JP2000335961A - Oxide magnetic material and its production - Google Patents

Oxide magnetic material and its production

Info

Publication number
JP2000335961A
JP2000335961A JP11150679A JP15067999A JP2000335961A JP 2000335961 A JP2000335961 A JP 2000335961A JP 11150679 A JP11150679 A JP 11150679A JP 15067999 A JP15067999 A JP 15067999A JP 2000335961 A JP2000335961 A JP 2000335961A
Authority
JP
Japan
Prior art keywords
loss
magnetic material
oxide magnetic
mol
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11150679A
Other languages
Japanese (ja)
Inventor
Yasuki Takashima
康樹 鷹島
Tatsuya Chiba
龍矢 千葉
Koichi Kondo
幸一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11150679A priority Critical patent/JP2000335961A/en
Publication of JP2000335961A publication Critical patent/JP2000335961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oxide magnetic material which is small in dielectric loss, improved in efficiency as an electric source, and can effectively avoid dangers such as heat runaway due to self heat generation, when used as the core material of a transformer for an electric source, and to provide a method for producing the same. SOLUTION: This method for producing an oxide magnetic material comprising an Ni-Zn-Cu-based ferrite containing Fe2O3, NiO, ZnO and CuO as main components. Therein, the BET(Brunau-Emmet-Teller) average particle diameter of the pulverized powder of an calcination product is <=0.35 μm, and the average crystal particle diameter of the sintered product is >=5 μm. Thereby, the obtained oxide magnetic oxide material having a high specific resistance, having low dielectric loss, and having the minimum dielectric loss in a high temperature region of >=120 deg.C in the temperature characteristics of the loss is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源等の
トランス材料等として用いられる低損失な酸化物磁性材
料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss oxide magnetic material used as a transformer material for a switching power supply and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、携帯機器をはじめとする電子機器
の小型化・軽量化の進展が著しく、このため、かかる電
子機器に用いられるスイッチング電源等にも、より一層
の小型化・軽量化が求められている。
2. Description of the Related Art In recent years, there has been a remarkable progress in miniaturization and weight reduction of electronic devices such as portable devices. For this reason, switching power supplies and the like used in such electronic devices have been further reduced in size and weight. It has been demanded.

【0003】電源の中でトランスは、その体積において
も、電力損失においても大きな部分を占めるため、その
小型化と高効率化が強く要請される。一般に、電源用ト
ランス材料として求められる特性としては、 1)駆動周波数で損失が低いこと 2)飽和磁束密度が高いこと 3)キューリー温度が高いこと 4)比抵抗が高いこと、等が挙げられる。
[0003] In a power supply, a transformer occupies a large part in both the volume and the power loss, so that a reduction in size and an increase in efficiency are strongly demanded. In general, characteristics required as a power transformer material include 1) low loss at a driving frequency, 2) high saturation magnetic flux density, 3) high Curie temperature, and 4) high specific resistance.

【0004】まず、駆動周波数で損失が低いことが要求
されるのは、この損失が大きいと、電源としての効率が
悪いだけでなく、自己発熱による熱暴走の危険も生じる
からである。従って、電源用トランス材料としては、低
損失で、しかも損失について負の温度特性を有すること
が望ましい。従来より、かかる電源用トランスのコア材
として、飽和磁束密度が高く(約500mT)、低価格
なMn−Zn系フェライトが用いられている。
[0004] First, the drive frequency is required to have a low loss because if the loss is large, not only the efficiency as a power source is poor but also the risk of thermal runaway due to self-heating is generated. Therefore, it is desirable for the power supply transformer material to have a low loss and a negative temperature characteristic with respect to the loss. Conventionally, a low-cost Mn-Zn based ferrite having a high saturation magnetic flux density (about 500 mT) has been used as a core material of such a power transformer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
従来のMn−Zn系フェライトは、比抵抗が小さく、従
って、トランスのコア材として用いる場合には、絶縁性
を確保する必要から、ボビン等の冶具を介した上で巻線
を行わなければならなかった。よって、かかるMn−Z
n系フェライトを電源用トランス材料として用いるので
は、トランスひいては電源の小型化に限界があった。
However, these conventional Mn-Zn ferrites have low specific resistance. Therefore, when used as a transformer core material, it is necessary to ensure insulation properties. The winding had to be done over. Therefore, such Mn-Z
When n-type ferrite is used as a power supply transformer material, there is a limit to downsizing of the transformer and thus the power supply.

【0006】そこで、かかるMn−Zn系フェライトの
代りに、Ni−Zn系フェライトを電源用トランスのコ
ア材として用いることが考えられる。Ni−Zn系フェ
ライトは、Mn−Zn系フェライトに比べ比抵抗が大き
いため、ボビン等の冶具を介することなく巻線の直巻が
可能である。また、比抵抗が大きいことに加え、Cuを
添加することにより低温焼成も可能となるため、導体と
磁性体とを一体焼成することができることから、電源用
トランスの限りない小型化を追及できる。
Therefore, it is conceivable to use Ni-Zn ferrite as a core material of a power transformer instead of the Mn-Zn ferrite. Since the Ni—Zn-based ferrite has a higher specific resistance than the Mn—Zn-based ferrite, it is possible to directly wind a winding without using a jig such as a bobbin. In addition to the high specific resistance, the addition of Cu also enables low-temperature sintering, so that the conductor and the magnetic material can be sintered together, so that an unlimited miniaturization of the power transformer can be pursued.

【0007】しかしながら、Ni−Zn系フェライト
は、上述したMn−Zn系フェライトに比べ高損失であ
るため、効率が悪く、また、熱暴走等に対する安全性の
点でも劣るため、電源用トランス材料として商品化する
のは困難であった。
However, Ni-Zn based ferrite has a higher loss than the above-mentioned Mn-Zn based ferrite, and thus is inefficient and inferior in safety against thermal runaway and the like. It was difficult to commercialize.

【0008】本発明の目的は、電源用トランスのコア材
として用いた場合に、損失が小さく、電源としての効率
も良くなる上に、自己発熱による熱暴走の危険等も有効
に回避し得る酸化物磁性材料及びその製造方法を提供す
ることにある。
[0008] An object of the present invention is to provide an oxidation device which, when used as a core material of a power supply transformer, has a small loss, improves the efficiency as a power supply, and can effectively avoid the risk of thermal runaway due to self-heating. An object of the present invention is to provide a magnetic material and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記目的を
達成するため種々の検討を行った結果、Fe23、Ni
O、ZnO、CuOを主成分とするNi−Zn−Cu系
フェライトから成る酸化物磁性材料の製造方法におい
て、仮焼後の粉砕粉末のBET(Brunau−Emm
et−Teller、以下、単にBETと記す)平均粒
径を0.35μm以下とすることにより低損失の電源ト
ランス用酸化物磁性材料が得られることを見い出した。
得られた焼成体は、平均結晶粒径が少なくとも5μm以
上である場合に、優れた低損失特性を示す。この焼成体
は、電力損失の温度特性において、120℃以上という
高温側でその損失が最小となる。
The present inventor has conducted various studies to achieve the above object, and as a result, has found that Fe 2 O 3 , Ni
In a method for producing an oxide magnetic material comprising a Ni—Zn—Cu-based ferrite containing O, ZnO, and CuO as main components, a BET (Brunau-Emm)
et-Teller (hereinafter, simply referred to as BET) It has been found that an oxide magnetic material for a power transformer with low loss can be obtained by setting the average particle size to 0.35 μm or less.
The obtained fired body shows excellent low loss characteristics when the average crystal grain size is at least 5 μm or more. This fired body has a minimum power loss temperature characteristic on the high temperature side of 120 ° C. or higher.

【0010】即ち、本発明は、Fe23、NiO、Zn
O、CuOを主成分とするNi−Zn−Cu系フェライ
トから成る酸化物磁性材料の製造方法において、仮焼後
の粉砕粉末のBET平均粒径を0.35μm以下とし、
更に、焼成体の平均結晶粒径を5μm以上とすることを
特徴とする。
That is, the present invention relates to Fe 2 O 3 , NiO, Zn
In the method for producing an oxide magnetic material composed of a Ni-Zn-Cu-based ferrite containing O and CuO as main components, the BET average particle size of the calcined ground powder is set to 0.35 µm or less,
Furthermore, the average grain size of the fired body is 5 μm or more.

【0011】また、本発明によれば、Fe23、Ni
O、ZnO、CuOを主成分とするNi−Zn−Cu系
フェライトから成る酸化物磁性材料において、仮焼後の
粉砕粉末のBET平均粒径を0.35μm以下として製
造され、且つ、焼成体の平均結晶粒径が5μm以上であ
ることを特徴とする酸化物磁性材料が得られる。尚、前
記焼成体の平均結晶粒径は、少なくとも5μm以上あれ
ば良いが、8μm以上の場合に、低損失特性が特に優れ
たものとなる。
Further, according to the present invention, Fe 2 O 3 , Ni
In an oxide magnetic material composed of Ni-Zn-Cu-based ferrite containing O, ZnO, and CuO as main components, the calcined powder is manufactured to have a BET average particle size of 0.35 µm or less, and An oxide magnetic material having an average crystal grain size of 5 μm or more is obtained. The average crystal grain size of the fired body may be at least 5 μm or more. When it is 8 μm or more, the low loss characteristics are particularly excellent.

【0012】本発明の酸化物磁性材料は、従来のMn−
Zn系フェライトと比較し、比抵抗が著しく大きい。比
抵抗が大きいことにより、電源用トランスのコア材とし
て用いた場合に、上述した巻線の直巻きが可能であるた
め、ボビン等の巻線用治具が不要となり、コストの低減
が図れる。また、比抵抗が大きいことにより、導体と磁
性体とを一体焼成することも可能となるので、超小型化
が可能である。
The oxide magnetic material of the present invention comprises a conventional Mn-
Compared with Zn-based ferrite, the specific resistance is remarkably large. Since the specific resistance is large, when used as a core material of a power supply transformer, the above-described winding can be directly wound, so that a winding jig such as a bobbin is not required, and cost can be reduced. Further, since the conductor and the magnetic body can be integrally fired due to the large specific resistance, it is possible to miniaturize.

【0013】一般に、フェライトの損失は、ヒステリシ
ス損失、渦電流損失、残留損失の3つに大別できる。本
発明の酸化物磁性材料と従来のNi−Zn系フェライト
の損失を比較すると、本発明の酸化物磁性材料では、上
記した3つの損失のうち、主に、ヒステリシス損失が低
減している結果、従来のNi−Zn系フェライトに比
べ、大きく損失が減少していることが分った。ヒステリ
シス損失は磁壁の非可逆的な移動により発生する損失で
ある。ヒステリシス損失を低減するためには、磁壁移動
の障害となる介在物を減らすことが必要である。しかし
ながら、介在物を極端に減らしすぎると、磁壁は長い距
離を移動することになり、逆にヒステリシス損失を増加
させてしまう。また、磁壁の枚数は平均結晶粒径に依存
するから、結晶粒径は大きいことが望ましい。以上よ
り、ヒステリシス損失を低減するためには、平均結晶粒
径を大きく、且つ結晶粒には適度に磁壁移動の障害とな
る介在物が存在することが望ましいものと思われる。
In general, ferrite loss can be roughly divided into three types: hysteresis loss, eddy current loss, and residual loss. Comparing the loss of the oxide magnetic material of the present invention with that of the conventional Ni—Zn-based ferrite, the oxide magnetic material of the present invention shows that among the above three losses, mainly the hysteresis loss is reduced. It was found that the loss was greatly reduced as compared with the conventional Ni-Zn ferrite. The hysteresis loss is a loss generated by irreversible movement of the domain wall. In order to reduce the hysteresis loss, it is necessary to reduce inclusions that hinder domain wall movement. However, if the number of inclusions is excessively reduced, the domain wall moves over a long distance, and conversely increases the hysteresis loss. Since the number of domain walls depends on the average crystal grain size, the crystal grain size is preferably large. From the above, it can be considered that in order to reduce the hysteresis loss, it is desirable that the average crystal grain size be large, and that the crystal grains have moderate inclusions that hinder domain wall movement.

【0014】本発明の酸化物磁性材料の損失が小さい原
因としては、平均結晶粒径が5μm以上と大きいことに
加えて、結晶粒内のポアの割合が多く、磁壁のピンニン
グ作用によりヒステリシス損失が低減されたものと推察
される。また、本発明の酸化物磁性材料は、その組成に
よらず、損失の温度特性において、120℃以上の高温
側で損失が最小となる。
The reason why the loss of the oxide magnetic material of the present invention is small is that, in addition to the large average crystal grain size of 5 μm or more, the ratio of pores in the crystal grains is large, and the hysteresis loss is caused by the pinning action of the domain wall. It is inferred that it has been reduced. In addition, the oxide magnetic material of the present invention has a minimum loss on the high temperature side of 120 ° C. or higher in the temperature characteristic of loss regardless of the composition.

【0015】本発明の酸化物磁性材料の製造工程におい
て、仮焼後の粉砕粉末のBET平均粒径を0.35μm
以下としたのは、このBET平均粒径が0.35μm以
上であると、結晶粒内のポアの割合が少なくなり損失特
性が著しく劣化するためである。また、製造される焼成
体の平均結晶粒径を5μm以上としたのは、焼成体の平
均結晶粒径が5μm以下であると、ヒステリシス損失の
増大により損失特性が劣化するためである。尚、本発明
の酸化物磁性材料では、主成分の組成を43.5〜5
0.5mol%のFe23、10〜40mol%のNi
O、1〜15mol%のCuO、残部ZnOとすること
により、より優れた損失特性が得られる。
In the manufacturing process of the oxide magnetic material of the present invention, the calcined ground powder has a BET average particle diameter of 0.35 μm.
The reason for this is that if the BET average particle size is 0.35 μm or more, the proportion of pores in the crystal grains is reduced and the loss characteristics are significantly deteriorated. The reason why the average crystal grain size of the manufactured fired body is 5 μm or more is that if the average crystal grain size of the fired body is 5 μm or less, the loss characteristics are deteriorated due to an increase in hysteresis loss. In the oxide magnetic material of the present invention, the composition of the main component is 43.5 to 5
0.5 mol% of Fe 2 O 3 , 10 to 40 mol% of Ni
By using O, 1 to 15 mol% of CuO, and the balance of ZnO, more excellent loss characteristics can be obtained.

【0016】[0016]

【発明の実施形態】以下、本発明の実施形態としての酸
化物磁性材料及びその製造方法について説明する。 (実施例1)主成分組成を一定とし、製造工程における
仮焼後の粉砕粉末のBET平均粒径を0.10〜0.4
0の間で変化させた発明品1〜4と比較品(BET平均
粒径が請求の範囲外の試料)1の5つの試料を作製し、
その比抵抗・コアロス等の特性を比較してみた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an oxide magnetic material and a method for manufacturing the same according to an embodiment of the present invention will be described. (Example 1) The main component composition was fixed, and the BET average particle size of the pulverized powder after calcination in the production process was 0.10 to 0.4.
Five samples of invention products 1 to 4 and a comparison product (a sample whose BET average particle diameter is out of the range of claims) changed between 0 and 1 were prepared.
The characteristics such as specific resistance and core loss were compared.

【0017】即ち、主成分組成が49.5mol%のF
23、15.0mol%のNiO、5.0mol%の
CuO、残部ZnOとなるように、Fe23、NiO、
CuO、ZnOを秤量し、アトライターを用いて2時間
混合した。混合の後、スプレードライアーを用いて造粒
した。造粒した粉末をロータリーキルンを用いて800
℃で予焼(仮焼)した。得られた粉末をアトライターを
用いて微粉砕した。上述した5つの試料につき、この仮
焼後の粉砕粉末のBET平均粒径をそれぞれ0.10〜
0.40の間で異ならせ、それぞれ微粉砕後、スプレー
ドライアーにて造粒し、トロイダル形状にプレスし、1
150℃の焼成温度で焼成した。BET平均粒径は、5
つの試料につき粉砕時間を調整することで変化させた。
焼成したトロイダルコアに巻線を直巻し、損失の温度特
性等を測定する実験を行った。具体的には、それぞれ5
0kHz、150mTにおける室温(Room Tem
perature、R.T=25℃)、80℃、120
℃におけるコアロス(Pcv mW/cc)を測定し
た。これらを、得られた各焼成体の平均結晶粒径、比抵
抗と共に表1に示す。
That is, F of which main component composition is 49.5 mol%
e 2 O 3 , 15.0 mol% NiO, 5.0 mol% CuO, and the balance ZnO so that Fe 2 O 3 , NiO,
CuO and ZnO were weighed and mixed for 2 hours using an attritor. After mixing, the mixture was granulated using a spray dryer. The granulated powder is 800
Pre-baked (calcined) at ℃. The obtained powder was pulverized using an attritor. For each of the five samples described above, the BET average particle size of the calcined ground powder was 0.10 to 0.10, respectively.
0.40, pulverized, granulated by spray dryer, pressed to toroidal shape,
It was fired at a firing temperature of 150 ° C. BET average particle size is 5
This was varied by adjusting the grinding time for each sample.
An experiment was performed in which a winding was wound directly around the fired toroidal core and the temperature characteristics of the loss and the like were measured. Specifically, each 5
0 kHz, room temperature at 150 mT (Room Tem)
, R .; T = 25 ° C.), 80 ° C., 120
The core loss (Pcv mW / cc) at ° C was measured. These are shown in Table 1 together with the average crystal grain size and specific resistance of each of the obtained fired bodies.

【0018】[0018]

【表1】 表1より、仮焼後の粉砕粉末のBET平均粒径が0.4
0μmである比較品1では、50kHz、150mTに
おけるコアロス(Pcv mW/cc)が、25℃室温
(RT)で480、80℃で320、120℃で250
というように、すべての温度で大きな損失を示してい
る。これに対し、仮焼後の粉砕粉末のBET平均粒径が
0.35μm以下である発明品1〜4では、すべての温
度においてコアロス(Pcv mW/cc)は、比較品
1に比べて著しく小さくなっている。発明品1〜4間で
は、BET平均粒径が0.25〜0.10μmである発
明品2、3、4でコアロスは特に小さくなっており、
0.20μmである発明品3が最も小さい値を示す。
[Table 1] Table 1 shows that the calcined ground powder has a BET average particle size of 0.4
In the comparative product 1 of 0 μm, the core loss (Pcv mW / cc) at 50 kHz and 150 mT was 480 at 25 ° C. room temperature (RT), 320 at 80 ° C., and 250 at 120 ° C.
Thus, it shows a large loss at all temperatures. On the other hand, in the invention products 1 to 4 in which the BET average particle diameter of the calcined ground powder is 0.35 μm or less, the core loss (Pcv mW / cc) is significantly smaller than that of the comparison product 1 at all temperatures. Has become. Among invention products 1 to 4, core loss is particularly small in invention products 2, 3, and 4 having a BET average particle size of 0.25 to 0.10 μm,
Inventive product 3 having 0.20 μm shows the smallest value.

【0019】尚、比抵抗(Ωcm)は、比較品1が7×
109 であるのに対し、発明品1〜4は、それぞれ1×
109 、5×109 、8×109 、4×109 であり、
いずれも一般的なMn−Zn系フェライト等に比べ、大
変大きい値を示している。また、焼成体の平均結晶粒径
は、比較品1が13μm、発明品1〜4は、それぞれ1
6μm、14μm、15μm、15μmと、比較品1と
発明品1〜4で略同様の大きさとした。
The specific resistance (Ωcm) of the comparative product 1 was 7 ×
In contrast to 10 9 , invention products 1 to 4 each have 1 ×
10 9 , 5 × 10 9 , 8 × 10 9 , 4 × 10 9 ,
All of them show extremely large values as compared with general Mn-Zn based ferrite and the like. The average crystal grain size of the fired body was 13 μm for Comparative Product 1 and 1 μm for Invention Products 1-4.
The sizes were 6 μm, 14 μm, 15 μm, and 15 μm, which were almost the same as Comparative Product 1 and Invention Products 1 to 4.

【0020】図1に、発明品1、2、3、及び比較品1
の50kHz−150mTのコアロス(Pcv mW/
cc)の温度特性を示す。仮焼後の粉砕粉末のBET平
均粒径が0.35μm以下の発明品1、2、3では、比
較品1に比べ、全温度範囲で損失(コアロス)が小さい
ことが、この図1から明らかである。また、発明品1、
2、3の損失を表す特性曲線は、温度が上昇するにつれ
単調に減少していき、120℃の温度で、測定値中の最
小値を示す。従って、高温側ほど損失が小さくなる特性
を有しており、特性曲線が単調に減少していくことか
ら、120℃以上の温度領域においてその損失が最小に
なることが分る。 (実施例2)本実施例では、仮焼後の粉砕粉末のBET
平均粒径は0.20μmで一定とし、焼成体の平均結晶
粒径を異ならせた5つの試料を作製し、その比抵抗・コ
アロス等の特性を比較してみた。
FIG. 1 shows invention products 1, 2, 3 and comparative product 1.
Core loss of 50 kHz-150 mT (Pcv mW /
cc) shows temperature characteristics. It is apparent from FIG. 1 that the invention products 1, 2, and 3 having a BET average particle size of the calcined powder of 0.35 μm or less have a smaller loss (core loss) over the entire temperature range than the comparative product 1. It is. In addition, invention product 1,
The characteristic curves representing a few losses decrease monotonically with increasing temperature and show the minimum of the measured values at a temperature of 120 ° C. Therefore, the loss decreases as the temperature rises, and the characteristic curve decreases monotonously, indicating that the loss is minimized in a temperature region of 120 ° C. or higher. (Embodiment 2) In this embodiment, BET of the ground powder after calcination
The average grain size was fixed at 0.20 μm, and five samples were prepared with different average grain sizes of the fired bodies, and their characteristics such as specific resistance and core loss were compared.

【0021】即ち、実施例1と同様に、主成分組成が4
9.5mol%のFe23、15.0mol%のNi
O、5.0mol%のCuO、残部ZnOとなるよう
に、Fe 23、NiO、CuO、ZnOを秤量し、アト
ライターを用いて2時間混合した。混合の後、スプレー
ドライアーを用いて造粒した。造粒した粉末をロータリ
ーキルンを用いて800℃で予焼(仮焼)した。得られ
た粉末をアトライターを用いて微粉砕した。上述した5
つの試料につき、いづれもこの仮焼後の粉砕粉末のBE
T平均粒径が、実施例1で最も好成績であった発明品3
と同じ0.20μmになるようにした。それぞれ微粉砕
後、スプレードライアーにて造粒し、トロイダル形状に
プレスし、比較品2は1050℃、発明品5〜8は、1
100℃、1150℃、1200℃、1250℃の焼成
温度でそれぞれ焼成した。このように、比較品2及び発
明品5〜8の各試料間で、主として焼成温度を変えるこ
とで、焼成体の平均結晶粒径を異ならせた。焼成したト
ロイダルコアに巻線を直巻し、損失の温度特性等を測定
する実験を、実施例1と同様に行った。
That is, as in Example 1, the main component composition was 4%.
9.5 mol% FeTwoOThree, 15.0 mol% Ni
O, 5.0 mol% CuO, balance ZnO
And Fe TwoOThree, NiO, CuO, ZnO are weighed and
Mix for 2 hours using lighter. After mixing, spray
Granulation was performed using a dryer. Rotate granulated powder
Pre-fired (calcined) at 800 ° C. using a kiln. Obtained
The obtained powder was finely ground using an attritor. 5 mentioned above
For each sample, the BE of the ground powder after this calcination was
Invention product 3 having the highest average T particle size in Example 1
0.20 μm, which is the same as the above. Each finely crushed
After that, granulate with a spray dryer to form a toroidal shape
Pressed, Comparative product 2 was 1050 ° C, Invention products 5 to 8 were 1
100 ° C, 1150 ° C, 1200 ° C, 1250 ° C firing
Each was fired at a temperature. Thus, the comparative product 2 and
Mainly change the firing temperature between each sample of bright products 5-8.
Thus, the average crystal grain size of the fired body was changed. Baked
Winding a coil around a rod core and measuring temperature characteristics of loss
An experiment was performed in the same manner as in Example 1.

【0022】表2に、比較品2と発明品5〜8の各試料
につき、得られた各焼成体の平均結晶粒径、比抵抗、5
0kHz−150mTのコアロス(Pcv mW/c
c)を、上述した焼成温度と共に示す。
Table 2 shows the average grain size, specific resistance, and resistivity of each of the obtained fired bodies for each of the comparative product 2 and the invention products 5 to 8.
0 kHz-150 mT core loss (Pcv mW / c
c) is shown together with the firing temperature described above.

【0023】[0023]

【表2】 表2より、焼成体の平均結晶粒径が4μmである比較品
2では(BET平均粒径が0.20μmと、たとえ0.
35μm以下であっても)、上記50kHz、150m
Tにおけるコアロス(Pcv mW/cc)が、25℃
室温(RT)で660、80℃で510、120℃で4
10というように、すべての温度で大きな損失を示して
いる。これに対し、焼成体の平均結晶粒径が少なくとも
5μm以上である発明品5〜8では、すべての温度にお
いてコアロス(Pcv mW/cc)は、比較品2に比
べて著しく小さくなっている。発明品5〜8間では、焼
成体の平均結晶粒径が16μm以上である発明品6でコ
アロスは最も小さい値を示した。
[Table 2] From Table 2, it can be seen that Comparative Example 2 in which the sintered body had an average crystal grain size of 4 μm had a (BET average grain size of 0.20 μm, such as 0.1%).
50 kHz, 150 m
Core loss (Pcv mW / cc) at 25 ° C.
660 at room temperature (RT), 510 at 80 ° C, 4 at 120 ° C
A large loss, such as 10, is shown at all temperatures. On the other hand, in the invention products 5 to 8 in which the average crystal grain size of the fired body is at least 5 μm or more, the core loss (Pcv mW / cc) is significantly smaller than the comparative product 2 at all temperatures. Among the inventive products 5 to 8, the core loss of the inventive product 6 in which the average crystal grain size of the fired body was 16 μm or more showed the smallest value.

【0024】尚、比抵抗(Ωcm)は、比較品3が6×
109 であるのに対し、発明品5〜8は、それぞれ5×
109 、4×109 、4×109 、1×109 であり、
いずれも一般的なMn−Zn系フェライト等に比べ、大
変大きい値を示している。 (実施例3)本実施例では、仮焼後の粉砕粉末のBET
平均粒径は0.20μmで一定とし、主成分組成を異な
らせた複数の試料を作製し、その比抵抗・コアロス等の
特性を比較してみた。
The specific resistance (Ωcm) of the comparative product 3 was 6 ×
In contrast to 10 9 , inventions 5 to 8 are each 5 ×
10 9 , 4 × 10 9 , 4 × 10 9 , 1 × 10 9 ,
All of them show extremely large values as compared with general Mn-Zn based ferrite and the like. (Embodiment 3) In this embodiment, the BET of the pulverized powder after calcination was performed.
The average particle size was fixed at 0.20 μm, a plurality of samples having different main component compositions were prepared, and their characteristics such as specific resistance and core loss were compared.

【0025】即ち、まず、発明品9〜14では、主成分
組成について、Fe23を41.5〜50.5mol%
の範囲で相違させ、NiOは15mol%で一定、Cu
Oは5mol%で一定、それぞれ残部ZnOとして、F
23、NiO、CuO、ZnOを秤量し、アトライタ
ーを用いて2時間混合した。混合の後、スプレードライ
アーを用いて造粒した。造粒した粉末をロータリーキル
ンを用いて800℃で予焼(仮焼)した。得られた粉末
をアトライターを用いて、実施例2と同様に、全試料と
もBET平均粒径が0.20μmになるように微粉砕し
た。それぞれ微粉砕後、スプレードライアーにて造粒
し、トロイダル形状にプレスし、1150℃の焼成温度
で焼成した。
That is, in the inventions 9 to 14, the content of the main component was 41.5 to 50.5 mol% of Fe 2 O 3.
, NiO is constant at 15 mol%, Cu
O is constant at 5 mol%, and the remaining ZnO is F
e 2 O 3 , NiO, CuO, and ZnO were weighed and mixed for 2 hours using an attritor. After mixing, the mixture was granulated using a spray dryer. The granulated powder was pre-fired (calcined) at 800 ° C. using a rotary kiln. The obtained powder was finely pulverized using an attritor in the same manner as in Example 2 so that the BET average particle diameter of all samples became 0.20 μm. After each pulverization, the mixture was granulated by a spray dryer, pressed into a toroidal shape, and fired at a firing temperature of 1150 ° C.

【0026】次に、発明品15〜20では、主成分組成
について、Fe23を49.5mol%一定、NiOを
8〜42mol%の範囲で相違させ、CuOは5mol
%で一定、それぞれ残部ZnOとして秤量し、上記と同
様にトロイダル形状のコアを製作した。更に、発明品2
1〜25では、主成分組成について、Fe23を49.
5mol%一定、NiOを15mol%で一定、CuO
を0(無添加)〜16mol%の範囲で相違させ、それ
ぞれ残部ZnOとして秤量し、上記と同様にトロイダル
形状のコアを製作した。発明品9〜25のすべての試料
について、焼成したトロイダルコアに巻線を直巻し、損
失の温度特性等を測定する実験を、実施例1及び2と同
様に行った。
Next, in the invention products 15 to 20, regarding the main component composition, Fe 2 O 3 is constant at 49.5 mol%, NiO is varied within a range of 8 to 42 mol%, and CuO is 5 mol%.
%, Each was weighed as the balance ZnO, and a toroidal core was produced in the same manner as above. Further, Invention 2
In Nos. 1 to 25, regarding the main component composition, Fe 2 O 3 was added to 49.
5 mol% constant, NiO constant at 15 mol%, CuO
Was varied in the range of 0 (no addition) to 16 mol%, and the balance was weighed as ZnO to produce a toroidal core in the same manner as described above. With respect to all the samples of the invention products 9 to 25, an experiment was conducted in the same manner as in Examples 1 and 2 in which a winding was wound directly around a fired toroidal core and temperature characteristics of loss and the like were measured.

【0027】表3に、発明品9〜25の各試料につき、
得られた各焼成体の平均結晶粒径、比抵抗、50kHz
−150mTのコアロス(Pcv mW/cc)を、上
述した主成分組成と共に示す。
Table 3 shows that each sample of the invention products 9 to 25 has
Average crystal grain size, specific resistance, 50 kHz of each obtained fired body
A core loss (Pcv mW / cc) of -150 mT is shown together with the main component composition described above.

【0028】[0028]

【表3】 表3より、43.5〜50.5mol%のFe23、1
0〜40mol%のNiO、1〜15mol%のCu
O、残部ZnOを主成分とする発明品10〜14、発明
品16〜19、発明品22〜24において、コアロス
(Pcv mW/cc)は、25℃室温(RT)、80
℃、120℃のすべての温度で比較的小さな値を示し
た。尚、焼成体の平均結晶粒径は、発明品9〜20では
14〜16μmの範囲の略同じ大きさであり、発明品2
1〜25では6〜22μmの範囲で相違している。
[Table 3] According to Table 3, 43.5 to 50.5 mol% of Fe 2 O 3 , 1
0-40 mol% NiO, 1-15 mol% Cu
The core loss (Pcv mW / cc) of the invention products 10 to 14, the invention products 16 to 19, and the invention products 22 to 24 mainly containing O and the balance ZnO was 25 ° C. room temperature (RT), 80 ° C.
The values were relatively small at all temperatures of 120 ° C and 120 ° C. In addition, the average crystal grain size of the fired body is approximately the same size in the range of 14 to 16 μm in the invention products 9 to 20, and the invention product 2
1 to 25 are different in the range of 6 to 22 μm.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば、Fe23、NiO、ZnO、CuOを主成分
とするNi−Zn−Cu系フェライトから成る酸化物磁
性材料の製造方法において、比抵抗が大きいことによる
巻線の直巻やCu添加による導体と磁性体との一体焼成
で小型化やコストの低減を図れるというNi−Zn(−
Cu)系フェライトの利点を生かしつつ、仮焼後の粉砕
粉末のBET平均粒径を0.35μm以下とし、焼成体
の平均結晶粒径を5μm以上とすることにより、損失特
性に優れた酸化物磁性材料を製造することができる。従
って、この酸化物磁性材料を電源用トランスのコア材と
して用いれば、トランスひいては電源の小型化を図りつ
つ、電力損失が小さく効率も良い電源を実現し得る。
As is apparent from the above description, according to the present invention, the production of an oxide magnetic material composed of a Ni—Zn—Cu ferrite containing Fe 2 O 3 , NiO, ZnO, and CuO as main components. In the method, the Ni—Zn (−) method can reduce the size and cost by directly winding a winding due to a large specific resistance or integrally firing a conductor and a magnetic material by adding Cu.
By making use of the advantages of Cu) -based ferrite, the BET average particle size of the calcined ground powder is set to 0.35 μm or less, and the average crystal particle size of the fired body is set to 5 μm or more, so that oxides having excellent loss characteristics are obtained. Magnetic materials can be manufactured. Therefore, if this oxide magnetic material is used as a core material of a transformer for a power supply, a power supply with small power loss and high efficiency can be realized while downsizing the transformer and the power supply.

【0030】また、本発明の酸化物磁性材料は、損失の
温度特性において、高温側ほど損失が小さくなり、12
0℃以上の高温領域でその損失が最小となるという特性
を有している。従って、電源用トランスのコア材として
用いても、発熱による熱暴走の危険等を回避し易く、安
全性の点でも優れるため、電源用トランス材料として実
用性が高い。
Further, in the oxide magnetic material of the present invention, in the temperature characteristic of the loss, the loss becomes smaller as the temperature becomes higher,
It has the characteristic that its loss is minimized in a high temperature region of 0 ° C. or higher. Therefore, even if it is used as a core material of a power transformer, it is easy to avoid the risk of thermal runaway due to heat generation, and it is excellent in safety, so that it is highly practical as a power transformer material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る酸化物磁性材料におけ
る損失の温度特性を、比較例(比較品)と共に示す図で
ある。
FIG. 1 is a diagram showing temperature characteristics of loss in an oxide magnetic material according to Example 1 of the present invention, together with a comparative example (comparative product).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 幸一 仙台市太白区郡山六丁目7番1号 株式会 社トーキン内 Fターム(参考) 4G002 AA06 AB02 AD04 AE02 AE04 4G018 AA23 AA24 AA25 AC01 AC03 AC08 AC16 5E041 AB01 AB19 BD01 CA03 NN02 NN06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Kondo 6-7-1, Koriyama, Taihaku-ku, Sendai City F-term in Tokin Co., Ltd. (Reference) 4G002 AA06 AB02 AD04 AE02 AE04 4G018 AA23 AA24 AA25 AC01 AC03 AC08 AC16 5E041 AB01 AB19 BD01 CA03 NN02 NN06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Fe23、NiO、ZnO、CuOを主
成分とするNi−Zn−Cu系フェライトから成る酸化
物磁性材料の製造方法において、仮焼後の粉砕粉末のB
ET(Brunau−Emmet−Teller)平均
粒径を0.35μm以下とし、更に、焼成体の平均結晶
粒径を5μm以上とすることを特徴とする酸化物磁性材
料の製造方法。
In a method for producing an oxide magnetic material composed of a Ni—Zn—Cu ferrite containing Fe 2 O 3 , NiO, ZnO, and CuO as main components, a powder of B
A method for producing an oxide magnetic material, wherein the average particle size of an ET (Brunau-Emmet-Teller) is 0.35 μm or less, and the average crystal grain size of a fired body is 5 μm or more.
【請求項2】 請求項1記載の酸化物磁性材料の製造方
法において、前記焼成体の平均結晶粒径を8μm以上と
することを特徴とする酸化物磁性材料の製造方法。
2. The method for producing an oxide magnetic material according to claim 1, wherein the sintered body has an average crystal grain size of 8 μm or more.
【請求項3】 Fe23、NiO、ZnO、CuOを主
成分とするNi−Zn−Cu系フェライトから成る酸化
物磁性材料において、仮焼後の粉砕粉末のBET(Br
unau−Emmet−Teller)平均粒径を0.
35μm以下として製造され、且つ、焼成体の平均結晶
粒径が5μm以上であることを特徴とする酸化物磁性材
料。
3. An oxide magnetic material composed of a Ni—Zn—Cu ferrite containing Fe 2 O 3 , NiO, ZnO, and CuO as main components.
unau-Emmet-Teller).
An oxide magnetic material which is manufactured to have a size of 35 μm or less and has a sintered body having an average crystal grain size of 5 μm or more.
【請求項4】 請求項3記載の酸化物磁性材料におい
て、前記焼成体の平均結晶粒径を8μm以上としたこと
を特徴とする酸化物磁性材料。
4. The oxide magnetic material according to claim 3, wherein said sintered body has an average crystal grain size of 8 μm or more.
【請求項5】 請求項3及び4記載の酸化物磁性材料に
おいて、43.5〜50.5mol%のFe23、10
〜40mol%のNiO、1〜15mol%のCuO、
残部ZnOを前記主成分とすることを特徴とする酸化物
磁性材料。
5. The oxide magnetic material according to claim 3, wherein 43.5 to 50.5 mol% of Fe 2 O 3 , 10
4040 mol% NiO, 1-15 mol% CuO,
An oxide magnetic material comprising a balance of ZnO as the main component.
JP11150679A 1999-05-28 1999-05-28 Oxide magnetic material and its production Pending JP2000335961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11150679A JP2000335961A (en) 1999-05-28 1999-05-28 Oxide magnetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11150679A JP2000335961A (en) 1999-05-28 1999-05-28 Oxide magnetic material and its production

Publications (1)

Publication Number Publication Date
JP2000335961A true JP2000335961A (en) 2000-12-05

Family

ID=15502112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11150679A Pending JP2000335961A (en) 1999-05-28 1999-05-28 Oxide magnetic material and its production

Country Status (1)

Country Link
JP (1) JP2000335961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206420A (en) * 2004-12-28 2006-08-10 Tdk Corp Ferritic sintered compact, its production method and coil component
CN105492364A (en) * 2013-09-11 2016-04-13 株式会社日立制作所 Passenger conveyor equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206420A (en) * 2004-12-28 2006-08-10 Tdk Corp Ferritic sintered compact, its production method and coil component
CN105492364A (en) * 2013-09-11 2016-04-13 株式会社日立制作所 Passenger conveyor equipment

Similar Documents

Publication Publication Date Title
JP2011093776A (en) Ferrite composition, ferrite core, and electronic component
JP4298962B2 (en) Oxide magnetic materials, ferrite cores and electronic components
JP2012096961A (en) Ferrite composition, ferrite core, and electronic component
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP3597673B2 (en) Ferrite material
JP2006347848A (en) Low loss ferrite material for power source
JP4404408B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2000299215A (en) Low loss oxide magnetic material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2001006916A (en) Low loss oxide magnetic material
JP2012096939A (en) Ferrite composition, ferrite core, and electronic component
JP2002246221A (en) Low loss oxide magnetic material
JP2000335961A (en) Oxide magnetic material and its production
JP2001151564A (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2530769B2 (en) Low loss oxide magnetic material for magnetic elements used in high frequency power supplies
JP2012124216A (en) Ferrite composition, ferrite core and electronic component
JP2012099662A (en) Ferrite composition, ferrite core, and electronic component
JPH0661033A (en) Low-loss oxide magnetic material
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2002343621A (en) Low-loss oxide magnetic material and manufacturing method therefor
JPH10270231A (en) Mn-ni ferrite material
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component
JPH11219812A (en) Oxide magnetic material
JP2001076923A (en) Low-loss oxide magnetic material
JPH09232124A (en) Low loss oxide magnetic material