JPH11307336A - Manufacture of soft magnetic ferrite - Google Patents
Manufacture of soft magnetic ferriteInfo
- Publication number
- JPH11307336A JPH11307336A JP10122979A JP12297998A JPH11307336A JP H11307336 A JPH11307336 A JP H11307336A JP 10122979 A JP10122979 A JP 10122979A JP 12297998 A JP12297998 A JP 12297998A JP H11307336 A JPH11307336 A JP H11307336A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- magnetic field
- spinel
- soft magnetic
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高周波用軟磁性フ
ェライトの製造方法に関する。[0001] The present invention relates to a method for producing a soft magnetic ferrite for high frequency.
【0002】[0002]
【従来の技術】フェライトは、渦電流損失が金属に比べ
著しく小さいため、高周波用磁心に適している。しか
し、フェライトには磁気共鳴による限界周波数(Snoek
の限界)が存在し、この限界周波数を超えると透磁率が
急激に低下すると共に損失が急激に増大して、使用不可
能となる。高周波用フェライトとしては、Ni−Znフ
ェライト等のNi系スピネル型フェライトが利用される
ことが多く、特に、Ni−Znフェライトは、透磁率が
比較的高いことから多用されている。しかし、Ni−Z
nフェライトの限界周波数は100MHz未満であり、近
年の電気・電子機器における使用周波数の高周波化に伴
い、より高周波で使用可能とすることが望まれている。2. Description of the Related Art Ferrite is suitable for high frequency magnetic cores because eddy current loss is significantly smaller than that of metal. However, the limit frequency (Snoek
When this limit frequency is exceeded, the magnetic permeability decreases rapidly and the loss increases sharply, making it unusable. As the high-frequency ferrite, Ni-based spinel type ferrite such as Ni-Zn ferrite is often used, and in particular, Ni-Zn ferrite is frequently used because of its relatively high magnetic permeability. However, Ni-Z
The limit frequency of n-ferrite is less than 100 MHz, and it is desired to be able to use it at a higher frequency with the recent increase in the frequency used in electric and electronic devices.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、Ni
系スピネル型フェライトの限界周波数を向上させること
であり、特に、Ni−Znフェライトを100MHz以上
の高周波領域で使用可能とすることである。SUMMARY OF THE INVENTION An object of the present invention is to provide Ni
The purpose is to improve the critical frequency of the spinel-type ferrite, and in particular, to make Ni-Zn ferrite usable in a high frequency region of 100 MHz or more.
【0004】[0004]
【課題を解決するための手段】上記目的は、下記(1)
〜(5)のいずれかの構成により達成される。 (1) 少なくとも酸化ニッケルを含有し、Co、Ba
およびSrの少なくとも1種を含有するスピネル型フェ
ライトを、磁場中で熱処理する工程を有する軟磁性フェ
ライトの製造方法。 (2) 前記スピネル型フェライトが、Co、Baおよ
びSrの少なくとも1種を、それぞれCoO、BaFe
12O19およびSrFe12O19に換算して合計で0.1〜
10重量%含有する上記(1)の軟磁性フェライトの製
造方法。 (3) 前記スピネル型フェライトが、少なくとも酸化
ニッケルを含有する仮焼物に、酸化コバルト、Baフェ
ライトおよびSrフェライトの少なくとも1種を添加し
て焼成することにより製造されたものである上記(1)
または(2)の軟磁性フェライトの製造方法。 (4) 磁場中での熱処理により(111)面を優先的
に配向させる上記(1)〜(3)のいずれかの軟磁性フ
ェライトの製造方法。 (5) 前記スピネル型フェライトが、酸化亜鉛を含有
する上記(1)〜(4)のいずれかの軟磁性フェライト
の製造方法。The above object is achieved by the following (1).
This is achieved by any one of the above configurations (5) to (5). (1) Co, Ba containing at least nickel oxide
A method for producing a soft magnetic ferrite, comprising a step of heat-treating a spinel ferrite containing at least one of Sr and Sr in a magnetic field. (2) The spinel-type ferrite contains at least one of Co, Ba and Sr as CoO and BaFe, respectively.
Converted to 12 O 19 and SrFe 12 O 19 ,
The method for producing a soft magnetic ferrite according to the above (1) containing 10% by weight. (3) The spinel-type ferrite is produced by adding at least one of cobalt oxide, Ba ferrite, and Sr ferrite to a calcined product containing at least nickel oxide, followed by firing.
Or (2) the method for producing a soft magnetic ferrite. (4) The method for producing a soft magnetic ferrite according to any one of (1) to (3), wherein the (111) plane is preferentially oriented by heat treatment in a magnetic field. (5) The method for producing a soft magnetic ferrite according to any one of (1) to (4), wherein the spinel-type ferrite contains zinc oxide.
【0005】[0005]
【発明の実施の形態】本発明では、少なくとも酸化ニッ
ケルを含有し、Co、BaおよびSrの少なくとも1種
を含有するスピネル型フェライトに、磁場中で熱処理を
施す。この磁場中での熱処理により、高周波域における
透磁率の落ち込みが改善されて周波数特性が良好とな
り、例えばNi−Znフェライトでは100MHzにおい
て実用上十分な透磁率が得られる。なお、Ni−Znフ
ェライトでは、CoOの添加により磁場中熱処理なしで
も100MHzにおいて50前後の透磁率が得られること
もあるが、この場合、100MHz近傍において磁気共鳴
が発生し、透磁率は不安定になるため、実用に供するこ
とはできない。これに対し本発明をNi−Znフェライ
トに適用した場合、透磁率は100MHz付近においても
ほぼ一定であるため、このような問題は生じない。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a heat treatment is performed in a magnetic field on a spinel ferrite containing at least nickel oxide and containing at least one of Co, Ba and Sr. By the heat treatment in this magnetic field, the drop in the magnetic permeability in a high-frequency range is improved and the frequency characteristics are improved. For example, in the case of Ni-Zn ferrite, a practically sufficient magnetic permeability is obtained at 100 MHz. In addition, in the case of Ni—Zn ferrite, a magnetic permeability of about 50 can be obtained at 100 MHz without heat treatment in a magnetic field by adding CoO. In this case, magnetic resonance occurs near 100 MHz and the magnetic permeability becomes unstable. Therefore, it cannot be put to practical use. On the other hand, when the present invention is applied to Ni—Zn ferrite, such a problem does not occur because the magnetic permeability is substantially constant even near 100 MHz.
【0006】磁場中熱処理の際の具体的条件は、フェラ
イトの組成等に応じて適宜決定すればよいが、一般に、
磁場強度は好ましくは10Oe以上、より好ましくは1kO
e以上であり、到達温度は好ましくは300℃以上、よ
り好ましくは500℃以上である。磁場強度が低すぎて
も、到達温度が低すぎても、磁場中熱処理による効果が
不十分となる。また、上記到達温度に保持する時間は特
に限定されず、加熱対象物のフェライト全体が均一な温
度となるように、フェライトの寸法に応じて適宜決定す
ればよいが、通常、1分間〜5時間程度とすることが好
ましい。また、冷却速度は、好ましくは30〜200℃
/時間、より好ましくは50〜100℃/時間である。本
発明の効果は、磁場を印加しながら冷却することで、フ
ェライト中の磁気イオンが熱振動しながら再配列するこ
とにより実現するので、冷却速度が速すぎると、再配列
に利用できる時間が短くなり、十分な効果が得られな
い。一方、冷却速度が遅すぎると、フェライトの熱分解
が促進されることもあり、かつ、処理に長時間を要して
効率が低下するので、好ましくない。なお、本発明にお
いて用いる磁場強度の上限は特にないが、量産に使用可
能な現在の磁場発生装置では、通常、上限は100kOe
程度である。また、到達温度は、通常、600℃以下で
あることが好ましい。到達温度が高すぎると、フェライ
トが熱分解され、磁気特性が劣化する可能性が高まる。
熱処理は大気中、あるいは、窒素やアルゴン等の不活性
雰囲気中で行うことが好ましい。The specific conditions for the heat treatment in a magnetic field may be appropriately determined according to the composition of the ferrite and the like.
The magnetic field strength is preferably at least 10 Oe, more preferably 1 kO
e or more, and the ultimate temperature is preferably 300 ° C. or more, more preferably 500 ° C. or more. If the magnetic field strength is too low or the temperature reached is too low, the effect of the heat treatment in the magnetic field becomes insufficient. Further, the time for maintaining the above-mentioned temperature is not particularly limited, and may be appropriately determined according to the size of the ferrite so that the entire ferrite of the object to be heated has a uniform temperature, but is usually 1 minute to 5 hours. It is preferable to set the degree. The cooling rate is preferably 30 to 200 ° C.
/ Hour, more preferably 50 to 100 ° C / hour. The effect of the present invention is realized by cooling while applying a magnetic field, whereby the magnetic ions in the ferrite are rearranged while thermally oscillating.If the cooling rate is too high, the time available for rearrangement is short. And a sufficient effect cannot be obtained. On the other hand, if the cooling rate is too slow, the thermal decomposition of ferrite may be promoted, and the treatment takes a long time to lower the efficiency, which is not preferable. Although there is no particular upper limit on the magnetic field strength used in the present invention, the upper limit is usually 100 kOe in current magnetic field generators that can be used for mass production.
It is about. In addition, the ultimate temperature is usually preferably 600 ° C. or lower. If the attained temperature is too high, ferrite is thermally decomposed and the possibility of deteriorating magnetic properties increases.
The heat treatment is preferably performed in the air or in an inert atmosphere such as nitrogen or argon.
【0007】磁場中熱処理による透磁率の周波数特性の
改善は、一軸異方性の付与によるものと考えられる。例
えば、X線回折による分析では、磁場中熱処理によって
(111)面が優先配向することが確認できる。It is considered that the improvement of the frequency characteristic of the magnetic permeability by the heat treatment in a magnetic field is due to the provision of uniaxial anisotropy. For example, in the analysis by X-ray diffraction, it can be confirmed that the (111) plane is preferentially oriented by the heat treatment in the magnetic field.
【0008】本発明のスピネル型フェライトにおいて、
Co、BaおよびSrの含有量は、それぞれをCoO、
BaFe12O19およびSrFe12O19に換算して合計で
0.1〜10重量%であることが好ましく、0.5〜8
重量%であることがより好ましい。これらの元素の含有
量が少なすぎると本発明の効果が不十分となり、含有量
が多すぎると透磁率が低下してしまう。In the spinel type ferrite of the present invention,
The contents of Co, Ba and Sr are respectively CoO,
The total amount is preferably 0.1 to 10% by weight in terms of BaFe 12 O 19 and SrFe 12 O 19 , and 0.5 to 8% by weight.
More preferably, it is% by weight. If the content of these elements is too small, the effect of the present invention will be insufficient, and if the content is too large, the magnetic permeability will decrease.
【0009】Co、BaおよびSrをスピネル型フェラ
イトに含有させるためには、スピネル型フェライトの製
造工程においてこれらの元素の化合物(以下、添加化合
物という)を添加する。添加化合物としては酸化物が好
ましく、特に、酸化コバルト、BaフェライトおよびS
rフェライトが好ましい。これらの酸化物を用いること
により、本発明の効果は著しく向上する。酸化コバルト
はCoO、BaフェライトはBaFe12O19、Srフェ
ライトはSrFe12O19が化学量論組成であるが、添加
化合物の組成は化学量論組成から偏倚していてもよい。In order to include Co, Ba and Sr in the spinel ferrite, a compound of these elements (hereinafter referred to as an additive compound) is added in the process of producing the spinel ferrite. As the additive compound, an oxide is preferable, and in particular, cobalt oxide, Ba ferrite and S
r Ferrite is preferred. By using these oxides, the effects of the present invention are significantly improved. The stoichiometric composition of cobalt oxide is CoO, the Ba ferrite is BaFe 12 O 19 , and the Sr ferrite is SrFe 12 O 19, but the composition of the additive compound may deviate from the stoichiometric composition.
【0010】本発明が適用されるスピネル型フェライト
は、少なくとも酸化ニッケルを含有するものである。こ
のようなスピネル型フェライトとしては、Niフェライ
ト、Ni−Znフェライト、Ni−Cuフェライト、N
i−Cu−Znフェライトなどが好ましく、これらのう
ちでは、酸化亜鉛を含有するもの、特にNi−Znフェ
ライトが好ましい。本発明を適用する場合、各フェライ
トの具体的な主組成は特に限定されず、通常利用される
組成範囲から適宜選択すればよい。例えば、Ni−Zn
フェライトの主組成は、通常、酸化鉄がFe2O3 換算
で45〜55mol%程度、酸化亜鉛がZnO換算で10
〜35mol%程度、酸化ニッケルがNiO換算で15〜
35mol%程度である。また、各フェライトには、特性
向上のために各種副成分が添加されるが、本発明におい
ても従来公知の各種副成分を含んでいてよく、また、通
常含まれる不可避的不純物を含んでいてよい。例えば、
Ni−Znフェライトにおける副成分ないし不純物とし
ては、酸化カルシウム、酸化ビスマス、酸化アルミニウ
ム、酸化ケイ素、酸化クロム等が挙げられる。The spinel-type ferrite to which the present invention is applied contains at least nickel oxide. Such spinel ferrites include Ni ferrite, Ni-Zn ferrite, Ni-Cu ferrite, and N
i-Cu-Zn ferrite and the like are preferable, and among these, those containing zinc oxide, particularly Ni-Zn ferrite, are preferable. When the present invention is applied, the specific main composition of each ferrite is not particularly limited, and may be appropriately selected from a commonly used composition range. For example, Ni-Zn
The main composition of the ferrite is usually about 45~55Mol% in iron oxide in terms of Fe 2 O 3, zinc oxide in terms of ZnO 10
~ 35mol%, nickel oxide is 15 ~
It is about 35 mol%. In addition, various subcomponents are added to each ferrite in order to improve the properties, and the present invention may also include various conventionally known subcomponents, and may also include unavoidable impurities that are usually included. . For example,
Examples of subcomponents or impurities in the Ni-Zn ferrite include calcium oxide, bismuth oxide, aluminum oxide, silicon oxide, and chromium oxide.
【0011】本発明により製造されるスピネル型フェラ
イトの平均結晶粒径は特に限定されず、Co、Ba、S
rを添加しない場合と同等、例えば1〜30μm程度で
あればよい。なお、製造条件がほぼ同じであっても、C
o、Ba、Srの添加により結晶粒径が影響を受けるこ
とがある。例えば、Ni−ZnフェライトにCoOを添
加した場合、添加量が5重量%程度であると無添加の場
合よりも結晶粒径が大きくなるが、添加量が10重量%
程度であると、添加量が5重量%の場合よりも結晶粒径
は小さくなる。このように粒成長が抑えられるのは、C
oOが許容される固溶量を超えることにより、結晶粒界
に偏析しやすくなるためであると考えられる。The average crystal grain size of the spinel-type ferrite produced according to the present invention is not particularly limited, and Co, Ba, S
It may be equivalent to the case where r is not added, for example, about 1 to 30 μm. Note that even if the manufacturing conditions are almost the same,
The crystal grain size may be affected by the addition of o, Ba, and Sr. For example, when CoO is added to Ni-Zn ferrite, when the addition amount is about 5% by weight, the crystal grain size becomes larger than when it is not added, but the addition amount is 10% by weight.
When the amount is about 5%, the crystal grain size becomes smaller than when the addition amount is 5% by weight. The reason why grain growth is suppressed in this way is that C
It is considered that when oO exceeds the allowable solid solution amount, segregation at crystal grain boundaries is likely to occur.
【0012】次に、本発明の製造方法の具体的な流れを
説明する。Next, a specific flow of the manufacturing method of the present invention will be described.
【0013】まず、主成分原料を、焼成後に所定の組成
が得られるように混合する。主成分原料としては、例え
ばNi−Znフェライトでは、通常、酸化鉄(Fe
2O3)粉末、酸化ニッケル(NiO)粉末および酸化亜
鉛(ZnO)粉末を用いるが、これらの酸化物のほか、
焼成により酸化物となる化合物、例えば、炭酸塩、水酸
化物、硝酸塩等を用いることもできる。混合には、湿式
混合法を利用することが好ましい。First, the main component materials are mixed so as to obtain a predetermined composition after firing. As a main component material, for example, in the case of Ni—Zn ferrite, iron oxide (Fe
2 O 3 ) powder, nickel oxide (NiO) powder and zinc oxide (ZnO) powder are used. In addition to these oxides,
Compounds that become oxides by firing, such as carbonates, hydroxides, and nitrates, can also be used. It is preferable to use a wet mixing method for the mixing.
【0014】次いで、混合した原料を仮焼する。仮焼に
際し、温度や雰囲気等の各種条件は、主組成に応じた最
適なものを選択すればよい。例えば、Ni−Znフェラ
イトでは、空気中や酸素分圧を制御した雰囲気中におい
て、800〜1200℃程度で、1〜10時間程度仮焼
すればよい。Next, the mixed raw materials are calcined. In calcination, various conditions such as temperature and atmosphere may be selected to be optimal according to the main composition. For example, Ni-Zn ferrite may be calcined at about 800 to 1200 ° C. for about 1 to 10 hours in air or an atmosphere in which the oxygen partial pressure is controlled.
【0015】次いで、仮焼物を粉砕する。この粉砕は、
湿式で行うことが好ましい。仮焼物の粉砕は、仮焼物の
平均1次粒径が、0.5〜1.5μm程度となるまで行
うことが好ましい。Next, the calcined product is pulverized. This crushing
It is preferable to carry out by a wet method. The pulverization of the calcined product is preferably performed until the average primary particle size of the calcined product becomes about 0.5 to 1.5 μm.
【0016】本発明では、添加化合物を仮焼前に添加し
てもよいが、より高い効果を得るためには、仮焼物に添
加することが好ましい。添加化合物を仮焼後に添加する
場合、添加化合物を仮焼物に添加して両者を粉砕・混合
してもよく、仮焼物粉砕後に添加化合物を添加して、粉
砕・混合してもよい。いずれの場合も、粉砕・混合は湿
式で行うことが好ましい。なお、添加化合物は、平均粒
径が1〜100μm程度となるまで粉砕されることが好
ましい。In the present invention, the additive compound may be added before calcining, but it is preferable to add the compound to the calcined material in order to obtain a higher effect. When the additive compound is added after calcining, the additive compound may be added to the calcined material and both may be pulverized and mixed, or the additional compound may be added after pulverizing the calcined material and pulverized and mixed. In any case, the pulverization and mixing are preferably performed by a wet method. In addition, it is preferable that the additive compound is pulverized until the average particle diameter becomes about 1 to 100 μm.
【0017】仮焼後、所定の形状に成形し、得られた成
形体を焼成する。焼成に際しても、温度や雰囲気等の各
種条件は、主組成に応じた最適なものを選択すればよ
い。例えば、Ni−Znフェライトでは、空気中や酸素
分圧を制御した雰囲気中において、1000〜1350
℃程度で、1〜10時間程度焼成すればよい。After calcination, it is formed into a predetermined shape, and the obtained molded body is fired. In firing, various conditions such as temperature and atmosphere may be selected to be optimal according to the main composition. For example, in the case of Ni-Zn ferrite, 1000-1350 in air or an atmosphere in which the oxygen partial pressure is controlled.
What is necessary is just to bake at about ℃ for about 1 to 10 hours.
【0018】本発明により製造される軟磁性フェライト
の用途は特に限定されないが、例えば、高周波用磁心、
マイクロ波用材料などに好適である。The use of the soft magnetic ferrite produced according to the present invention is not particularly limited.
Suitable for microwave materials and the like.
【0019】[0019]
【実施例】主成分原料として、Fe2O3粉末、ZnO粉
末およびNiO粉末を用意し、これらを、焼成後の組成
がNi0.3Zn0.7Fe2O4となるように秤量し、ボール
ミルにより10時間湿式混合した。得られた混合物を空
気中において1150℃で5時間仮焼し、仮焼物をボー
ルにより24時間湿式粉砕した。EXAMPLE An Fe 2 O 3 powder, a ZnO powder and a NiO powder were prepared as main component raw materials, and these were weighed so that the composition after sintering would be Ni 0.3 Zn 0.7 Fe 2 O 4. Wet mixed for hours. The obtained mixture was calcined in air at 1150 ° C. for 5 hours, and the calcined product was wet-pulverized with a ball for 24 hours.
【0020】次いで、粉砕物に、添加化合物としてCo
O粉末、BaFe12O19粉末またはSrFe12O19粉末
を添加し、ボールミルにより3時間湿式混合した。各添
加化合物の添加量を下記表1に示す。Then, Co was added to the pulverized material as an additive compound.
O powder, BaFe 12 O 19 powder or SrFe 12 O 19 powder was added and wet-mixed for 3 hours by a ball mill. Table 1 below shows the addition amounts of each additive compound.
【0021】次いで、仮焼物と添加化合物との混合物を
湿式成形し、トロイダル状の成形体を得た。Next, the mixture of the calcined product and the additive compound was subjected to wet molding to obtain a toroidal molded body.
【0022】次いで、成形体を、空気中において115
0℃で5時間焼成し、外径18mm、内径12mm、高さ5
mmのトロイダル状焼結体磁心サンプルを得た。Next, the molded body is placed in air for 115 minutes.
Bake at 0 ° C for 5 hours, outer diameter 18mm, inner diameter 12mm, height 5
A toroidal sintered compact magnetic core sample of mm was obtained.
【0023】各サンプルに対し、50MHzおよび100M
Hzにおける初透磁率を測定した。測定には、ベクトルイ
ンピーダンスメータを用いた。次いで、各サンプルに対
し、磁場中熱処理を施した。処理は空気中で行い、磁場
強度は50kOe、到達温度は600℃、温度保持時間は
1時間、冷却速度は60℃/時間とした。なお、印加し
た磁場の方向は、トロイダル状サンプルの径方向に垂直
(サンプルの軸方向)とした。この磁場中熱処理後に、
再び初透磁率を測定した。測定結果を表1に示す。For each sample, 50 MHz and 100 M
The initial permeability at Hz was measured. A vector impedance meter was used for the measurement. Next, each sample was subjected to a heat treatment in a magnetic field. The treatment was performed in air, the magnetic field strength was 50 kOe, the reached temperature was 600 ° C., the temperature holding time was 1 hour, and the cooling rate was 60 ° C./hour. The direction of the applied magnetic field was perpendicular to the radial direction of the toroidal sample (the axial direction of the sample). After this heat treatment in a magnetic field,
The initial magnetic permeability was measured again. Table 1 shows the measurement results.
【0024】[0024]
【表1】 [Table 1]
【0025】表1から、本発明の効果が明らかである。
すなわち、添加化合物を含まないサンプルNo.1は、磁
場中熱処理の有無によらず50MHzにおいても実用的な
初透磁率が得られず、また、添加化合物を含むサンプル
でも磁場中熱処理なしでは100MHzにおいて実用的な
初透磁率が得られないのに対し、添加化合物を含むサン
プルを磁場中熱処理した場合には、100MHzにおいて
十分に高い初透磁率が得られることがわかる。なお、表
1に示す本発明サンプルは、100MHz付近に共鳴周波
数が存在するために初透磁率が高くなったのではなく、
初透磁率は100MHzの前後でほぼ一定であった。特
に、CoOを添加したサンプルでは、50MHzから10
0MHzの範囲で初透磁率の低下が小さく、磁場中熱処理
による効果が大きいことがわかる。From Table 1, the effect of the present invention is clear.
That is, in Sample No. 1 containing no additive compound, a practical initial magnetic permeability was not obtained even at 50 MHz regardless of the presence or absence of heat treatment in a magnetic field. While practical initial permeability cannot be obtained, a sufficiently high initial permeability can be obtained at 100 MHz when the sample containing the additive compound is heat-treated in a magnetic field. In addition, the sample of the present invention shown in Table 1 did not have an increased initial permeability due to the presence of a resonance frequency near 100 MHz.
The initial permeability was almost constant around 100 MHz. In particular, in the case of the sample to which CoO is added, 10 MHz to 10 MHz
It can be seen that the decrease in the initial magnetic permeability is small in the range of 0 MHz, and the effect of the heat treatment in the magnetic field is large.
【0026】表1に示されるサンプルNo.5について、
磁場中熱処理が結晶配向に与える影響を調べるために、
X線回折による分析を行った。なお、X線は、サンプル
の上面から入射させた。サンプルNo.5のX線回折チャ
ートを図1に示す。図1に「横磁界」として示すチャー
トは、磁場中熱処理の際の磁場印加方向をサンプルの径
方向とした場合のものであり、「縦磁界」として示すチ
ャートは、磁場中熱処理の際の磁場印加方向をサンプル
の軸方向とした場合のものである。For sample No. 5 shown in Table 1,
To investigate the effect of heat treatment in a magnetic field on crystal orientation,
Analysis by X-ray diffraction was performed. Note that X-rays were incident from the upper surface of the sample. An X-ray diffraction chart of Sample No. 5 is shown in FIG. The chart shown as “transverse magnetic field” in FIG. 1 is a case where the magnetic field application direction during the heat treatment in the magnetic field is the radial direction of the sample, and the chart shown as “longitudinal magnetic field” is the magnetic field during the heat treatment in the magnetic field. This is a case where the application direction is the axial direction of the sample.
【0027】図1から、縦磁界での磁場中熱処理によ
り、(111)面およびこれと等価な面の反射ピークが
大きくなっていることが明瞭にわかる。したがって、磁
場中熱処理により、(111)面が優先的に配向したこ
とがわかる。FIG. 1 clearly shows that the heat treatment in a magnetic field with a vertical magnetic field increases the reflection peaks of the (111) plane and the equivalent plane. Therefore, it is understood that the (111) plane was preferentially oriented by the heat treatment in the magnetic field.
【0028】[0028]
【発明の効果】本発明によれば、Ni含有フェライトの
使用限界周波数が延び、特に、Ni−Znフェライトで
は、従来使用不可能であった100MHzでの使用が可能
となる。According to the present invention, the usable limit frequency of Ni-containing ferrite is extended, and in particular, Ni-Zn ferrite can be used at 100 MHz, which has not been conventionally used.
【図1】磁場中熱処理によるNi−Znフェライトの結
晶配向変化を示すX線回折チャートである。FIG. 1 is an X-ray diffraction chart showing a change in crystal orientation of Ni—Zn ferrite by heat treatment in a magnetic field.
Claims (5)
o、BaおよびSrの少なくとも1種を含有するスピネ
ル型フェライトを、磁場中で熱処理する工程を有する軟
磁性フェライトの製造方法。Claims: 1. A composition comprising at least nickel oxide,
A method for producing a soft magnetic ferrite, comprising a step of heat-treating a spinel-type ferrite containing at least one of o, Ba and Sr in a magnetic field.
aおよびSrの少なくとも1種を、それぞれCoO、B
aFe12O19およびSrFe12O19に換算して合計で
0.1〜10重量%含有する請求項1の軟磁性フェライ
トの製造方法。2. The method according to claim 1, wherein the spinel ferrite is Co, B
at least one of a and Sr is CoO, B
aFe 12 O 19 and SrFe 12 manufacturing method of a soft magnetic ferrite according to claim 1, in terms of O 19 containing 0.1 to 10 wt% in total.
も酸化ニッケルを含有する仮焼物に、酸化コバルト、B
aフェライトおよびSrフェライトの少なくとも1種を
添加して焼成することにより製造されたものである請求
項1または2の軟磁性フェライトの製造方法。3. A method according to claim 1, wherein the calcined material containing at least nickel oxide contains cobalt oxide,
The method for producing a soft magnetic ferrite according to claim 1 or 2, wherein the method is produced by adding at least one of a ferrite and Sr ferrite and calcining.
優先的に配向させる請求項1〜3のいずれかの軟磁性フ
ェライトの製造方法。4. The method for producing a soft magnetic ferrite according to claim 1, wherein the (111) plane is preferentially oriented by heat treatment in a magnetic field.
を含有する請求項1〜4のいずれかの軟磁性フェライト
の製造方法。5. The method for producing a soft magnetic ferrite according to claim 1, wherein said spinel-type ferrite contains zinc oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10122979A JPH11307336A (en) | 1998-04-16 | 1998-04-16 | Manufacture of soft magnetic ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10122979A JPH11307336A (en) | 1998-04-16 | 1998-04-16 | Manufacture of soft magnetic ferrite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11307336A true JPH11307336A (en) | 1999-11-05 |
Family
ID=14849317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10122979A Withdrawn JPH11307336A (en) | 1998-04-16 | 1998-04-16 | Manufacture of soft magnetic ferrite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11307336A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6893581B2 (en) | 2002-02-01 | 2005-05-17 | Sanyo Electric Co., Ltd. | Composite magnetic material and a method for producing the same |
KR100725546B1 (en) | 2006-02-22 | 2007-06-08 | 요업기술원 | Magnetic material for magnetic core and the manufacturing method thereof |
JP2010076989A (en) * | 2008-09-26 | 2010-04-08 | Dowa Electronics Materials Co Ltd | Soft magnetic ferrite particle and method for producing the same |
JP2012076955A (en) * | 2010-09-30 | 2012-04-19 | Dowa Electronics Materials Co Ltd | Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same |
CN109867517A (en) * | 2019-03-28 | 2019-06-11 | 天通控股股份有限公司 | A kind of WPC and NFC dual-purpose high-frequency high-magnetic-permeability low-loss nickel-zinc ferrite and preparation method thereof |
CN113816734A (en) * | 2021-10-08 | 2021-12-21 | 横店集团东磁股份有限公司 | NiCuZn ferrite material and preparation method and application thereof |
-
1998
- 1998-04-16 JP JP10122979A patent/JPH11307336A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6893581B2 (en) | 2002-02-01 | 2005-05-17 | Sanyo Electric Co., Ltd. | Composite magnetic material and a method for producing the same |
US7101489B2 (en) | 2002-02-01 | 2006-09-05 | Sanyo Electric Co., Ltd. | Composite magnetic material and a method for producing the same |
KR100725546B1 (en) | 2006-02-22 | 2007-06-08 | 요업기술원 | Magnetic material for magnetic core and the manufacturing method thereof |
JP2010076989A (en) * | 2008-09-26 | 2010-04-08 | Dowa Electronics Materials Co Ltd | Soft magnetic ferrite particle and method for producing the same |
JP2012076955A (en) * | 2010-09-30 | 2012-04-19 | Dowa Electronics Materials Co Ltd | Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same |
CN109867517A (en) * | 2019-03-28 | 2019-06-11 | 天通控股股份有限公司 | A kind of WPC and NFC dual-purpose high-frequency high-magnetic-permeability low-loss nickel-zinc ferrite and preparation method thereof |
CN113816734A (en) * | 2021-10-08 | 2021-12-21 | 横店集团东磁股份有限公司 | NiCuZn ferrite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009227554A (en) | Ferrite sintered compact and method for producing the same | |
JP3584438B2 (en) | Mn-Zn ferrite and method for producing the same | |
JP2004247603A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JP2005132715A (en) | Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD | |
JP3418827B2 (en) | Mn-Zn ferrite and method for producing the same | |
JPH11307336A (en) | Manufacture of soft magnetic ferrite | |
JPH08231268A (en) | Low loss ferrite material | |
JP2003068516A (en) | Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD | |
JP2009215152A (en) | Sintered ferrite material | |
WO2022070634A1 (en) | MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME | |
JP2004247602A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JP2006016280A (en) | Ni-Cu-Zn FERRITE AND ITS MANUFACTURING METHOD | |
JP7117447B1 (en) | Method for producing zirconia setter and MnZn ferrite | |
JP2000327411A (en) | Production of nickel - zinc based ferrite | |
JP2006165479A (en) | Ferrite core and line filter | |
JP2005108977A (en) | Mn-Zn SYSTEM FERRITE, MAGNETIC CORE FOR TRANSFORMER, AND TRANSFORMER | |
JP3856722B2 (en) | Manufacturing method of spinel type ferrite core | |
JP2005194134A (en) | Ferrite core and its production method | |
JP5541475B2 (en) | Ferrite sintered body, manufacturing method thereof, and electronic component | |
JP3545438B2 (en) | Method for producing Ni-Zn ferrite powder | |
JPH09306718A (en) | Ferrite magnetic material and method of fabricating the same | |
JPH097814A (en) | Oxide magnetic material and its manufacturing method | |
JP2002179460A (en) | Ferrite material and ferrite core by using the same | |
JPH06325920A (en) | Low-loss magnetic material and manufacture thereof | |
JP2005247652A (en) | TRANSFORMER, MAGNETIC CORE FOR TRANSFORMER, Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040526 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |