 60 mol%, the saturation magnetic flux density becomes maximum when the content is in the vicinity of 10 mol%, so the range is from 8 mol% to 16 mol%. Preferably, it is 10-14 mol% .

NiO:6.5〜12mol%
NiOは、添加量が6.5mol%未満では、上述した磁気損失の改善効果を得ることができない。一方、NiOは、磁気損失が最小となる温度を高温側にシフトするため、添加量が多すぎた場合には、FeやZnOの量を調整してもこの温度を作動温度近辺に維持できなくなるため、12mol%以下に制限する。好ましくは、6.5〜8mol%である
上記Fe,ZnOおよびNiO以外の残部基本成分は、MnOである。
NiO: 6.5 ~12mol%
When NiO is added in an amount less than 6.5 mol%, the above-described effect of improving magnetic loss cannot be obtained. On the other hand, NiO shifts the temperature at which the magnetic loss is minimized to the high temperature side. Therefore, if the addition amount is too large, even if the amount of Fe 2 O 3 or ZnO is adjusted, this temperature is brought close to the operating temperature. Since it cannot be maintained, it is limited to 12 mol% or less. Preferably, it is 6.5 to 8 mol% .
The remaining basic component other than the above Fe 2 O 3 , ZnO and NiO is MnO.

本発明のMn-Zn-Ni系フェライトは、上記基本成分に加えて、SiO2,CaOを下記の範囲で添加することにより、焼結性を高めかつ粒界を高抵抗化し、低い磁気損失を得ることができる。
SiO2:0.005〜0.05mass%
SiO2は、焼結を促進する効果があり、この効果を発現するためには0.005mass%以上の添加が必要である。一方、多すぎると異常粒成長を引き起こすため、上限を0.05mass%とする。ただし、この上限付近の添加量では粒成長を抑止して最適な結晶組織とするため、焼結温度を下げる等の考慮が必要である。好ましい添加量は0.005〜0.02mass%である。
In addition to the above basic components, the Mn-Zn-Ni-based ferrite of the present invention increases the sinterability and increases the grain boundary resistance by adding SiO 2 and CaO in the following ranges, resulting in low magnetic loss. Obtainable.
SiO 2: 0.005~0.05mass%
SiO 2 has an effect of promoting sintering, and 0.005 mass% or more is required to exhibit this effect. On the other hand, an excessive amount causes abnormal grain growth, so the upper limit is made 0.05 mass%. However, when the addition amount is in the vicinity of the upper limit, grain growth is suppressed and an optimum crystal structure is obtained, so that consideration must be given to lowering the sintering temperature. A preferable addition amount is 0.005 to 0.02 mass%.

CaO:0.020〜0.20mass%
CaOは、SiO2とともに添加することにより、粒界を高抵抗化して磁気損失を小さくする。0.020mass%未満の添加量ではその効果が見られず、一方、0.20mass%を超えると焼結性に問題が生ずるので、0.020〜0.20mass%の範囲に制限する。好ましい添加量は、0.0500〜0.1500mass%である。
CaO: 0.020 ~ 0.20mass%
CaO is added together with SiO 2 to increase the resistance of the grain boundary and reduce the magnetic loss. If the addition amount is less than 0.020 mass%, the effect is not observed. On the other hand, if it exceeds 0.20 mass%, a problem arises in the sinterability, so the content is limited to the range of 0.020 to 0.20 mass%. A preferable addition amount is 0.0500 to 0.1500 mass%.

本発明のフェライトは、上記基本成分、添加成分の他にさらに、スピネルに固溶しないTa25,ZrO2,Nb25,V25およびHfO2、さらに、スピネル構成元素として部分的に粒内に固溶するTiO2およびSnO2の中から選ばれる1種または2種以上を、下記の範囲で添加することにより、磁気損失の小さい高性能の電源用Mn-Zn-Ni系フェライトを得ることができる。
Ta25は、SiO2,CaOの共存下で、比抵抗の増大に有効に寄与するが、含有量が0.0050mass%に満たない場合にはその添加効果に乏しく、一方、0.10mass%を超えると逆に磁気損失の増大を招く。よって、Ta25は、0.0050〜0.10mass%の範囲で添加するのが好ましい。
In addition to the basic components and additive components described above, the ferrite of the present invention further includes Ta 2 O 5 , ZrO 2 , Nb 2 O 5 , V 2 O 5, HfO 2 and HfO 2 , which are not dissolved in the spinel, and further as a spinel constituent element. By adding one or more of TiO 2 and SnO 2 that are solid-solved in the grains within the following range, Mn-Zn-Ni system for high-performance power supplies with low magnetic loss Ferrite can be obtained.
Ta 2 O 5 effectively contributes to the increase in specific resistance in the presence of SiO 2 and CaO. However, when the content is less than 0.0050 mass%, the addition effect is poor, while 0.10 mass% is reduced. On the contrary, the magnetic loss increases. Therefore, Ta 2 O 5 is preferably added in the range of 0.0050 to 0.10 mass%.

ZrO2は、SiO2,CaO,Ta25の共存下で、Ta25と同様に粒界の抵抗を高めて高周波帯域での磁気損失の低減に有効に寄与する。Ta25と比べると抵抗増加の効果は少ないが、磁気損失低減の寄与は大きく、特に、磁気損失が極小となる温度付近から高温側における磁気損失の低減に寄与する。ZrO2含有量が0.010mass%未満では、その効果に乏しく、一方、0.15mass%を超えると比抵抗を高める効果が飽和し、磁気損失が増大する。よって、ZrO2は0.010〜0.15mass%の範囲で添加するのが好ましい。 ZrO 2 effectively contributes to the reduction of magnetic loss in the high frequency band by increasing the resistance of the grain boundary in the coexistence of SiO 2 , CaO and Ta 2 O 5 in the same manner as Ta 2 O 5 . Compared with Ta 2 O 5 , the effect of increasing the resistance is small, but the contribution of reducing the magnetic loss is large. In particular, it contributes to reducing the magnetic loss on the high temperature side from near the temperature at which the magnetic loss is minimized. If the ZrO 2 content is less than 0.010 mass%, the effect is poor. On the other hand, if it exceeds 0.15 mass%, the effect of increasing the specific resistance is saturated and magnetic loss increases. Therefore, it is preferable to add ZrO 2 in the range of 0.010 to 0.15 mass%.

Nb25は、SiO2,CaOと粒界相を形成し、粒界抵抗を高めて磁気損失の低減に寄与する。0.0050mass%未満ではその効果に乏しく、一方、0.05mass%を超えると、過剰に粒界相に析出し、逆に磁気損失を増大してしまうので、0.0050〜0.05mass%の範囲で添加するのが好ましい。 Nb 2 O 5 forms a grain boundary phase with SiO 2 and CaO, increases the grain boundary resistance, and contributes to the reduction of magnetic loss. If it is less than 0.0050 mass%, the effect is poor. On the other hand, if it exceeds 0.05 mass%, it excessively precipitates in the grain boundary phase and conversely increases the magnetic loss, so it is added in the range of 0.0050 to 0.05 mass%. Is preferred.

25,HfO2は、ともに異常粒成長を抑制し、粒界抵抗を高める働きがある。少ないとその改善効果がなく、また多すぎると磁気損失が増大するため、V25:0.001〜0.05mass%、HfO2:0.0050〜0.050mass%の範囲で添加することが好ましい。 V 2 O 5 and HfO 2 both function to suppress abnormal grain growth and increase grain boundary resistance. Less when there is no improvement effect, and because of too large magnetic loss increases, V 2 O 5: 0.001~0.05mass% , HfO 2: is preferably added in a range of 0.0050~0.050mass%.

TiO2,SnO2は、スピネル構成元素として部分的に粒内に固溶する。TiO2は、一部粒界にも存在し、焼成後の冷却過程で粒界の再酸化を助長して磁気損失を低下させる。この効果を得るためには0.010mass%以上の添加が好ましく、逆に多すぎると異常粒成長を引き起こすため0.30mass%以下添加するのが好ましい。SnO2は、磁気損失の低減に寄与するためには0.010mass%以上添加することが好ましく、また、TiO2ほど異常粒成長を引き起こさないため、上限は、2.0mass%まで添加することができる。 TiO 2 and SnO 2 partially dissolve in the grains as spinel constituent elements. TiO 2 is also present at some grain boundaries and promotes re-oxidation of the grain boundaries during the cooling process after firing, thereby reducing magnetic loss. In order to obtain this effect, addition of 0.010 mass% or more is preferable. Conversely, if too much is added, abnormal grain growth is caused, so 0.30 mass% or less is preferably added. SnO 2 is preferably added in an amount of 0.010 mass% or more in order to contribute to the reduction of magnetic loss. Since TiO 2 does not cause abnormal grain growth, the upper limit can be added up to 2.0 mass%.

なお、本発明に係る低磁気損失高飽和磁束密度Mn-Zn-Ni系フェライトの製造方法は、基本成分および添加成分を上記の組成範囲とすること以外は、従来公知の方法を用いることができ、特に制限されるものではない。   The method for producing the low magnetic loss high saturation magnetic flux density Mn-Zn-Ni ferrite according to the present invention can use a conventionally known method except that the basic component and the additive component are in the above composition range. There is no particular limitation.

Mn-Zn-Ni系フェライトの基本成分の最終組成が表1に示した組成となるように、原料酸化物を配合し、ボールミルを用いて湿式混合し、乾燥し、その後、この混合粉を大気雰囲気中で950℃×3時間の仮焼を行い仮焼粉とした。この仮焼粉に対して、SiO2を0.0080mass%、CaCO3を0.1300mass%、Nb25を0.0250mass%およびZrO2を0.0100mass%となるように添加し、再度ボールミルを用いて湿式混合して粉砕し、乾燥し、この粉末にポリビニルアルコール5mass%水溶液を10mass%加えて造粒した粉末を、外径36mm、内径24mm、高さ12mmのリング状に成形し、酸素分圧を制御した窒素・空気混合ガス中で1330℃×3時間の焼成を行なった。このようにして得た焼結体試料(リング状コア)に1次側5巻、2次側5巻の巻線を施し、周波数:100kHz、最大磁束密度200mT、100℃の条件下で、磁気損失(電力損失:Pcv)を交流BHトレーサーで測定した。また同じ焼結体試料を用いて、1次側20巻、2次側40巻の巻線を施し、1200A/mの磁場をかけたときの100℃における磁束密度Bを直流BHループトレーサーで測定した。なお、この大きさの磁場では、磁束密度はほぼ飽和しており、この値は飽和磁束密度Bsと見なせる。 The raw material oxides are blended so that the final composition of the basic components of the Mn-Zn-Ni ferrite will be the composition shown in Table 1, wet-mixed using a ball mill, dried, and then this mixed powder is Calcination was performed in an atmosphere at 950 ° C. for 3 hours to obtain a calcined powder. For this calcined powder, the SiO 2 0.0080mass%, 0.1300mass% of CaCO 3, the addition of Nb 2 O 5 to 0.0250Mass% and ZrO 2 so as to 0.0100Mass%, using a ball mill again wet After mixing, pulverizing and drying, this powder is granulated by adding 10 mass% of 5% polyvinyl alcohol aqueous solution to form a ring with an outer diameter of 36mm, an inner diameter of 24mm and a height of 12mm, and the oxygen partial pressure is controlled. Firing was carried out in a nitrogen / air mixed gas at 1330 ° C. for 3 hours. The sintered body sample (ring-shaped core) thus obtained was subjected to winding of 5 turns on the primary side and 5 turns on the secondary side, and the magnetic properties were obtained under the conditions of frequency: 100 kHz, maximum magnetic flux density of 200 mT, and 100 ° C. The loss (power loss: Pcv) was measured with an AC BH tracer. Also, using the same sintered body sample, measuring the magnetic flux density B at 100 ° C when applying a magnetic field of 1200 A / m with a winding of 20 turns on the primary side and 40 turns on the secondary side, using a DC BH loop tracer did. Note that the magnetic flux density is almost saturated in this magnitude of magnetic field, and this value can be regarded as the saturation magnetic flux density Bs.

上記の測定結果について、表1中に併記して示した。この表1の結果から、本発明の基本成分組成に適合した実施例(No.1〜6)では、高い飽和磁束密度を維持したままで、磁気損失の比較的低いフェライトが得られていることがわかる。一方、基本成分の組成が本発明範囲外である、No.7〜11では、磁気損失が非常に大きいか、あるいは磁気損失が小さくても飽和磁束密度が小さいフェライトしか得られていない。   The above measurement results are shown together in Table 1. From the results of Table 1, in Examples (No. 1 to 6) adapted to the basic component composition of the present invention, ferrite having a relatively low magnetic loss was obtained while maintaining a high saturation magnetic flux density. I understand. On the other hand, in Nos. 7 to 11, in which the composition of the basic component is outside the scope of the present invention, only a ferrite having a very high magnetic loss or a low saturation magnetic flux density is obtained even if the magnetic loss is small.

Figure 0004813016
Figure 0004813016

Mn-Zn-Ni系フェライトの最終成分組成として、Fe23:MnO:ZnO:NiOが61.6:20.4:11.5:6.5のモル比を有する仮焼粉を、実施例1と同様にして作製し、表2に示した各種添加物を添加し、実施例1と同様にして、混合し、粉砕し、乾燥し、ポリビニルアルコールを添加し、造粒し、リング状に成形したものを、酸素分圧を制御した窒素・空気混合ガス中で1230〜1350℃×2〜6時間の焼成を行なった。このようにして得た焼結体試料について、実施例1と同様の条件で磁気損失および磁束密度を測定した。 As the final component composition of the Mn-Zn-Ni ferrite, a calcined powder having a molar ratio of Fe 2 O 3 : MnO: ZnO: NiO of 61.6: 20.4: 11.5: 6.5 was prepared in the same manner as in Example 1. Various additives shown in Table 2 were added, mixed, pulverized, dried, added with polyvinyl alcohol, granulated and molded into a ring shape in the same manner as in Example 1 to obtain oxygen content. Firing was performed at 1230 to 1350 ° C. for 2 to 6 hours in a nitrogen / air mixed gas with controlled pressure. The sintered body sample thus obtained was measured for magnetic loss and magnetic flux density under the same conditions as in Example 1.

上記測定の結果を表2に併記して示した。この表2から明らかなように、添加成分の量が、本発明の範囲の場合には、飽和磁束密度が高く、かつ、比較的磁気損失が低いMn-Zn-Ni系フェライトが得られているのに対し、添加物の量が本発明範囲から外れたものは、いずれも磁気損失Pcvが1500kW/m3以上となっており、本発明例より大きく劣ることがわかる。 The results of the above measurements are shown together in Table 2. As is apparent from Table 2, when the amount of the additive component is within the range of the present invention, an Mn—Zn—Ni ferrite having a high saturation magnetic flux density and a relatively low magnetic loss is obtained. On the other hand, the magnetic loss Pcv is 1500 kW / m 3 or more in any case where the amount of the additive is out of the range of the present invention, which is greatly inferior to the present example.

Figure 0004813016
Figure 0004813016

Claims (1)

Fe,ZnO,NiOおよびMnOを基本成分とするMn−Zn−Ni系フェライトであって、
その組成がFe:60超〜68mol%、ZnO:8超〜16mol%、NiO:6.5〜12mol%、残部MnOからなり、
このフェライト中にはさらに、SiO:0.005〜0.05mass%、CaO:0.020〜0.20mass%を含有すると共に、Ta,ZrO,Nb,V,HfO,TiOおよびSnOのうちから選ばれる1種または2種以上を下記の範囲で含有し、100℃における飽和磁束密度が460mT以上、周波数100kHz、最大磁束密度200mTでの100℃における磁気損失Pcvが1120kW/m以下であることを特徴とする高飽和磁束密度Mn−Zn−Ni系フェライト。

Ta:0.0050〜0.10mass%
ZrO:0.010〜0.15mass%
Nb:0.0050〜0.05mass%
:0.001〜0.05mass%
HfO:0.0050〜0.050mass%
TiO:0.010〜0.30mass%
SnO:0.010〜2.0mass%
A Mn—Zn—Ni based ferrite containing Fe 2 O 3 , ZnO, NiO and MnO as basic components,
Its composition is Fe 2 O 3: 60 ultra ~68mol%, ZnO: 8 super ~16mol%, NiO: 6.5~12mol%, the balance being MnO,
During this ferrite further, SiO 2: 0.005~0.05mass%, CaO : with containing 0.020~0.20mass%, Ta 2 O 5, ZrO 2, Nb 2 O 5, V 2 O 5 or 1 or 2 or more selected from HfO 2 , TiO 2 and SnO 2 in the following range, a saturation magnetic flux density at 100 ° C. of 460 mT or more, a frequency of 100 kHz, and a maximum magnetic flux density of 200 ° C. The high saturation magnetic flux density Mn—Zn—Ni-based ferrite characterized in that the magnetic loss Pcv in is 1120 kW / m 3 or less.
Ta 2 O 5 : 0.0050 to 0.10 mass%
ZrO 2 : 0.010 to 0.15 mass%
Nb 2 O 5: 0.0050~0.05mass%
V 2 O 5: 0.001~0.05mass%
HfO 2 : 0.0050 to 0.050 mass%
TiO 2 : 0.010 to 0.30 mass%
SnO 2 : 0.010 to 2.0 mass%
JP2003420414A 2003-12-18 2003-12-18 High saturation magnetic flux density Mn-Zn-Ni ferrite Expired - Lifetime JP4813016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420414A JP4813016B2 (en) 2003-12-18 2003-12-18 High saturation magnetic flux density Mn-Zn-Ni ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420414A JP4813016B2 (en) 2003-12-18 2003-12-18 High saturation magnetic flux density Mn-Zn-Ni ferrite

Publications (2)

Publication Number Publication Date
JP2005179103A JP2005179103A (en) 2005-07-07
JP4813016B2 true JP4813016B2 (en) 2011-11-09

Family

ID=34781943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420414A Expired - Lifetime JP4813016B2 (en) 2003-12-18 2003-12-18 High saturation magnetic flux density Mn-Zn-Ni ferrite

Country Status (1)

Country Link
JP (1) JP4813016B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310321A (en) * 1993-04-22 1994-11-04 Matsushita Electric Ind Co Ltd Oxide magnetic substance material
JP3597665B2 (en) * 1997-03-21 2004-12-08 Jfeケミカル株式会社 Mn-Ni ferrite material
JP2000159523A (en) * 1998-11-25 2000-06-13 Hitachi Metals Ltd Low loss ferrite sintered compact having highly saturated magnetic flux density and choke coil
JP2003068516A (en) * 2001-08-28 2003-03-07 Kawasaki Steel Corp Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP4281990B2 (en) * 2002-09-26 2009-06-17 Tdk株式会社 Ferrite material

Also Published As

Publication number Publication date
JP2005179103A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5578766B2 (en) MnZn ferrite and transformer core
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP3968188B2 (en) Ferrite
JP5181175B2 (en) Mn-Zn-Co ferrite
JP3917216B2 (en) Low loss ferrite core material
JP3917325B2 (en) Ferrite
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP3597673B2 (en) Ferrite material
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP4750563B2 (en) MnCoZn ferrite and transformer core
JP5560436B2 (en) MnZnNi ferrite
JP2008169072A (en) Mn-Zn FERRITE
JP3597666B2 (en) Mn-Ni ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
JP4813016B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP6964556B2 (en) MnZnNiCo-based ferrite and its manufacturing method
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP5458298B2 (en) Mn-Zn ferrite material
JP6416808B2 (en) MnZnCo ferrite
JP2019199378A (en) MnZnNiCo-based ferrite and method for producing the same
JP4448500B2 (en) Mn-Zn-Co ferrite core material
JP2007031210A (en) Mn-Zn FERRITE
JP6454309B2 (en) MnZnCo ferrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term