JP2006347848A - Low loss ferrite material for power source - Google Patents
Low loss ferrite material for power source Download PDFInfo
- Publication number
- JP2006347848A JP2006347848A JP2005179194A JP2005179194A JP2006347848A JP 2006347848 A JP2006347848 A JP 2006347848A JP 2005179194 A JP2005179194 A JP 2005179194A JP 2005179194 A JP2005179194 A JP 2005179194A JP 2006347848 A JP2006347848 A JP 2006347848A
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- ferrite material
- less
- temperature range
- magnetic ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、スイッチング電源のコイル用磁芯等に適したMn−Zn系の低損失フェライトに関するものである。 The present invention relates to an Mn—Zn-based low-loss ferrite suitable for a coil magnetic core of a switching power supply.
Mn−Zn系フェライトは、各種通信機器、民生機器などのトランス用材料に用いられているが、従来のスイッチング電源用トランスにおいては、スイッチング周波数領域は、専ら100kHz〜500kHzであり、一部1MHz程度の物も実用化されている。近年は、通信容量の増大、省スペ−ス・多機能民生機器、自動車のエレクトロニクス化の進展に伴い、スイッチング周波数の更なる高周波化による小型化が要求され、2MHz以上の高周波対応低損失磁性材料が要求され始め、その使用温度領域は主として20〜120℃とされている。この目的に合う磁性フェライト材料としては、2MHz付近の周波数領域、20〜120℃の温度領域において低損失で、かつ、損失の極小値を示す温度が、60〜120℃の領域内であることが望ましい。一方、スイッチング電源のトランス、または、チョークコイル部のコアの透磁率が低すぎると、コイル巻数減少の障害となり、結果として、コイル部の抵抗による発熱が多くなり電源全体の効率低下に繋がる。スイッチング周波数1MHz用として使用される従来フェライトコアの室温における透磁率は900〜1500程度であり、スイッチング周波数2MHz用としては500程度以上が望ましい。 Mn-Zn ferrite is used in transformer materials for various communication devices, consumer devices, etc., but in conventional switching power transformers, the switching frequency region is exclusively 100 kHz to 500 kHz, and about 1 MHz in part. This is also in practical use. In recent years, with the increase in communication capacity, space-saving and multifunctional consumer devices, and the advancement of electronics in automobiles, miniaturization is required by further increasing the switching frequency, and a low-loss magnetic material compatible with high frequencies of 2 MHz or higher. The use temperature range is mainly 20 to 120 ° C. A magnetic ferrite material suitable for this purpose has a low loss in a frequency region near 2 MHz, a temperature region of 20 to 120 ° C., and a temperature exhibiting a minimum loss is in a region of 60 to 120 ° C. desirable. On the other hand, if the permeability of the transformer of the switching power supply or the core of the choke coil portion is too low, it becomes an obstacle to the reduction in the number of turns of the coil. The magnetic permeability at room temperature of a conventional ferrite core used for a switching frequency of 1 MHz is about 900 to 1500, and about 500 or more is desirable for a switching frequency of 2 MHz.
従来のMn−Zn系フェライトの場合、周波数1〜2MHz、最大磁束密度50〜100mT、温度100〜120℃の領域でのコア損失が大きい為、電源駆動時に熱暴走を発生させ易く、トランジスターなどの電子部品を破壊させる危険があるという欠点があった。本発明は、上記の問題に鑑み、従来よりも高温度領域においても充分電力損失が小さい広温度領域低損失フェライトを提供しようとするものである。
In the case of conventional Mn—Zn ferrite, core loss in the region of frequency 1 to 2 MHz, maximum magnetic flux density 50 to 100 mT, and
本発明は、Fe2O3、MnO、ZnOを主成分とし、副成分として、CuO
0〜30000ppm(ただし0を含まない)、NiO 5000〜60000ppmを加え、CaO 280〜16800ppm、SiO2 50〜500ppmを含有し、更に適宜Ta2O5 3000ppm以下、ZrO2 4000ppm以下、V2O5 3000ppm以下の少なくとも一種を選択複合添加、含有することにより、2MHz付近の高周波、30mT以上の高磁束密度領域における低損失フェライトを提供しようとするものである。
本発明において主成分としてNiO、CuOを添加した理由は下記のとおりである。
CuO、NiOを添加しない場合は、2MHz、50〜70mTにおけるコア損失が最小となる温度領域が40℃以下であり、60℃以上の高温度領域の電力損失が大きくなるという欠点があった。しかし、本発明のごとく、Fe2O3、MnO、ZnOの主成分に、CuO、NiOを添加、含有することにより、2MHz、50〜70mTにおける電力損失の極小値を示す温度が60℃〜120℃の範囲にあり、従来よりも高温度領域において充分電力損失が小さいMn−Zn系の電源用広温度対応の低損失フェライトを得ることができる。
また、適宜Ta2O5 50〜3000ppm、ZrO2 50〜4000ppm、V2O5 50〜3000ppmの少なくとも一種を選択複合添加、含有することにより、更に低損失化することが可能となる。
In the present invention, Fe 2 O 3 , MnO, and ZnO are the main components, and CuO is used as a subcomponent.
0 to 30000 ppm (excluding 0),
The reason why NiO and CuO are added as main components in the present invention is as follows.
When CuO and NiO are not added, the temperature range in which the core loss at 2 MHz and 50 to 70 mT is minimum is 40 ° C. or less, and the power loss in the high temperature region of 60 ° C. or more increases. However, as shown in the present invention, by adding and containing CuO and NiO in the main components of Fe 2 O 3 , MnO, and ZnO, the temperature that shows the minimum value of power loss at 2 MHz and 50 to 70 mT is 60 ° C. to 120 ° C. A Mn—Zn-based low-loss ferrite for a power source with a wide temperature range, which is in the range of ° C. and has a sufficiently low power loss in a higher temperature range than before, can be obtained.
Further, it is possible to further reduce the loss by appropriately adding and containing at least one of Ta 2 O 5 50 to 3000 ppm, ZrO 2 50 to 4000 ppm, and V 2 O 5 50 to 3000 ppm.
本発明の磁性フェライト材料は、最大磁束密度50mT、2MHzの周波数で測定したコア損失の最小値が2000kW/m3以下であり、コア損失の極小となる温度が、40℃〜120℃の温度帯域にある磁性フェライト材料である。そして、20℃〜120℃の温度帯域
において、最大磁束密度50mT、2MHzの周波数で測定したコア損失の最大値と最小値の差が1500kW/m3未満である事を特徴とする。
In the magnetic ferrite material of the present invention, the minimum value of the core loss measured at a maximum magnetic flux density of 50 mT and a frequency of 2 MHz is 2000 kW / m 3 or less, and the temperature at which the core loss is minimized is a temperature range of 40 ° C. to 120 ° C. Magnetic ferrite material. And in the temperature range of 20 ° C. to 120 ° C., the difference between the maximum value and the minimum value of the core loss measured at a maximum magnetic flux density of 50 mT and a frequency of 2 MHz is less than 1500 kW / m 3 .
また本発明の磁性フェライト材料は、最大磁束密度70mT、2MHzの周波数で測定したコア損失の最小値が5000kW/m3以下であり、コア損失の極小となる温度が、40℃〜120℃の温度帯域にある磁性フェライト材料である。そして20℃〜120℃の温度帯域
において、最大磁束密度70mT、2MHzの周波数で測定したコア損失の最大値と最小値の差が4000kW/m3以下である事を特徴とする。
In the magnetic ferrite material of the present invention, the minimum core loss measured at a maximum magnetic flux density of 70 mT and a frequency of 2 MHz is 5000 kW / m 3 or less, and the temperature at which the core loss is minimized is a temperature of 40 ° C. to 120 ° C. Magnetic ferrite material in the band. In the temperature range of 20 ° C. to 120 ° C., the difference between the maximum value and the minimum value of the core loss measured at a maximum magnetic flux density of 70 mT and a frequency of 2 MHz is 4000 kW / m 3 or less.
また本発明の磁性フェライト材料は、20℃において、交流初透磁率が500以上である事を特徴とする。 The magnetic ferrite material of the present invention is characterized in that the AC initial permeability is 500 or more at 20 ° C.
本発明の磁性フェライト材料によれば、2MHz付近の高周波、30〜100mTの高磁束密度領域の電力損失の極小値を示す温度が60℃〜120℃の範囲にあり、従来よりも広温度領域において充分電力損失が小さいMn−Zn系の電源用高温度対応の低損失フェライト得ることができる。 According to the magnetic ferrite material of the present invention, the temperature showing the minimum value of the power loss in the high magnetic flux density region of 30 to 100 mT at a high frequency around 2 MHz is in the range of 60 ° C. to 120 ° C., and in a wider temperature range than before. An Mn—Zn-based power loss low loss ferrite with a sufficiently small power loss can be obtained.
以下に本発明に関する電源用広温度対応の低損失フェライトの実施例を説明する。基本成分が表1に示す最終組成となるように、各成分の原料酸化物を配合し、その後、ボールミルを用いて湿式混合を4時間行ない、乾燥させた後、大気雰囲気中で900℃にて仮焼成した後、副成分として、CuOを10000ppm、NiOを20000ppm、CaCO3を1000ppm(CaOに換算すると560ppm)、SiO2を100ppm複合添加し、ボ−ルミルにて15時間粉砕した。但し、CaO、SiO2のように、あらかじめ、原料に含有されている副成分については、仮焼成後に添加する量をその分だけ減じ、全体として上記成分の割合に一致するようにした。また、NiO、CuOは仮焼成前の混合時に添加しても特性に差はない。この粉砕原料を乾燥後、バインダ−を、固形分換算で1wt%添加し、造粒、成形した。この成形体を酸素分圧を制御した窒素・酸素混合気体中で1100℃にて5時間焼成した。尚、焼成体の形状は、外形14mm、内径7mm、高さ3mmのリング状とした。得られた焼成体を、B−Hアナライザーおよび、LCRメーターにより測定した。 In the following, embodiments of the low-loss ferrite for a wide temperature range for power supply according to the present invention will be described. After blending the raw material oxides of each component so that the basic components have the final composition shown in Table 1, followed by wet mixing using a ball mill for 4 hours and drying, at 900 ° C. in an air atmosphere. After calcining, as secondary components, CuO (10000 ppm), NiO (20000 ppm), CaCO 3 (1000 ppm when converted to CaO) (560 ppm) and SiO 2 (100 ppm) were added together, and the mixture was pulverized with a ball mill for 15 hours. However, CaO, as SiO 2, in advance, for the sub-component contained in the raw material, reducing the amount to be added after calcination correspondingly as a whole and to match the proportions of the components. Moreover, even if NiO and CuO are added at the time of mixing before temporary baking, there is no difference in characteristics. After drying this pulverized raw material, 1 wt% of the binder was added in terms of solid content, and granulated and molded. This molded body was fired at 1100 ° C. for 5 hours in a nitrogen / oxygen mixed gas with a controlled oxygen partial pressure. The shape of the fired body was a ring shape having an outer diameter of 14 mm, an inner diameter of 7 mm, and a height of 3 mm. The obtained fired body was measured with a BH analyzer and an LCR meter.
このコアの特性結果を表1に示す。試料1〜13は、本発明の実施例であり、試料14〜17はFe2O3、ZnOが特許請求範囲外の比較例である。なお、以後表中の比較例の試料番号には、*を付与し区別している。
これらの結果から明らかなように、主成分であるFe2O3、ZnO、MnOの割合は、Fe2O3
55.0〜65.0mol%、ZnO 8.0〜15.0mol%、残部酸化マンガンの範囲であれば、20〜120℃の温度領域で、最大磁束密度50mT、2MHzの周波数におけるコア損失の最小値が2000kW/m3以下であり、コア損失の最大値と最小値の差が1500kW/m3以下であり、また、最大磁束密度70mT、2MHzの周波数におけるコア損失の最小値が5000kW/m3以下であり、コア損失の最大値と最小値の差が4000kW/m3以下であり、これらコア損失の極小となる温度を、40℃〜120℃の温度帯域に制御でき、20℃における交流初透磁率を500以上とすることができる。
Table 1 shows the characteristic results of the core. Samples 1 to 13 are examples of the present invention, and samples 14 to 17 are comparative examples in which Fe 2 O 3 and ZnO are outside the scope of the claims. Hereinafter, the sample numbers of the comparative examples in the table are distinguished by giving *.
As is clear from these results, the proportions of the main components Fe 2 O 3 , ZnO, and MnO are Fe 2 O 3.
In the range of 55.0 to 65.0 mol%, ZnO 8.0 to 15.0 mol%, and the remaining manganese oxide, the minimum core loss at a maximum magnetic flux density of 50 mT and a frequency of 2 MHz in the temperature range of 20 to 120 ° C. The value is 2000 kW / m 3 or less, the difference between the maximum value and the minimum value of the core loss is 1500 kW / m 3 or less, and the minimum value of the core loss at a maximum magnetic flux density of 70 mT and a frequency of 2 MHz is 5000 kW / m 3. The difference between the maximum value and the minimum value of the core loss is 4000 kW / m 3 or less, and the temperature at which the core loss is minimized can be controlled in a temperature range of 40 ° C. to 120 ° C. The magnetic permeability can be 500 or more.
また、前述の主成分を仮焼成後添加する副成分CuO、NiOはCuO 10〜30000ppm、NiO 500〜60000ppmの範囲内であれば表1に示した実施例とほぼ類似の特性が得られる事がわかった。但し、CuOが30000ppmよりも多いと、電力損失が大きくなり、透磁率が急激に低下する。NiOが60000ppmよりも多いと、電力損失が大きくなり、透磁率が急激に低下する。NiOが5000ppmよりも少ないと、電気抵抗が低下する為、高周波領域における渦電流損失が増大し、電力損失は大きくなる。この結果を示すデ−タを表2に示す。表2に示した試料は、表1に示した実施例と同様の試料作製工程において、副成分組成を変えて作製した。試料18〜32は、本発明の実施例であり、試料33、34はCuO、NiOが特許請求範囲外の比較例である。 In addition, if the subcomponents CuO and NiO added after the pre-baking of the above-mentioned main components are within the range of CuO 10 to 30000 ppm and NiO 500 to 60000 ppm, characteristics similar to those of the examples shown in Table 1 may be obtained. all right. However, if there is more CuO than 30000 ppm, power loss will become large and magnetic permeability will fall rapidly. When there is more NiO than 60000 ppm, a power loss will become large and a magnetic permeability will fall rapidly. When NiO is less than 5000 ppm, the electrical resistance is lowered, so the eddy current loss in the high frequency region is increased and the power loss is increased. Table 2 shows data showing the results. The samples shown in Table 2 were prepared by changing the subcomponent composition in the same sample preparation process as the example shown in Table 1. Samples 18 to 32 are examples of the present invention, and samples 33 and 34 are comparative examples in which CuO and NiO are outside the scope of the claims.
また、前述の主成分を仮焼成後添加する副成分CaO、SiO2はCaO
280〜1680ppm、SiO2 50〜500ppmの範囲内であれば表1に示した実施例とほぼ類似の特性が得られる事がわかった。但し、CaOが1680ppmよりも多いと、電力損失が大きくなり、透磁率が低下する。CaOが280ppmよりも少ないと、電気抵抗が低下する為、高周波領域における渦電流損失が増大し、電力損失は大きくなる。副成分のSiO2が範囲以上になると、異常焼結し、電力損失が大きくなると共に、透磁率が低下する。また、副成分のSiO2が範囲未満になると、電気抵抗が低下し、電力損失は増大する。この結果を示すデ−タを表3に示す。表3に示した試料は、表1に示した実施例と同様の試料作製工程において、副成分組成を変えて作製した。試料35〜45は、本発明の実施例であり、試料46、47、48はCaO、SiO2が特許請求範囲外の比較例である。
In addition, subcomponents CaO and SiO 2 added after the pre-baking of the above-mentioned main components are CaO.
It was found that characteristics similar to those of the examples shown in Table 1 can be obtained if they are in the range of 280 to 1680 ppm and SiO2 of 50 to 500 ppm. However, when there is more CaO than 1680 ppm, electric power loss will become large and magnetic permeability will fall. If the CaO content is less than 280 ppm, the electrical resistance is lowered, so the eddy current loss in the high frequency region increases and the power loss increases. When the subcomponent SiO 2 exceeds the range, abnormal sintering occurs, power loss increases, and magnetic permeability decreases. On the other hand, when the subcomponent SiO 2 is less than the range, the electrical resistance is lowered and the power loss is increased. Table 3 shows data showing the results. The samples shown in Table 3 were prepared by changing the subcomponent composition in the same sample preparation process as the example shown in Table 1. Samples 35 to 45 are examples of the present invention, and samples 46, 47, and 48 are comparative examples in which CaO and SiO 2 are outside the scope of the claims.
また、前述の主成分を仮焼成後添加する副成分Ta2O5、ZrO2はTa2O5
50〜3000ppm、ZrO2 50〜4000ppmの範囲内であれば表1に示した実施例の特性をより改善できるが得られる事がわかった。但し、Ta2O5が3000ppmよりも多いと、また、ZrO2が4000ppmよりも多いと、電力損失が大きくなり、透磁率が低下する。Ta2O5、ZrO2共に50ppmよりも少ないと、表1に示した実施例の場合と比較して効果がみられない。この結果を示すデ−タを表4に示す。表4に示した試料は、表1に示した実施例と同様の試料作製工程において、副成分組成を変えて作製した。試料49〜63は、本発明の実施例であり、試料64、65はTa2O5、ZrO2が特許請求範囲外の比較例である。
Further, the subcomponents Ta 2 O 5 and ZrO 2 to be added after the above-mentioned main component is pre-baked are Ta 2 O 5.
It was found that the characteristics of the examples shown in Table 1 can be further improved if they are within the ranges of 50 to 3000 ppm and ZrO 2 50 to 4000 ppm. However, if Ta 2 O 5 is more than 3000 ppm, and if ZrO 2 is more than 4000 ppm, the power loss increases and the magnetic permeability decreases. When both Ta 2 O 5 and ZrO 2 are less than 50 ppm, no effect is observed as compared with the case of the examples shown in Table 1. Table 4 shows data showing the results. The samples shown in Table 4 were prepared by changing the subcomponent composition in the same sample preparation process as the example shown in Table 1. Samples 49 to 63 are examples of the present invention, and samples 64 and 65 are comparative examples in which Ta 2 O 5 and ZrO 2 are outside the scope of the claims.
また、前述の主成分を仮焼成後添加する副成分V2O5は、V2O5
20〜3000ppmの範囲内であれば表1に示した実施例の特性をより改善できる事がわかった。但し、V2O5 3000ppmよりも多いと、電力損失が大きくなり、透磁率が低下する。50ppmよりも少ないと効果がみられない。この結果を示すデ−タを表5に示す。表5に示した試料は、表1に示した実施例と同様の試料作製工程において、副成分組成を変えて作製した。試料66〜76、78は、本発明の実施例であり、試料77はV2O5が特許請求範囲外の比較例である。
Further, the subcomponent V 2 O 5 added after the pre-baking of the main component is V 2 O 5.
It was found that the characteristics of the examples shown in Table 1 can be further improved within the range of 20 to 3000 ppm. However, if it exceeds V 2 O 5 3000 ppm, the power loss increases and the magnetic permeability decreases. If it is less than 50 ppm, no effect is observed. Table 5 shows data showing the results. Samples shown in Table 5 were prepared by changing the subcomponent composition in the same sample preparation process as the example shown in Table 1. Samples 66 to 76 and 78 are examples of the present invention, and sample 77 is a comparative example in which V 2 O 5 is outside the scope of the claims.
図1及び図2は、磁性フェライト材料の電力損失の温度特性を示す図である。本発明による磁性フェライト材料である、実施例のものは比較例のものと比べて、広温度領域において充分電力損失が小さい事がわかる。 1 and 2 are graphs showing temperature characteristics of power loss of the magnetic ferrite material. It can be seen that the magnetic ferrite material according to the present invention has a sufficiently small power loss in a wide temperature range as compared with the comparative example.
前述のごとく、電源用広温度対応の低損失フェライトは、Fe2O3、MnO、ZnOを主成分とし、副成分として、CuO
0〜30000ppm(ただし、0を含まない)、NiO 5000〜60000ppm、CaO 280〜1680ppm、SiO2 50〜500ppm、Ta2O5 3000ppm以下、ZrO2
50〜4000ppm以下、V2O53000ppm以下を選択複合添加、含有することにより、2MHz付近の高周波、30mT以上の高磁束密度領域の電力損失の極小値を示す温度が60℃〜120℃の範囲にあり、従来よりも広温度領域において充分電力損失が小さいMn−Zn系の電源用高温度対応の低損失フェライトを得ることができる。
As described above, the low-loss ferrite for power supply having a wide temperature range includes Fe 2 O 3 , MnO, and ZnO as main components and CuO as subcomponents.
0-30000 ppm (excluding 0), NiO 5000-60000 ppm, CaO 280-1680 ppm, SiO 2 50-500 ppm, Ta 2 O 5 3000 ppm or less, ZrO 2
50-4000 ppm or less and V 2 O 5 3000 ppm or less are selected and added, and the temperature which shows the minimum value of the power loss in the high frequency vicinity of 2 MHz and the high magnetic flux density region of 30 mT or more is in the range of 60 ° C. to 120 ° C. Therefore, it is possible to obtain a Mn—Zn-based low-loss ferrite for power supply that has a sufficiently low power loss in a wider temperature range than before.
Claims (7)
The magnetic ferrite material according to any one of claims 1 to 6, wherein an alternating current initial permeability is 500 or more at 20 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005179194A JP2006347848A (en) | 2005-06-20 | 2005-06-20 | Low loss ferrite material for power source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005179194A JP2006347848A (en) | 2005-06-20 | 2005-06-20 | Low loss ferrite material for power source |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006347848A true JP2006347848A (en) | 2006-12-28 |
Family
ID=37644075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005179194A Pending JP2006347848A (en) | 2005-06-20 | 2005-06-20 | Low loss ferrite material for power source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006347848A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102795851A (en) * | 2011-05-23 | 2012-11-28 | Tdk株式会社 | Ferrite composite and electronic part |
CN102800456A (en) * | 2011-05-23 | 2012-11-28 | Tdk株式会社 | Ferrite core and electric parts |
JP2012246154A (en) * | 2011-05-25 | 2012-12-13 | Tdk Corp | Ferrite composition and electronic part |
CN110128124A (en) * | 2019-05-13 | 2019-08-16 | 海宁联丰磁业股份有限公司 | A kind of wide temperature ultra-low loss soft magnetic ferrite and preparation method thereof |
CN110436911A (en) * | 2019-08-20 | 2019-11-12 | 乳源东阳光磁性材料有限公司 | A kind of soft magnetic materials and preparation method thereof and the application in automobile electronic system |
CN111039667A (en) * | 2019-12-09 | 2020-04-21 | 天长市华磁磁电有限公司 | Wide-temperature low-loss ferrite and preparation method thereof |
-
2005
- 2005-06-20 JP JP2005179194A patent/JP2006347848A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102795851A (en) * | 2011-05-23 | 2012-11-28 | Tdk株式会社 | Ferrite composite and electronic part |
CN102800456A (en) * | 2011-05-23 | 2012-11-28 | Tdk株式会社 | Ferrite core and electric parts |
JP2012244064A (en) * | 2011-05-23 | 2012-12-10 | Tdk Corp | Ferrite core and electronic component |
JP2012246154A (en) * | 2011-05-25 | 2012-12-13 | Tdk Corp | Ferrite composition and electronic part |
CN110128124A (en) * | 2019-05-13 | 2019-08-16 | 海宁联丰磁业股份有限公司 | A kind of wide temperature ultra-low loss soft magnetic ferrite and preparation method thereof |
CN110128124B (en) * | 2019-05-13 | 2021-12-07 | 海宁联丰磁业股份有限公司 | Wide-temperature ultralow-loss soft magnetic ferrite material and preparation method thereof |
CN110436911A (en) * | 2019-08-20 | 2019-11-12 | 乳源东阳光磁性材料有限公司 | A kind of soft magnetic materials and preparation method thereof and the application in automobile electronic system |
CN111039667A (en) * | 2019-12-09 | 2020-04-21 | 天长市华磁磁电有限公司 | Wide-temperature low-loss ferrite and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050167632A1 (en) | Method for producing Mn-Zn ferrite | |
TW504712B (en) | Manganese-zinc (Mn-Zn) based ferrite | |
JP4279995B2 (en) | MnZn ferrite | |
JP2006347848A (en) | Low loss ferrite material for power source | |
JP3607203B2 (en) | Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply | |
JP2005330126A (en) | MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME | |
JPH06310320A (en) | Oxide magnetic substance material | |
JP2004247370A (en) | MnZn FERRITE | |
JPH06290925A (en) | High frequency low loss ferrite for power supply | |
JP2008290893A (en) | Ni-Cu-Zn-BASED FERRITE | |
JPH11238617A (en) | Manganese-zinc based ferrite | |
JP2007197246A (en) | Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER | |
JP4761175B2 (en) | Low-loss ferrite and magnetic core using the same | |
JP5882811B2 (en) | Ferrite sintered body and pulse transformer core comprising the same | |
JP2004247371A (en) | MnZn FERRITE | |
JP3039784B2 (en) | High frequency low loss ferrite for power supply | |
JPH06349622A (en) | Core for transformer or inductor | |
JPH10270231A (en) | Mn-ni ferrite material | |
JP2003257724A (en) | Mn-Zn-BASED FERRITE | |
JP2963067B2 (en) | Low loss ferrite | |
JP2007197253A (en) | METHOD OF MANUFACTURING Mn-Zn FERRITE | |
JP3366708B2 (en) | Low loss Mn-Zn ferrite | |
JP2006298728A (en) | Mn-Zn-BASED FERRITE MATERIAL | |
JP2001076923A (en) | Low-loss oxide magnetic material | |
JP2005029416A (en) | Ferrite material |