JP5882811B2 - Ferrite sintered body and pulse transformer core comprising the same - Google Patents

Ferrite sintered body and pulse transformer core comprising the same Download PDF

Info

Publication number
JP5882811B2
JP5882811B2 JP2012076854A JP2012076854A JP5882811B2 JP 5882811 B2 JP5882811 B2 JP 5882811B2 JP 2012076854 A JP2012076854 A JP 2012076854A JP 2012076854 A JP2012076854 A JP 2012076854A JP 5882811 B2 JP5882811 B2 JP 5882811B2
Authority
JP
Japan
Prior art keywords
mol
terms
ferrite sintered
less
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076854A
Other languages
Japanese (ja)
Other versions
JP2013203632A (en
Inventor
ひとみ 落合
ひとみ 落合
憲一 古舘
憲一 古舘
竹之下 英博
英博 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012076854A priority Critical patent/JP5882811B2/en
Publication of JP2013203632A publication Critical patent/JP2013203632A/en
Application granted granted Critical
Publication of JP5882811B2 publication Critical patent/JP5882811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フェライト焼結体およびこのフェライト焼結体に金属線を巻きつけてなるパルストランス用コアに関する。   The present invention relates to a ferrite sintered body and a core for a pulse transformer in which a metal wire is wound around the ferrite sintered body.

インダクタ、変圧器、安定器、電磁石、ノイズフィルタ等のコアや、各種IT関連機器のLANインターフェース部に用いられるパルストランス用のコアとして、従来からフェライト焼結体が用いられている。このコアであるフェライト焼結体としては、透磁率の高いMn−Zn系のフェライト焼結体が一般に広く用いられていた。   Conventionally, ferrite sintered bodies have been used as cores for inductors, transformers, ballasts, electromagnets, noise filters, etc., and as cores for pulse transformers used in LAN interface units of various IT-related devices. As the ferrite sintered body as the core, a Mn—Zn ferrite sintered body having a high magnetic permeability has been widely used.

しかしながら、Mn−Zn系のフェライト焼結体は、比抵抗(電気抵抗)が低くコアとなるフェライト焼結体に金属線を直巻きすることができず、間に絶縁物を介在させる必要があるため、金属線巻の作業性が悪かった。また、絶縁物を介在させなければならないことから、近年要求が高まる小型化・薄型化への対応が困難であった。   However, the Mn-Zn ferrite sintered body has a low specific resistance (electrical resistance) and cannot be wound directly on the ferrite sintered body serving as a core, and an insulator must be interposed therebetween. Therefore, workability of the metal wire winding was bad. In addition, since an insulator must be interposed, it has been difficult to cope with downsizing and thinning, which have been increasingly demanded in recent years.

これに対し、Mn−Zn系のフェライト焼結体よりも比抵抗が2オーダー程度高いものとして、Ni−Zn系のフェライト焼結体が知られている。   On the other hand, a Ni—Zn ferrite sintered body is known as having a specific resistance approximately two orders of magnitude higher than that of the Mn—Zn ferrite sintered body.

例えば、特許文献1には、FeをFeに換算して45.0〜50.0mol%、NiをNiOに換算して5.0〜10.0mol%、CuをCuOに換算して5.0〜15.0mol%、ZnをZnOに換算して25.0〜35.0mol%、Mo、W、V、Cr、Mg、Ca、Sr及びBaから選ばれる少なくとも一種の金属をそれぞれMoO、WO、V、Cr、MgO、CaO、SrO及びBaOに換算して合計で0.1〜3.0mol%並びにLiをLiOに換算して0.01〜3.0mol%含む酸化物磁性材料が提案されている。 For example, Patent Document 1 discloses that Fe is converted to Fe 2 O 3 at 45.0 to 50.0 mol%, Ni is converted to NiO at 5.0 to 10.0 mol%, Cu is converted to CuO at 5.0 to 15.0 mol%, When Zn is converted to ZnO, at least one metal selected from 25.0 to 35.0 mol%, Mo, W, V, Cr, Mg, Ca, Sr and Ba is MoO 3 , WO, V 2 O 5 , Cr 2 O, respectively. 3 , oxide magnetic materials containing 0.1 to 3.0 mol% in total in terms of MgO, CaO, SrO and BaO and 0.01 to 3.0 mol% in terms of Li in terms of Li 2 O have been proposed.

特開平8−208233号公報JP-A-8-208233

しかしながら、特許文献1に記載の酸化物磁性材料は、比抵抗が高いものの、実施例において示されている透磁率は、最も高いものでも2000程度であることから、小型化・薄型化には応えられなかった。また、今般においては、小型化・薄型化に加えて、例えば、フェライト焼結体からなるコアを用いるパルストランスには、入力された印加磁界のエネルギーの一部が熱として外部に放出されることによる効率の低下や温度上昇を招かないことが求められている。そのため、今般の要求に応えるには、透磁率を向上できるとともに、室温におけるコアロスを減少できる材料が必要である。   However, although the oxide magnetic material described in Patent Document 1 has a high specific resistance, the magnetic permeability shown in the examples is about 2000 at the highest, so it can respond to miniaturization and thinning. I couldn't. In addition, in addition to miniaturization and thinning, for example, in a pulse transformer using a core made of a ferrite sintered body, a part of the energy of the applied magnetic field is released to the outside as heat. Therefore, it is required that the efficiency does not decrease and the temperature does not increase. Therefore, in order to meet this demand, a material that can improve the magnetic permeability and reduce the core loss at room temperature is required.

本発明は、高い透磁率を有し、かつ室温におけるコアロスの小さいフェライト焼結体およびこのフェライト焼結体に金属線を巻き付けてなるパルストランス用コアを提供することを目的とするものである。   An object of the present invention is to provide a ferrite sintered body having a high magnetic permeability and a small core loss at room temperature, and a core for a pulse transformer formed by winding a metal wire around the ferrite sintered body.

主成分として、FeをFe換算で49.5モル%以上49.8モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15モル%以下、CuをCuO換算で4モル%以上9モル%以下含み、前記主成分100質量%に対して、WをWO、MoをMoO、MnをMnOに換算した値でそれぞれ0.01質量%以上1質量%以下含むことを特徴とするものである。 As a main component, Fe is 49.5 mol% or more and 49.8 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, Ni is 5 mol% or more and 15 mol% or less in terms of NiO Cu is 4 mol% or more and 9 mol% or less in terms of CuO, with respect to 100 mass% of the main component, W is WO 3 , Mo is MoO 3 , and Mn is MnO 2 in terms of 0.01 mass% or more. It is characterized by containing 1% by mass or less.

また、本発明のパルストランス用コアは、上記構成のフェライト焼結体に金属線を巻き付けてなることを特徴とするものである。   The pulse transformer core of the present invention is characterized in that a metal wire is wound around the ferrite sintered body having the above-described configuration.

本発明のフェライト焼結体によれば、透磁率を向上できるとともに、室温におけるコアロスを減少できる材料からなることから、高い透磁率を有し、かつ室温におけるコアロスの小さいフェライト焼結体とすることができる。   According to the ferrite sintered body of the present invention, since it is made of a material that can improve the magnetic permeability and reduce the core loss at room temperature, the ferrite sintered body has a high magnetic permeability and a small core loss at room temperature. Can do.

本発明のパルストランス用コアによれば、高い透磁率を有し、かつ室温におけるコアロスが小さい上記構成のフェライト焼結体に金属線を巻き付けてなることにより、小型化・薄型化に対応できるとともに、効率および信頼性の高い、優れたパルストランス用コアとすることができる。   According to the pulse transformer core of the present invention, a metal wire is wound around the ferrite sintered body having the above-described configuration having a high magnetic permeability and a small core loss at room temperature. It can be an excellent pulse transformer core with high efficiency and reliability.

本実施形態のフェライト焼結体の一例を示す、(a)はトロイダルコアの斜視図であり、(b)はボビンコアの斜視図である。An example of the ferrite sintered compact of this embodiment is shown, (a) is a perspective view of a toroidal core, (b) is a perspective view of a bobbin core.

以下、本発明のフェライト焼結体およびこれを備えるパルストランス用コアについて説明する。   Hereinafter, the ferrite sintered body of the present invention and a core for a pulse transformer including the same will be described.

本実施形態のフェライト焼結体は、このフェライト焼結体をコアとして、金属線を巻き付けることによって、例えば、絶縁や変圧を目的としたインダクタ、変圧器、安定器および電磁石、ノイズ除去などを目的としたノイズフィルタやパルストランスのコアに使用されるものである。   The ferrite sintered body of the present embodiment is used for the purpose of, for example, inductors, transformers, ballasts and electromagnets for noise insulation and voltage reduction, by winding a metal wire with the ferrite sintered body as a core. This is used for the core of noise filters and pulse transformers.

ここで、コアとなるフェライト焼結体には様々な形状のものがあり、例えば図1(a)の斜視図に示すリング状のトロイダルコア1や、図1(b)の斜視図に示すボビン状のボビンコア2などがある。   Here, there are various shapes of ferrite sintered bodies as cores. For example, the ring-shaped toroidal core 1 shown in the perspective view of FIG. 1A or the bobbin shown in the perspective view of FIG. Shaped bobbin core 2 and the like.

そして、このようなフェライト焼結体には、高い透磁率(μ)を有しているとともに、室温におけるコアロスの小さいことが求められおり、主成分として、FeをFe換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15モル%以下、CuをCuO換算で4モル%以上9モル%以下含み、前記主成分100質量%に対して、WをWO3、MoをMoO、MnをMnOに換算した値でそれぞれ0.01質量%以上1.0質量%以下含むことにより、上述した要求を満た
すフェライト焼結体とすることができる。
Such a ferrite sintered body is required to have a high magnetic permeability (μ) and a small core loss at room temperature. Fe as a main component is 49 mol in terms of Fe 2 O 3. From 50% to 50% by mole, Zn from 32% to 36% by mole in terms of ZnO, Ni from 5% to 15% by mole in terms of NiO, and Cu from 4% to 9% by mole in terms of CuO, Ferrite sintering satisfying the above-mentioned requirements by including 0.01% by mass to 1.0% by mass in terms of W converted to WO 3 , Mo converted to MoO 3 , and Mn converted to MnO 2 with respect to 100% by mass of the main component. It can be a body.

ここで、主成分を上述した組成範囲としたのは、透磁率が高く、室温におけるコアロスの小さいフェライト焼結体を得ることができるからである。なお、主成分とは、フェライト焼結体を構成する成分の95%以上を占める成分のことをいう。   Here, the reason why the main component is in the above-described composition range is that a ferrite sintered body having a high magnetic permeability and a small core loss at room temperature can be obtained. The main component refers to a component that accounts for 95% or more of the components constituting the ferrite sintered body.

これに対し、上述した組成範囲外では以下のような傾向がある。FeがFe換算で49モル%未満では、透磁率が低くなり、50モル%を超えるとコアロスが増大する。また、ZnがZnO換算で32モル%未満では、透磁率が低くなり、36モル%を超えるとコアロスが増大する。また、NiがNiO換算で5モル%未満では、フェライトとしての特性が発現できなくなり、15モル%を超えると透磁率が低くなる。また、CuがCuO換算で4
モル%未満では透磁率が低くなり、9モル%を超えるとフェライトとしての特性が発現できなくなる。
On the other hand, there is the following tendency outside the composition range described above. When Fe is less than 49 mol% in terms of Fe 2 O 3 , the magnetic permeability is low, and when it exceeds 50 mol%, core loss increases. Further, when Zn is less than 32 mol% in terms of ZnO, the magnetic permeability is low, and when it exceeds 36 mol%, core loss increases. Further, when Ni is less than 5 mol% in terms of NiO, the characteristics as ferrite cannot be expressed, and when it exceeds 15 mol%, the magnetic permeability is lowered. Cu is 4 in terms of CuO.
If it is less than mol%, the magnetic permeability is low, and if it exceeds 9 mol%, the properties as ferrite cannot be expressed.

そして、本実施形態のフェライト焼結体は、主成分100質量%に対して、WをWO3、MoをMoO、MnをMnOに換算した値でそれぞれ0.01質量%以上1.0質量%以下含
有することにより、透磁率をより向上させることができるとともに、室温におけるコアロスをより小さくすることができる。特に、WをWO3に換算した値で0.4質量%以上0.6質
量%以下、MoをMoOに換算した値で0.05質量%以上0.2質量%以下、MnをMnO
に換算した値で0.05質量%以上0.2質量%以下であることが好ましい。
The ferrite sintered body of the present embodiment, contains the main component with respect to 100 wt%, W and WO 3, Mo and MoO 3, Mn less 1.0 wt%, respectively 0.01 wt% or more value converted into MnO 2 As a result, the magnetic permeability can be further improved, and the core loss at room temperature can be further reduced. In particular, W is converted to WO 3 by 0.4 to 0.6 mass%, Mo is converted to MoO 3 by 0.05 to 0.2 mass%, and Mn to MnO.
The value converted to 2 is preferably 0.05% by mass or more and 0.2% by mass or less.

ここで、Wは、室温におけるコアロスを小さくすることに寄与する。WがWO3換算で0.01質量%未満である場合には、含有量が少なすぎるために室温におけるコアロスを小さ
くする効果が小さく、1.0質量%を超える場合には、含有量が多すぎるために透磁率が低
くなる傾向がある。
Here, W contributes to reducing the core loss at room temperature. When W is less than 0.01% by mass in terms of WO 3 , the content is too small, so the effect of reducing the core loss at room temperature is small, and when it exceeds 1.0% by mass, the content is too high and transparent. There is a tendency for magnetic susceptibility to be low.

また、Moは、主成分からなる結晶の粒成長を促進させる効果があり、主成分からなる結晶を粒成長させることよって透磁率を向上させることができる。これに対し、MoがMoO換算で0.01質量%未満である場合は、含有量が少なすぎるために粒成長を促進する効果が小さく、1.0質量%を超える場合には、含有量が多すぎるために透磁率が低くなる
傾向がある。
Further, Mo has an effect of promoting the grain growth of the crystal composed of the main component, and the magnetic permeability can be improved by growing the crystal composed of the main component. On the other hand, when Mo is less than 0.01% by mass in terms of MoO 3 , the content is too small, so the effect of promoting grain growth is small, and when it exceeds 1.0% by mass, the content is too high. However, the magnetic permeability tends to be low.

また、Mnは、透磁率を高めることに寄与する。これは、Mnの酸化物であるMnOやMnが、加熱によってMnOへと価数変化し、この価数変化に伴う余剰の酸素成分が、フェライト焼結体の酸素欠陥を埋めるためと考えられる。これに対し、MnがMnO換算で0.01質量%未満である場合には透磁率を高める効果が小さく、1.0質量%を超
える場合には、含有量が多すぎるために透磁率が低くなる傾向がある。
Moreover, Mn contributes to increasing the magnetic permeability. This is because MnO 2 and Mn 3 O 4 which are oxides of Mn change in valence to MnO by heating, and an excess oxygen component accompanying this valence change fills oxygen defects in the ferrite sintered body. it is conceivable that. On the other hand, when Mn is less than 0.01% by mass in terms of MnO 2 , the effect of increasing the magnetic permeability is small, and when it exceeds 1.0% by mass, the content tends to be low because the content is too large. is there.

また、上述した主成分およびW、MoおよびMn以外に、Siの酸化物やCaの酸化物を含んでいてもよい。このSiの酸化物やCaの酸化物を含むことによっても比抵抗を高くすることができる。なお、Siの酸化物またはCaの酸化物を含むときには、主成分100質量に対し、SiをSiO、CaをCaOに換算した合計で0.4質量%以下であることが好ましい。 In addition to the main component and W, Mo, and Mn described above, an oxide of Si or an oxide of Ca may be included. The specific resistance can also be increased by including this Si oxide or Ca oxide. When Si oxide or Ca oxide is included, the total of Si converted to SiO 2 and Ca converted to CaO is preferably 0.4 mass% or less with respect to 100 masses of the main component.

なお、本実施形態のフェライト焼結体の主成分が、FeをFe換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15モル%以下およびCuをCuO換算で4モル%以上9モル%以下含んでいることは、ICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置を用いて、Fe、Zn、Ni、Cuの含有量を求めて、それぞれFe、ZnO、NiO、CuOに換算し、この換算した値を用いてモル%に換算することにより確認することができる。 The main component of the ferrite sintered body of the present embodiment is that Fe is 49 mol% or more and 50 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, and Ni is NiO equivalent 5 mol% or more and 15 mol% or less and Cu is contained in an amount of 4 mol% or more and 9 mol% or less in terms of CuO, using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer. , Zn, Ni, and Cu can be obtained and converted into Fe 2 O 3 , ZnO, NiO, and CuO, respectively, and converted into mol% using these converted values.

また、W、MoおよびMnの含有量については、ICP発光分光分析装置または蛍光X線分析装置を用いて、W、Mo、Mnの含有量を求め、それぞれWO、MoO、MnOに換算し、主成分100質量%に対する値を算出すればよい。なお、SiやCaについ
ても同様である。
Further, W, for the content of Mo and Mn, using an ICP emission spectrophotometer or fluorescence X-ray analyzer, W, Mo, determine the content of Mn, respectively WO 3, MoO 3, converted to MnO 2 Then, a value for 100% by mass of the main component may be calculated. The same applies to Si and Ca.

また、本実施形態のフェライト焼結体において、Niが、NiO換算で10モル%を超え15モル%以下であることが好ましい。これにより、さらに透磁率を高めることができ、室温におけるコアロスを小さくすることができるため、より優れた特性を有するフェライト焼結体とすることができる。   In the ferrite sintered body of the present embodiment, Ni is preferably more than 10 mol% and 15 mol% or less in terms of NiO. Thereby, the magnetic permeability can be further increased, and the core loss at room temperature can be reduced, so that a ferrite sintered body having more excellent characteristics can be obtained.

また、本実施形態のフェライト焼結体において、Feが、Fe換算で49.5モル%以上49.8モル%以下であることが好ましい。これにより、高温側での透磁率を高くすることができ、トランスとしての特性を向上させることができる。 Moreover, in the ferrite sintered body of the present embodiment, it is preferable that Fe is 49.5 mol% or more and 49.8 mol% or less in terms of Fe 2 O 3 . Thereby, the magnetic permeability on the high temperature side can be increased, and the characteristics as a transformer can be improved.

次に、本実施形態のフェライト焼結体の製造方法について以下に詳細を示す。   Next, the manufacturing method of the ferrite sintered body of the present embodiment will be described in detail below.

本実施形態のフェライト材料の製造方法は、まず、出発原料として、Fe、Zn、Ni、Cu、W、MoおよびMnの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用意する。このとき平均粒径としては、例えば、Feが酸化鉄(Fe)、Znが酸化亜鉛(ZnO)、Niが酸化ニッケル(NiO)、Cuが酸化銅(CuO)、Wが酸化タングステン(WO3)、Moが酸化モリブデン(MoO3)およびMnが酸化マンガン(MnO)であるとき、それぞれ0.5μm以上5μm以下である。 In the method of manufacturing a ferrite material according to the present embodiment, first, as a starting material, an oxide of Fe, Zn, Ni, Cu, W, Mo, and Mn or a metal salt such as carbonate or nitrate that generates an oxide by firing is used. prepare. At this time, as the average particle size, for example, Fe is iron oxide (Fe 2 O 3 ), Zn is zinc oxide (ZnO), Ni is nickel oxide (NiO), Cu is copper oxide (CuO), and W is tungsten oxide ( When WO 3 ), Mo is molybdenum oxide (MoO 3 ), and Mn is manganese oxide (MnO 2 ), they are 0.5 μm or more and 5 μm or less, respectively.

そして、主成分を構成する出発原料を所望量となるよう秤量し、ボールミルや振動ミル等で粉砕混合した後、700℃以上1000℃以下の最高温度で2時間以上仮焼して仮焼体を得
る。
Then, the starting materials constituting the main component are weighed to a desired amount, pulverized and mixed with a ball mill or a vibration mill, and then calcined at a maximum temperature of 700 ° C. or higher and 1000 ° C. or lower for 2 hours or longer to obtain a calcined body. obtain.

次に、ボールミルや振動ミル等に、仮焼体と、平均粒径0.5〜5μmの酸化タングステ
ン(WO)、酸化モリブデン(MoO)および酸化マンガン(MnO)とを入れて粉砕混合する。このように、仮焼後に酸化タングステン(WO)を添加することにより、理由は明らかではないが、室温におけるコアロスを小さくすることができる。また、仮焼後に酸化モリブデン(MoO)を添加することにより、主成分からなる結晶の粒成長を促進させることができ、透磁率を高めることができる。
Next, the calcined body, tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), and manganese oxide (MnO 2 ) having an average particle size of 0.5 to 5 μm are put into a ball mill or a vibration mill and pulverized and mixed. Thus, the core loss at room temperature can be reduced by adding tungsten oxide (WO 3 ) after calcination, although the reason is not clear. Further, by adding molybdenum oxide (MoO 3 ) after calcination, crystal grain growth consisting of the main component can be promoted, and the magnetic permeability can be increased.

なお、酸化マンガン(MnO)については、仮焼前に添加してもよい。また、高い電気抵抗として渦電流損失を低減したい場合には、仮焼後における粉砕混合時に所定量のCaOおよびSiOのうち少なくとも一方を添加してもよい。 Note that the manganese oxide (MnO 2), may be added before calcination. When it is desired to reduce eddy current loss as a high electric resistance, at least one of a predetermined amount of CaO and SiO 2 may be added during pulverization and mixing after calcination.

次に、粉砕混合後の仮焼粉体に、所定量のバインダを加えてスラリーとし、噴霧造粒装置(スプレードライヤ)を用いて造粒した球状顆粒を得る。次に、この球状顆粒を用いてプレス成形して所定形状の成形体を得る。   Next, a predetermined amount of a binder is added to the calcined powder after pulverization and mixing to form a slurry, and spherical granules granulated using a spray granulator (spray dryer) are obtained. Next, this spherical granule is press-molded to obtain a molded body having a predetermined shape.

その後、成形体を脱脂炉にて400〜800℃の範囲で脱バインダ処理を施して脱脂体とした後、これを焼成炉にて1000〜1200℃の最高温度で2〜5時間保持して焼成することにより本実施形態のフェライト焼結体を得ることができる。   Thereafter, the molded body is degreased in a degreasing furnace in the range of 400 to 800 ° C. to obtain a degreased body, and then this is held in a firing furnace at a maximum temperature of 1000 to 1200 ° C. for 2 to 5 hours and fired. By doing so, the ferrite sintered body of the present embodiment can be obtained.

次に、透磁率およびコアロスの測定方法について説明する。まず、透磁率は、LCRメータを用いて周波数100kHzの条件で測定すればよい。このとき、試料としては、例え
ば、外径が13mm、内径が7mm、厚みが3mmの図1(a)に示すフェライト焼結体からなるリング状のトロイダルコア1を用いて、トロイダルコア1の巻き線部1aの全周にわたって線径が0.2mmの金属線を10回巻きつけたものを用いる。
Next, a method for measuring magnetic permeability and core loss will be described. First, the magnetic permeability may be measured under the condition of a frequency of 100 kHz using an LCR meter. At this time, as a sample, for example, a ring-shaped toroidal core 1 made of a ferrite sintered body shown in FIG. 1A having an outer diameter of 13 mm, an inner diameter of 7 mm, and a thickness of 3 mm is used. A metal wire having a wire diameter of 0.2 mm is wound 10 times around the entire circumference of the wire portion 1a.

また、コアロスは、B−Hアナライザ(例えば、IWATSU社製 SY-8232)を用いて、磁束密度150mT、周波数50kHzの条件で測定すればよい。なお、コアロス測定用の試料と
しては、例えば、外径が13mm、内径が7mm、厚みが3mmの図1(a)に示すフェライト焼結体からなるリング状のトロイダルコア1を用いて、1次巻き線と2次巻き線として、トロイダルコア1の巻き線部10aの全周にわたって線径が0.2mmの金属線をそれぞ
れ10回巻きつけたものを用いる。
The core loss may be measured using a BH analyzer (for example, SY-8232 manufactured by IWATSU) under the conditions of a magnetic flux density of 150 mT and a frequency of 50 kHz. As a sample for measuring core loss, for example, a ring-shaped toroidal core 1 made of a ferrite sintered body shown in FIG. 1A having an outer diameter of 13 mm, an inner diameter of 7 mm, and a thickness of 3 mm is used. As the winding and the secondary winding, a metal wire having a wire diameter of 0.2 mm wound around the entire circumference of the winding portion 10a of the toroidal core 1 is used 10 times.

そして、本実施形態のパルストランス用コアは、本実施形態のフェライト焼結体に金属線を巻き付けることにより作製することができる。そして、本実施形態のフェライト焼結体が、高い透磁率を有し、かつ室温におけるコアロスが小さいことにより、小型化・薄型化に対応できるとともに、効率および信頼性の高い、優れたパルストランス用コアとすることができる。   And the core for pulse transformers of this embodiment can be produced by winding a metal wire around the ferrite sintered body of this embodiment. The ferrite sintered body of the present embodiment has a high magnetic permeability and a small core loss at room temperature, so that it can cope with downsizing and thinning, and has excellent efficiency and reliability, for an excellent pulse transformer. Can be a core.

以下、本発明の実施例を具体的に説明するが、本発明はこの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

W、MoおよびMnを含有することによる特性変化を確認するために、まず主成分が表1に示すフェライト焼結体を作製した。   In order to confirm the change in characteristics due to the inclusion of W, Mo and Mn, ferrite sintered bodies whose main components are shown in Table 1 were first prepared.

平均粒径が1μmの酸化鉄(Fe)、酸化亜鉛(ZnO)および酸化ニッケル(NiO)の粉末と、平均粒径が3μmの酸化銅(CuO)の粉末を表1に示したモル比となるように秤量し、ボールミルで粉砕混合した後、750℃で仮焼して仮焼体を得た。そし
て、仮焼体を粉砕して仮焼粉体を得た。次に、この仮焼粉体を振動ミルにて粉砕した後、バインダを加えてスラリーとし、噴霧造粒装置(スプレードライヤ)にて造粒して球状顆粒を得た。そして、この球状顆粒を用いプレス成形法により圧縮成形して図1に示すトロイダルコア1の形状の成形体を得た。
Table 1 shows the powders of iron oxide (Fe 2 O 3 ), zinc oxide (ZnO) and nickel oxide (NiO) having an average particle diameter of 1 μm and copper oxide (CuO) powder having an average particle diameter of 3 μm. The mixture was weighed so as to have a ratio, pulverized and mixed with a ball mill, and calcined at 750 ° C. to obtain a calcined body. The calcined body was pulverized to obtain a calcined powder. Next, this calcined powder was pulverized with a vibration mill, and a binder was added to form a slurry, which was granulated with a spray granulator (spray dryer) to obtain spherical granules. Then, this spherical granule was compression molded by a press molding method to obtain a molded body having the shape of the toroidal core 1 shown in FIG.

次に、この成形体を脱脂炉にて、600℃の最高温度で5時間保持して脱バインダ処理を
施して脱脂体を得た。しかる後、この脱脂体を焼成炉にて大気雰囲気中1000〜1200℃の最高温度で2時間保持して焼成した。その後研削加工を施し、外径13mm、内径7mm、厚み3mmのトロイダル形状の試料No.1〜27のフェライト焼結体を得た。
Next, this molded body was held in a degreasing furnace at a maximum temperature of 600 ° C. for 5 hours and subjected to a binder removal treatment to obtain a degreased body. Thereafter, the degreased body was fired in a firing furnace at a maximum temperature of 1000 to 1200 ° C. for 2 hours in an air atmosphere. Thereafter, grinding was performed, and a toroidal sample No. 1 having an outer diameter of 13 mm, an inner diameter of 7 mm, and a thickness of 3 mm was obtained. 1 to 27 ferrite sintered bodies were obtained.

そして、各試料の巻き線部10aの全周にわたって線径が0.2mmの金属線を10回巻き付
けた後、LCRメータを用いて周波数100kHzにおける透磁率を測定した。また、各試
料の巻き線部10aの全周にわたって線径が0.2mmの金属線である1次巻き線および2次
巻き線をそれぞれ10回巻き付けた後、B−Hアナライザを用いて、磁束密度150mT、周
波数50kHzにおけるコアロスを測定した。
Then, after winding a metal wire having a wire diameter of 0.2 mm 10 times around the entire circumference of the winding portion 10a of each sample, the magnetic permeability at a frequency of 100 kHz was measured using an LCR meter. In addition, after winding the primary winding and the secondary winding, which are metal wires having a diameter of 0.2 mm, around the entire circumference of the winding portion 10a of each sample 10 times, the magnetic flux density is measured using a BH analyzer. The core loss at 150 mT and a frequency of 50 kHz was measured.

また、各試料について、ICP発光分光分析装置を用いて、Fe、Zn、Ni、Cuの含有量を求めて、それぞれFe、ZnO、NiO、CuOに換算し、この換算した値を用いてモル%に換算した。 Also, for each sample, using an ICP emission spectrophotometer, seeking Fe, Zn, Ni, the content of Cu, respectively Fe 2 O 3, ZnO, NiO , in terms of CuO, using the converted value Converted to mol%.

試料No.1〜27の主成分モル比、透磁率およびコアロスを表1に示す。   Sample No. Table 1 shows the main component molar ratio, magnetic permeability, and core loss of 1 to 27.

Figure 0005882811
Figure 0005882811

次に、試料No.1〜27を作製したときと同じ方法により、それぞれ仮焼粉体を得た後に、この仮焼粉体100質量%に対し、表2に示す含有量となるように酸化タングステン(
WO)、酸化モリブデン(MoO)および酸化モリブデン(MnO)を添加して、その後の工程は、試料No.1〜27を作製したときと同じ製造方法により同じ形状の試料No.28〜54のフェライト焼結体を得た。
Next, sample No. After obtaining calcined powders by the same method as that for producing Nos. 1 to 27, tungsten oxide (
WO 3 ), molybdenum oxide (MoO 3 ), and molybdenum oxide (MnO 2 ) are added. Sample Nos. 1 and 27 having the same shape by the same manufacturing method as those used when manufacturing Nos. 1 to 27. 28 to 54 ferrite sintered bodies were obtained.

また。試料No.4を作製したときと同じ方法により得られた仮焼粉体を用いて、この仮焼粉体100質量%に対し、表3に示す含有量となるように酸化タングステン(WO
、酸化モリブデン(MoO)および酸化モリブデン(MnO)を添加して、その後の工程は、試料No.1〜27を作製したときと同じ製造方法により同じ形状の試料No.55
〜78のフェライト焼結体を得た。
Also. Sample No. Tungsten oxide (WO 3 ) using the calcined powder obtained by the same method as that for producing No. 4 so that the content shown in Table 3 is obtained with respect to 100% by mass of the calcined powder.
Molybdenum oxide (MoO 3 ) and molybdenum oxide (MnO 2 ) are added, and the subsequent steps are performed in accordance with sample No. Sample Nos. 1 and 27 having the same shape by the same manufacturing method as those used when manufacturing Nos. 1 to 27. 55
˜78 ferrite sintered bodies were obtained.

そして、上述した方法と同じ方法により、透磁率およびコアロスを測定した。また、各試料について、ICP発光分光分析装置を用いて、Fe、Zn、Ni、Cuの含有量を求めて、それぞれFe、ZnO、NiO、CuOに換算し、この換算した値を用いてモル%に換算した。さらに、同じくICP発光分光分析装置を用いて、W、Mo、Mnの含有量を求め、それぞれWO、MoO、MnOに換算し、主成分100質量%に対す
る値を算出した。主成分のモル比、WO、MoO、MnOの含有量、透磁率およびコアロスについて、試料No.28〜54の結果を表2に、試料No.55〜78の結果を表3に示す。
Then, the magnetic permeability and core loss were measured by the same method as described above. Also, for each sample, using an ICP emission spectrophotometer, seeking Fe, Zn, Ni, the content of Cu, respectively Fe 2 O 3, ZnO, NiO , in terms of CuO, using the converted value Converted to mol%. Furthermore, using the same ICP emission spectroscopic analyzer, the contents of W, Mo, and Mn were determined, converted into WO 3 , MoO 3 , and MnO 2 , respectively, and values for 100% by mass of the main component were calculated. Regarding the molar ratio of the main components, the contents of WO 3 , MoO 3 and MnO 2 , the magnetic permeability and the core loss, the sample No. The results of 28 to 54 are shown in Table 2, and sample No. The results for 55-78 are shown in Table 3.

また、透磁率の上昇率を算出した。透磁率の上昇率の算出方法としては、W,Mo,Mnを添加していない表1に示す透磁率を基礎数値とし、主成分が表1と対応し、W,Mo,Mnを添加した表2に示す試料の透磁率の値を用いて行なった。具体的には、試料No.1と試料No.28とを例に示せば、(試料No.28の透磁率−試料No.1の透磁率)/試料No.1の透磁率として算出した。さらに、コアロスの減少率を算出した。コアロスの減少率の算出方法としては、試料No.1と試料No.28とを例に示せば、(試料No.1のコアロス−試料No.28のコアロス)/試料No.1のコアロスとした。結果を表2に示す。   Also, the rate of increase in magnetic permeability was calculated. As a method for calculating the rate of increase in magnetic permeability, the magnetic permeability shown in Table 1 to which W, Mo, and Mn are not added is a basic value, the main component corresponds to Table 1, and W, Mo, and Mn are added. This was carried out using the permeability value of the sample shown in FIG. Specifically, Sample No. 1 and sample no. As an example, (the permeability of sample No. 28−the permeability of sample No. 1) / sample No. Calculated as a permeability of 1. Furthermore, the reduction rate of core loss was calculated. As a calculation method of the core loss reduction rate, Sample No. 1 and sample no. As an example, (core loss of sample No. 1−core loss of sample No. 28) / sample no. 1 core loss. The results are shown in Table 2.

なお、表3に示す透磁率の上昇率およびコアロスの減少率の算出に当たっては、基礎数値は、試料No.4の透磁率(3020)とコアロス(360)を用いた。結果を表3に示す。   In the calculation of the rate of increase in magnetic permeability and the rate of decrease in core loss shown in Table 3, the basic numerical values are sample Nos. A permeability of 4 (3020) and a core loss (360) were used. The results are shown in Table 3.

Figure 0005882811
Figure 0005882811

Figure 0005882811
Figure 0005882811

表1の結果から、FeがFe換算で49モル%以上50モル%以下、ZnがZnO換算で32モル%以上36モル%以下、NiがNiO換算で5モル%以上15モル%以下、Cuが
CuO換算で4モル%以上9モル%以下の範囲の少なくともいずれかを満たさない試料No.1,6,7,11,12,22,23および27については、透磁率が2000未満であった。また、FeがFe換算で50モル%を超える試料No.6は、室温におけるコアロスが500を超えていた。これらの試料と比較して、試料No.2〜5,8〜10,13〜21および24
〜26については、いずれも透磁率が2000以上であり、室温におけるコアロスが500以下で
あった。この結果から、主成分として、FeをFe換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15
モル%以下、CuをCuO換算で4モル%以上9モル%以下含むことにより、透磁率が高く、室温におけるコアロスが小さいフェライト焼結体とできることがわかった。
From the results of Table 1, Fe is 49 mol% or more and 50 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, and Ni is 5 mol% or more and 15 mol% or less in terms of NiO. , Cu does not satisfy at least one of the ranges of 4 mol% or more and 9 mol% or less in terms of CuO. For 1, 6, 7, 11, 12, 22, 23 and 27, the magnetic permeability was less than 2000. Further, Sample No. with Fe exceeding 50 mol% in terms of Fe 2 O 3 was obtained. 6, the core loss at room temperature exceeded 500. Compared to these samples, sample No. 2-5, 8-10, 13-21 and 24
As for -26, all had a magnetic permeability of 2000 or more and a core loss at room temperature of 500 or less. From these results, Fe is 49 mol% or more and 50 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, and Ni is 5 mol% or more and 15 mol or less in terms of NiO.
It was found that a ferrite sintered body having high magnetic permeability and low core loss at room temperature can be obtained by containing 4 mol% or less and 9 mol% or less of Cu in terms of CuO in terms of CuO.

次に、表2の結果から、表1の主成分に加えて、WをWO3換算で0.5質量%、MoをMoO換算で0.1質量%およびMnをMnO2換算で0.1質量%含有していることにより、
透磁率を向上できるとともに、室温におけるコアロスを減少できることがわかった。
Next, from the results in Table 2, in addition to the main component in Table 1, 0.5 wt% of W in terms of WO 3, 0.1 wt% of Mo calculated as MoO 3 and Mn contained 0.1% by mass MnO 2 in terms of By
It was found that the magnetic permeability can be improved and the core loss at room temperature can be reduced.

そして、主成分として、FeをFe換算で49モル%以上50モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15モル%以下、
CuをCuO換算で4モル%以上9モル%以下含有し、主成分100質量%に対して、Wを
WO、MoをMoO、MnをMnOに換算した値でそれぞれ0.01質量%以上1.0質
量%以下含む試料No.29〜32,35〜37,40〜48および51〜53は、透磁率を30%以上向上できるとともに、室温におけるコアロスを30%以上減少できており、特性の優れたフェライト焼結体であることがわかった。また、これらの試料No.29〜32,35〜37,40〜48および51〜53は、いずれも比抵抗が10Ω・m以上であり、これらのフェライト焼結体をパ
ルストランス用コアとして用いたときに、生じた渦電流でフェライト焼結体が発熱することによる渦電流損失を低減できることがわかった。
And as a main component, Fe is 49 mol% or more and 50 mol% or less in terms of Fe 2 O 3 , Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, Ni is 5 mol% or more and 15 mol% or less in terms of NiO ,
Cu is contained in an amount of 4 mol% or more and 9 mol% or less in terms of CuO, and W is WO 3 , Mo is MoO 3 , and Mn is converted to MnO 2 with respect to 100 mass% of the main component. Sample No. containing less than mass%. 29-32, 35-37, 40-48, and 51-53 can improve the magnetic permeability by 30% or more and reduce the core loss at room temperature by 30% or more, and are ferrite sintered bodies having excellent characteristics. I understood. These sample Nos. 29-32, 35-37, 40-48 and 51-53 all have a specific resistance of 10 7 Ω · m or more, and occurred when these ferrite sintered bodies were used as a core for a pulse transformer. It was found that eddy current loss due to heat generation of ferrite sintered body by eddy current can be reduced.

また、FeおよびZnの含有量が同じ試料の透磁率やコアロスの結果から明らかなように、NiはNiO換算で10モル%を超えて15モル%以下のとき、透磁率がより高く、室温におけるコアロスをより小さくできることがわかった。   Further, as is clear from the results of the magnetic permeability and core loss of the samples having the same Fe and Zn contents, when Ni is more than 10 mol% and not more than 15 mol% in terms of NiO, the magnetic permeability is higher and at room temperature. It was found that the core loss can be made smaller.

次に、表3の結果から、透磁率の向上およびコアロスの減少に、主組成100質量%に対
して、WをWO3、MoをMoO、MnをMnO2換算した値でそれぞれ0.01質量%以上1.0質量%以下含むことが重要であることがわかった。
Next, from the results shown in Table 3, in order to improve the magnetic permeability and reduce the core loss, 0.01 mass% in terms of W as WO 3 , Mo as MoO 3 , and Mn as MnO 2 with respect to 100 mass% of the main composition, respectively. It was found that containing 1.0% by mass or less is important.

次に、実施例1と同様の製造方法により、主成分が表4に示すモル比であり、WをWO3換算で0.5質量%、MoをMoO換算で0.1質量%およびMnをMnO2換算で0.1質量
%含有する試料No.79〜84のフェライト焼結体を得た。なお、表4に示すモル比および含有量は、実施例1と同様にICP発光分光分析装置を用いて算出したものである。
Next, by the same production method as in Example 1, the main component is the molar ratio shown in Table 4, W is 0.5% by mass in terms of WO 3 , Mo is 0.1% by mass in terms of MoO 3 , and Mn is in terms of MnO 2 Sample No. containing 0.1% by mass 79 to 84 ferrite sintered bodies were obtained. The molar ratios and contents shown in Table 4 were calculated using an ICP emission spectroscopic analyzer as in Example 1.

そして、各試料について、高温側(60℃〜100℃)の透磁率の測定を行なった。この測
定方法については、各試料の巻き線部10aの全周にわたって線径が0.2mmの金属線を10
回巻き付けた後、恒温槽内に入れた。そして、60℃〜100℃において10℃刻みで30分保持
する条件とし、LCRメータを用いて各温度における透磁率を測定した。なお、周波数は100kHzとした。結果を表4に示す。
And about each sample, the magnetic permeability of the high temperature side (60 to 100 degreeC) was measured. For this measurement method, a metal wire having a wire diameter of 0.2 mm is applied to the entire circumference of the winding portion 10a of each sample.
After winding, it was put in a thermostat. And it was set as the conditions hold | maintained for 30 minutes in 10 degreeC increments in 60 to 100 degreeC, and the magnetic permeability in each temperature was measured using the LCR meter. The frequency was 100 kHz. The results are shown in Table 4.

Figure 0005882811
Figure 0005882811

表4の結果、試料No.80〜83は、高温側の透磁率が高く、トランスとしての特性が更に向上することが確認されたことから、主成分において、Feは、Fe換算で49.5モル%以上49.8モル%以下の範囲からなることが好適であることがわかった。 As a result of Table 4, sample No. 80 to 83 have high permeability on the high temperature side, and it has been confirmed that the characteristics as a transformer are further improved. Therefore, in the main component, Fe is 49.5 mol% or more and 49.8 mol% or less in terms of Fe 2 O 3. It was found that it was preferable to consist of

1:トロイダルコア
1a:巻線部
2:ボビンコア
2a:巻線部
1: Toroidal core 1a: Winding part 2: Bobbin core 2a: Winding part

Claims (3)

主成分として、FeをFe換算で49.5モル%以上49.8モル%以下、ZnをZnO換算で32モル%以上36モル%以下、NiをNiO換算で5モル%以上15モル%以下、CuをCuO換算で4モル%以上9モル%以下含み、
前記主成分100質量%に対して、WをWO、MoをMoO、MnをMnOに換算した値でそれぞれ0.01質量%以上1.0質量%以下含むことを特徴とするフェライト焼結体。
As a main component, Fe is converted to 49 2 in terms of Fe 2 O 3 . 5 mol% or more and 49.8 mol% or less, Zn is 32 mol% or more and 36 mol% or less in terms of ZnO, Ni is 5 mol% or more and 15 mol% or less in terms of NiO, and Cu is 4 mol% or more and 9 mol or less in terms of CuO. % Or less,
Ferrite calcination characterized by containing 0.01% by mass or more and 1.0% by mass or less in terms of W in terms of WO 3 , Mo in terms of MoO 3 , and Mn in terms of MnO 2 with respect to 100% by mass of the main component. Union.
前記Niが、NiO換算で10モル%を超え15モル%以下含むことを特徴とする請求項1に記載のフェライト焼結体。   2. The ferrite sintered body according to claim 1, wherein the Ni content is more than 10 mol% and not more than 15 mol% in terms of NiO. 請求項1または請求項に記載のフェライト焼結体に金属線を巻きつけてなることを特徴とするパルストランス用コア。 A core for pulse transformer, comprising a ferrite sintered body according to claim 1 or 2 wound with a metal wire.
JP2012076854A 2012-03-29 2012-03-29 Ferrite sintered body and pulse transformer core comprising the same Active JP5882811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076854A JP5882811B2 (en) 2012-03-29 2012-03-29 Ferrite sintered body and pulse transformer core comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076854A JP5882811B2 (en) 2012-03-29 2012-03-29 Ferrite sintered body and pulse transformer core comprising the same

Publications (2)

Publication Number Publication Date
JP2013203632A JP2013203632A (en) 2013-10-07
JP5882811B2 true JP5882811B2 (en) 2016-03-09

Family

ID=49523131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076854A Active JP5882811B2 (en) 2012-03-29 2012-03-29 Ferrite sintered body and pulse transformer core comprising the same

Country Status (1)

Country Link
JP (1) JP5882811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194479B (en) * 2020-09-02 2022-08-23 深圳顺络电子股份有限公司 Ferrite shielding material with high-consistency magnetic conductivity and preparation method thereof
CN112661501B (en) * 2021-01-08 2022-10-18 广安市华蓥山领创电子有限公司 NiZn ferrite material for high-frequency power conversion and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521222A (en) * 1991-07-10 1993-01-29 Fuji Elelctrochem Co Ltd Manufacture of nickel-zinc ferrite
JP3337937B2 (en) * 1996-04-03 2002-10-28 ティーディーケイ株式会社 Ferrite magnetic material and ferrite core
JP2000269018A (en) * 1999-03-15 2000-09-29 Tokin Corp Low loss oxide magnet material
JP2002289420A (en) * 2001-03-23 2002-10-04 Tdk Corp Ferrite magnetic material, ferrite core, and power supply transformer or coil component
JP4654559B2 (en) * 2003-01-23 2011-03-23 Tdk株式会社 Ferrite magnetic material and ferrite core
JP4826093B2 (en) * 2005-01-31 2011-11-30 Tdk株式会社 Ferrite, electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013203632A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP4873064B2 (en) Ferrite composition, ferrite core and electronic component
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
JP5516848B2 (en) Ferrite composition, ferrite core and electronic component
JP5960904B2 (en) Ferrite sintered body, ferrite core and coil component
JP5693725B2 (en) Ferrite sintered body and ferrite core provided with the same
JP5734078B2 (en) Ferrite sintered body and noise filter including the same
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP5526612B2 (en) Ferrite composition, ferrite core and electronic component
JP5733995B2 (en) Ferrite sintered body and noise filter including the same
JP2013010685A (en) Ferrite sintered body and noise filter including the same
JP5831256B2 (en) Ferrite composition, ferrite core and electronic component
JP6064526B2 (en) Ferrite composition, ferrite core and electronic component
JP6323042B2 (en) Ferrite composition, ferrite core and electronic component
JP6064525B2 (en) Ferrite composition, ferrite core and electronic component
JP6380730B2 (en) Ferrite composition, ferrite core and electronic component
JP5952123B2 (en) Ferrite sintered body and noise filter including the same
JP5811816B2 (en) Ferrite composition, ferrite core and electronic component
JP5812069B2 (en) Ferrite composition, ferrite core and electronic component
JP2015113247A (en) Ferrite composition, ferrite core and electronic component
JP5831254B2 (en) Ferrite composition, ferrite core and electronic component
JP6311298B2 (en) Ferrite composition, ferrite core and electronic component
JP6323043B2 (en) Ferrite composition, ferrite core and electronic component
JP2015174781A (en) Ferrite composition, ferrite core, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5882811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150