JP2917706B2 - Oxide magnetic material - Google Patents

Oxide magnetic material

Info

Publication number
JP2917706B2
JP2917706B2 JP4268501A JP26850192A JP2917706B2 JP 2917706 B2 JP2917706 B2 JP 2917706B2 JP 4268501 A JP4268501 A JP 4268501A JP 26850192 A JP26850192 A JP 26850192A JP 2917706 B2 JP2917706 B2 JP 2917706B2
Authority
JP
Japan
Prior art keywords
mol
loss
magnetic
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4268501A
Other languages
Japanese (ja)
Other versions
JPH06120022A (en
Inventor
伸哉 松谷
修 井上
公一 釘宮
治 石井
保之 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4268501A priority Critical patent/JP2917706B2/en
Priority to EP93100497A priority patent/EP0551907B1/en
Priority to EP96101673A priority patent/EP0716053B1/en
Priority to DE69324273T priority patent/DE69324273T2/en
Priority to DE69309503T priority patent/DE69309503T2/en
Publication of JPH06120022A publication Critical patent/JPH06120022A/en
Priority to US08/314,546 priority patent/US5518642A/en
Application granted granted Critical
Publication of JP2917706B2 publication Critical patent/JP2917706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インダクタンス部品、
電源用トランスコア等に用いられる酸化物磁性体材料に
関し、特に高周波特性に優れた低損失MnZn系または
Mn系フェライト磁性体に関する。
The present invention relates to an inductance component,
The present invention relates to an oxide magnetic material used for a transformer core for a power supply or the like, and particularly to a low-loss MnZn-based or Mn-based ferrite magnetic material having excellent high-frequency characteristics.

【0002】[0002]

【従来の技術】近年のエレクトロニクス技術の発展にと
もなう機器の小型化・高密度化により、使用周波数の高
周波化が進んでいる。例えばスイッチング電源用トラン
ス磁芯その他に用いられる磁性体材料においても、高周
波化への対応が必要とされ、特に小型化した場合の発熱
を防止するために、高周波において低磁気損失であるこ
とが要求されている。
2. Description of the Related Art In recent years, with the development of electronics technology, devices have been miniaturized and densified. For example, magnetic materials used for transformer cores for switching power supplies and the like are also required to cope with high frequencies, and in particular, low magnetic loss at high frequencies is required to prevent heat generation when downsized. Have been.

【0003】例えば磁芯材料等に適用される磁性体材料
には、大きく分けて金属系材料と酸化物フェライト系材
料がある。金属系の材料は、飽和磁束密度・透磁率とも
高いという長所があるが、電気抵抗率が10-6〜10-4
Ω・cm程度と低いため、高周波においては渦電流に起
因する磁気損失が増大するという欠点があった。この欠
点は、磁性体の厚さを薄くすることによって改善される
ため、金属系材料を薄い箔状に加工し絶縁体をはさんで
ロール状に巻いたものも作られているが、薄体化には約
10μm程度と限界があり、また複雑形状のものが作り
にくい、高コストであるといった問題点がある。このた
め、100kHz程度の周波数帯域までしか使用不可能
であった。
For example, magnetic materials applied to magnetic core materials and the like are roughly classified into metal materials and oxide ferrite materials. Metal-based materials have the advantage of high saturation magnetic flux density and high magnetic permeability, but have an electrical resistivity of 10 -6 to 10 -4.
Since it is as low as Ω · cm, there is a disadvantage that magnetic loss due to eddy current increases at high frequencies. This disadvantage can be improved by reducing the thickness of the magnetic material.Thus, a metal-based material processed into a thin foil and rolled into a roll with an insulator in between has been made. There is a limit of about 10 μm, and there are problems that it is difficult to produce a complicated shape and the cost is high. Therefore, it can be used only up to a frequency band of about 100 kHz.

【0004】一方フェライト系材料は、飽和磁束密度は
金属系材料の1/2程度と低い。しかしながら電気抵抗
率は、通常用いられているMnZn系のもので1Ω・c
m程度と、金属系材料に比べてはるかに高く、また、C
aOやSiO2等の添加物を用いることにより、電気抵
抗率をさらに10〜数百Ω・cm程度まで高めることが
でき、渦電流に起因する磁気損失が高周波数まで比較的
小さく、特別な工夫をすることなく使用可能である。ま
た複雑形状のものも容易に作れ、かつ低コストであると
いった利点を持つ。このため、例えば100kHz以上
のスイッチング周波数での電源用トランス磁芯材料とし
ては、このフェライト系の材料が一般に用いられてい
た。
On the other hand, the saturation magnetic flux density of ferrite-based materials is as low as about 1/2 of that of metal-based materials. However, the electrical resistivity is 1 Ω · c in a commonly used MnZn-based material.
m, which is much higher than that of metallic materials.
By using additives such as aO and SiO 2 , the electric resistivity can be further increased to about 10 to several hundreds Ω · cm, and the magnetic loss due to eddy current is relatively small up to high frequencies. It can be used without doing. In addition, there is an advantage that a product having a complicated shape can be easily formed and the cost is low. For this reason, for example, this ferrite-based material has been generally used as a transformer core material for a power supply at a switching frequency of 100 kHz or more.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなフェライト系材料といえども、500kHz以上に
なると渦電流に起因する磁気損失が増大して使用するこ
とができないという課題がある。
However, even with such a ferrite-based material, there is a problem that when the frequency is 500 kHz or more, the magnetic loss due to the eddy current increases and it cannot be used.

【0006】また、磁気損失の温度係数が室温付近で正
であると、実使用時にトランスが磁気損失により発熱
し、そのために温度が上昇し、温度上昇にともないさら
に磁気損失が増大して発熱が大きくなることを繰り返
し、熱暴走を起こす危険性がある。このため、室温付近
での磁気損失の温度係数が負で、しかも実際に使用する
60〜80℃付近の温度で、磁気損失が最小となるよう
な温度特性を持つことが要求される。
If the temperature coefficient of the magnetic loss is positive near room temperature, the transformer generates heat due to the magnetic loss during actual use, and thus the temperature rises. As the temperature rises, the magnetic loss further increases and the heat is generated. There is a danger of repeated runaway and thermal runaway. For this reason, it is required to have a temperature characteristic such that the temperature coefficient of magnetic loss near room temperature is negative and the magnetic loss is minimized at a temperature around 60 to 80 ° C. actually used.

【0007】ところが充分低磁気損失な材料が無い上
に、比較的磁気損失が低い材料では、一般に磁気損失最
小温度が室温付近にあって熱暴走を起こしやすく、一方
磁気損失最小温度が60℃以上にあるような材料は、非
常に磁気損失が大きいという問題点があった。従って、
超低磁気損失で同時に温度特性も良い材料は、現在まで
得られていないという課題があった。
However, there is no material having a sufficiently low magnetic loss and a material having a relatively low magnetic loss generally has a minimum magnetic loss temperature near room temperature and easily causes thermal runaway, while a minimum magnetic loss temperature is 60 ° C. or higher. However, such a material has a problem that the magnetic loss is extremely large. Therefore,
There has been a problem that a material having very low magnetic loss and good temperature characteristics has not been obtained until now.

【0008】本発明は、前記従来技術の課題を解決する
ため、高周波における磁気損失が極めて低く、かつ温度
特性に優れた酸化物磁性体材料を提供することを目的と
する。
An object of the present invention is to provide an oxide magnetic material having extremely low magnetic loss at high frequencies and excellent temperature characteristics in order to solve the above-mentioned problems of the prior art.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の酸化物磁性体材料は、主組成として、Fe
2362mol%以上66mol%以下、MnOを
mol%以上28mol%以下、ZnOを10mol
%以上20mol%以下含有し、かつ副成分としてCa
Oを0.05重量%以上0.5重量%以下およびSiO
2を0.005重量%以上0.2重量%以下を少なくと
も含有する焼結体であるという構成を備えたものであ
る。
In order to achieve the above object, the oxide magnetic material of the present invention has a main composition of Fe
2 O 3 is 62 mol% or more and 66 mol% or less, and MnO is 1 mol
4 mol% or more and 28 mol% or less, ZnO 10 mol
% Or more and 20 mol% or less, and Ca
O in the range of 0.05% by weight to 0.5% by weight and SiO
2 is a sintered body containing at least 0.005% by weight or more and 0.2% by weight or less.

【0010】[0010]

【作用】本発明において、MnZn系フェライトの主組
成を限定する理由は、磁気損失の絶対値を減少させ、同
時に磁気損失の温度特性を制御する必要性からである。
In the present invention, the main composition of the MnZn-based ferrite is limited because it is necessary to reduce the absolute value of the magnetic loss and at the same time control the temperature characteristics of the magnetic loss.

【0011】副成分の役割は、上記MnZn系フェライ
トの組成範囲内で、主に電気抵抗値を増大させ、渦電流
にともなう磁気損失を低下させるものである。添加量の
下限は、磁気損失低下の効果が表れるのに必要な最低限
度である。一方上限を設定する理由は、添加量が増加し
過ぎると透磁率の低下等を招き、磁気損失を増大させる
ためである。
The role of the auxiliary component is to mainly increase the electric resistance value and reduce the magnetic loss due to the eddy current within the composition range of the MnZn-based ferrite. The lower limit of the amount added is the minimum required for the effect of reducing the magnetic loss to be exhibited. On the other hand, the reason for setting the upper limit is that if the amount of addition is excessively increased, the magnetic permeability is lowered and the magnetic loss is increased.

【0012】これらの副成分は、一種類のみの単独添加
でも効果が無くはないが、十分低損失な試料を得るため
には、CaOおよびSiO2の同時添加は必須である。
These subcomponents are effective even if only one kind is added alone, but simultaneous addition of CaO and SiO 2 is essential to obtain a sample with sufficiently low loss.

【0013】[0013]

【実施例】本発明は、複合フェライトの酸化物磁性体材
料、中でもMnZnフェライトまたはMnフェライト
(以下特に断わらない限り両者を併せてMnZnフェラ
イトまたはMnZn系フェライトと総称する)に関し、
主組成としてFe2362mol%以上66mol%
以下、MnOを14mol%以上28mol%以下、Z
nOを10mol%以上20mol%以下含有し、かつ
副成分としてCaOを0.05重量%以上0.5重量%
以下およびSiO2を0.005重量%以上0.2重量
%以下を含有する構成を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an oxide magnetic material of composite ferrite, particularly MnZn ferrite or Mn ferrite (both are collectively referred to as MnZn ferrite or MnZn ferrite unless otherwise specified).
Fe 2 O 3 as main composition 62 mol% or more and 66 mol%
In the following, MnO is not less than 14 mol% and not more than 28 mol%,
nO is contained in an amount of 10 mol% or more and 20 mol % or less, and CaO is added as an auxiliary component in an amount of 0.05 wt% or more and 0.5 wt% or less.
Or less, and a composition containing 0.005% by weight or more and 0.2% by weight or less of SiO 2 .

【0014】一般にフェライトの磁気特性のうち、飽和
磁束密度・キュリー温度・損失極小温度などは、その主
組成に依存し、一方、透磁率・残留磁束密度・保持力・
磁気損失などは、主組成の影響も受けるが、微細構造に
よって支配される特性であるとされている。また、高周
波で低損失なMnZnフェライトとしては、飽和磁束密
度・キュリー温度・損失極小温度・透磁率が高いことが
必要とされている(「粉体および粉末冶金」第34巻5
号P191)。
In general, among the magnetic properties of ferrite, the saturation magnetic flux density, the Curie temperature, the minimum loss temperature, and the like depend on the main composition, while the magnetic permeability, residual magnetic flux density, coercive force,
It is said that magnetic loss and the like are affected by the main composition, but are characteristics governed by the fine structure. In addition, high-frequency, low-loss MnZn ferrite is required to have high saturation magnetic flux density, Curie temperature, minimum loss temperature, and high magnetic permeability ("Powder and Powder Metallurgy" Vol.
No. P191).

【0015】飽和磁束密度は、ZnO量がある程度多
く、Fe23量が多いほど増加する。しかしながら、Z
nO量が多すぎるとキュリー温度が低下し、またFe2
3量が多すぎると透磁率及び比抵抗値が低下し、また
透磁率が時間とともに変化していく現象であるDA(デ
ィスアコモデーション)が発生し易くなることが知られ
ている。このため低損失MnZnフェライトの主組成と
しては、Fe23を53〜54mol%程度、ZnOを
9〜12mol%程度含有するものが最適とされている
(「エレクトロニク・セラミクス」1985年冬号P4
4)。実際に開発されている低損失フェライトも、ほと
んどがこの範囲内であり、低損失化は、この付近の主組
成を用い、添加物・微細構造による検討が中心であっ
た。
The saturation magnetic flux density increases to some extent with the amount of ZnO and increases with the amount of Fe 2 O 3 . However, Z
If the amount of nO is too large, the Curie temperature decreases, and Fe 2
It is known that when the O 3 amount is too large, the magnetic permeability and the specific resistance value decrease, and DA (disaccommodation), which is a phenomenon in which the magnetic permeability changes with time, is likely to occur. For this reason, the main composition of the low-loss MnZn ferrite is optimized to contain about 53 to 54 mol% of Fe 2 O 3 and about 9 to 12 mol% of ZnO (“Electronic Ceramics” Winter 1985). P4
4). Most of the low-loss ferrites actually developed are within this range, and the reduction of the loss was mainly based on the study of additives and microstructure using the main composition in the vicinity.

【0016】一方、MnZn系フェライトの磁気損失極
小温度については、従来は透磁率の温度特性によって説
明がなされていた。すなわち、MnZn系フェライトの
透磁率の温度変化を測定すると、一般に2つの極大が現
れる。1つはキュリー温度直下の極大で、ホプキンソン
効果によるプライマリーピークと呼ぶ。他の1つは室温
近傍での極大で、セカンダリーピークと呼ぶ。このセカ
ンダリーピークの温度で、磁気損失が極小になると言わ
れていた。このセカンダリーピークは、結晶磁気異方性
定数K1の符号が温度上昇に伴って負から正の値に変わ
るK1=0の温度に一致する。K1は温度上昇に対して単
調に増加するが、Fe2+は正のK1を持つため、Fe2+
の量が増加すると(すなわちFe23量が増加すると)
セカンダリーピークの温度は低温側に移動する。従っ
て、主組成のFe23量が多いと極小損失温度が低くな
り過ぎるため、Fe23量は、54mol%程度以下が
一般的であった。
On the other hand, the minimum temperature of the magnetic loss of the MnZn-based ferrite has been conventionally explained by the temperature characteristic of the magnetic permeability. That is, when the temperature change of the magnetic permeability of the MnZn-based ferrite is measured, two maxima generally appear. One is a local maximum just below the Curie temperature, which is called a primary peak due to the Hopkinson effect. The other is a maximum near room temperature and is called a secondary peak. It was said that at the temperature of this secondary peak, magnetic loss was minimized. This secondary peak coincides with the temperature of K 1 = 0 where the sign of the magnetocrystalline anisotropy constant K 1 changes from a negative value to a positive value as the temperature rises. Although K 1 increases monotonically with increasing temperature, Fe 2+ has a positive K 1 , so that Fe 2+
The amount of Fe increases (ie, the amount of Fe 2 O 3 increases)
The temperature of the secondary peak moves to a lower temperature. Therefore, when the amount of Fe 2 O 3 in the main composition is large, the minimum loss temperature becomes too low, so that the amount of Fe 2 O 3 is generally about 54 mol% or less.

【0017】しかし発明者等は、同一の添加物条件の元
で、主組成比の異なるMnZn系フェライトを実際に作
製し、主組成の効果を詳細に検討した。その結果、従来
用いられていたものとは全く異なる、62mol%以
上、66mol%以下と非常にFe23過剰な主組成に
おいて、特定の添加物を用いることにより、磁気損失極
小温度が60℃以上で、かつ100kHz〜数MHzで
も低磁気損失なフェライトが得られることを見いだし
た。
However, the present inventors actually manufactured MnZn-based ferrites having different main composition ratios under the same additive conditions, and examined the effect of the main composition in detail. As a result, in a main composition having a very large Fe 2 O 3 excess of 62 mol% or more and 66 mol% or less, which is completely different from those conventionally used, the minimum magnetic loss temperature can be reduced by using a specific additive. It has been found that ferrite having a low magnetic loss can be obtained at a temperature of 60 ° C. or more and at a frequency of 100 kHz to several MHz.

【0018】従来、Fe23が非常に過剰な主組成にお
いては、比抵抗値が低いため渦電流損失が増加するため
高周波では使用できないと考えられていた。しかし、発
明者等の検討によると、Fe23が非常に過剰な主組成
においても、効果的な副成分を複合添加することで、ヒ
ステリシス損失を増加させることなく、比抵抗値を増加
させ磁気損失の絶対値を低減させることができることが
明らかになった。すなわち特定の主組成を選択し、これ
に特定量のCaOおよびSiO2を添加することによ
り、低磁気損失のものが得られる。
Hitherto, it has been considered that in a main composition in which Fe 2 O 3 is extremely excessive, eddy current loss increases due to a low specific resistance value, so that it cannot be used at high frequencies. However, according to studies by the inventors, even in a main composition in which Fe 2 O 3 is extremely excessive, an effective auxiliary component is added in combination to increase the specific resistance without increasing the hysteresis loss. It became clear that the absolute value of the magnetic loss can be reduced. That is, by selecting a specific main composition and adding specific amounts of CaO and SiO 2 thereto, a material having a low magnetic loss can be obtained.

【0019】また、本発明の酸化物磁性体材料が、主組
成としてFe2O3を62mol%以上66mol%以
下、MnOを14mol%以上28mol%以下、Zn
Oを10mol%以上20mol%以下含有し、かつ副
成分としてCaOを0.05重量%以上0.5重量%以
下およびSiO2を0.005重量%以上0.2重量%
以下を必ず含み、さらにMxzを0.01重量%以上
0.5重量%以下(但し、MxzはZrO2、HfO2
Ta25、Cr23、MoO3、WO3、Al23、Ga
23、In23、GeO2、SnO2、Sb23、Bi2
3より選ばれた少なくとも1種類以上)を少なくとも
含有する焼結体であると、より磁気損失の温度特性に優
れ、かつ磁気損失の低い磁性体材料とすることができ
る。
The oxide magnetic material of the present invention has a main composition of Fe 2 O 3 of 62 mol% to 66 mol%, MnO of 14 mol% to 28 mol%,
O was contained 20 mol% hereinafter least 10 mol%, and 0.5 wt% 0.05 wt% or more of CaO as an auxiliary component less and SiO 2 0.005 wt% 0.2 wt%
Always include the following, further M x O z a 0.01 wt% to 0.5 wt% or less (, M x O z is ZrO 2, HfO 2,
Ta 2 O 5 , Cr 2 O 3 , MoO 3 , WO 3 , Al 2 O 3 , Ga
2 O 3 , In 2 O 3 , GeO 2 , SnO 2 , Sb 2 O 3 , Bi 2
When the sintered body contains at least one or more kinds selected from O 3 ), a magnetic material having more excellent temperature characteristics of magnetic loss and low magnetic loss can be obtained.

【0020】このMxzとして2種類以上の金属酸化物
を用い、CaOおよびSiO2と合わせて4種類以上の
複合添加とした場合、Mxzの内の一種類の添加量が下
限である0.01重量%未満であっても、用いられたM
xz全ての合計量が0.01重量以上であれば、複合添
加による低損失化の効果は現れる。もちろん、複数の種
類のMxzそれぞれが添加範囲内であっても問題はな
く、CaOおよびSiO 2のみの場合に比べて磁気損失
を低下させることができる。特に、Mxzとして、Zr
2と他のもう一種類の金属酸化物を複合して用いるこ
とは、低損失化と同時に、焼結体のチッピングや欠けを
防止する点で有効である。また、本発明であげた以外の
添加物、例えばTiO2,CoO,NiO,V25,N
25等を加えても、その量が特に多くない限り差支え
ない。
This MxOzAs two or more metal oxides
Using CaO and SiOTwoMore than 4 types
When combined addition, MxOzOf one of the
Is less than 0.01% by weight,
xOzIf the total amount of all is 0.01 weight or more,
The effect of reducing the loss by the addition appears. Of course, multiple species
Kind of MxOzThere is no problem even if each is within the addition range
And CaO and SiO TwoMagnetic loss compared to only case
Can be reduced. In particular, MxOzAs Zr
OTwoAnd another type of metal oxide.
Is to reduce chipping and chipping of the sintered body while reducing the loss.
It is effective in preventing it. In addition, other than those given in the present invention
Additives such as TiOTwo, CoO, NiO, VTwoOFive, N
bTwoOFiveIt does not matter if the amount is not particularly large.
Absent.

【0021】しかしながら、CaO,SiO2およびMx
zを適当量添加していたとしても、主組成が異なれ
ば、充分低損失な試料は得られない。また主組成が異な
ると、添加物による低損失化が認められなくなる場合も
ある。最も低損失な材料は、主組成、副成分の条件を同
時に満たすことで実現できる。また、DAの問題は、例
えば電源のトランスコアとして用いられる場合、励磁電
流が初透磁率範囲を超えるため、特性に悪影響をうけな
いことが発明者等の検討の結果明らかになった。
However, CaO, SiO 2 and M x
Even if O z is added in an appropriate amount, a sample with sufficiently low loss cannot be obtained if the main composition is different. Further, if the main composition is different, lowering of the loss due to the additive may not be recognized in some cases. The material with the lowest loss can be realized by simultaneously satisfying the conditions of the main composition and the subcomponent. In addition, as a result of investigations by the present inventors, it has become clear that the problem of DA, for example, when used as a transformer core of a power supply, does not adversely affect characteristics because the excitation current exceeds the initial permeability range.

【0022】磁気損失極小温度は、結晶磁気異方性定数
1の符号が温度上昇に伴って負から正の値に変わるK1
=0の温度に一致するため、正のK1を持つFe2+の量
が増加する(すなわちFe23量が増加すると)極小損
失温度は低温側に移動し、室温以下になると考えられて
いた。しかし、主組成のFe23量が61mol%以上
になると再び、室温でK1<0となるため(例えばシ゛ャーナ
ル オフ゛ フィシ゛カル ソサエティ第18巻第684頁〜(K.Ohta:J.Phys.So
c.Japan 18,684(1963)))、Fe23量過剰組成におい
ても極小損失温度を40〜60℃以上に制御可能であ
る。
The magnetic loss minimum temperature, K 1 where the sign of the crystal magnetic anisotropy constant K 1 is changed from a negative with increasing temperature to a positive value
= 0, the amount of Fe 2+ having a positive K 1 increases (that is, when the amount of Fe 2 O 3 increases), the minimum loss temperature moves to a lower temperature side, and is considered to be lower than room temperature. I was However, when the amount of Fe 2 O 3 in the main composition becomes 61 mol% or more, K 1 <0 again at room temperature (for example, Journal Off Physical Society, Vol. 18, p. 684- (K. Ohta: J. Phys. So
c. Japan 18,684 (1963))), the minimum loss temperature can be controlled to 40 to 60 ° C. or more even in the composition with an excessive amount of Fe 2 O 3 .

【0023】一方添加物による低損失化については、C
aOおよびSiO2を同時に添加し、これらを粒界に偏
析させることにより高電気抵抗化させ、渦電流損失を減
少させることができるが、これにさらに選択された3番
目の添加物を用いることにより、より低損失化できる。
On the other hand, with respect to the reduction of loss by the additive,
By simultaneously adding aO and SiO 2 and segregating them at the grain boundaries, it is possible to increase the electric resistance and reduce the eddy current loss. However, by using a third additive further selected, , The loss can be further reduced.

【0024】しかしながら発明者等の検討によると、こ
の3番目の添加物についても粒界に析出させることが重
要である。添加物を多量に用いると、必ず電気抵抗は高
くなり、渦電流損失は減少するが、添加物のフェライト
相への固溶は逆にヒステリシス損を増加させることにな
る。従って、添加物量はできる限り少なくし、粒界に薄
く均一に析出させることにより、低損失な材料が得られ
る。すなわち、このM xzの粒界層部分の濃度が、粒子
内部の濃度の5倍以上にすることにより、さらに損失を
低減できる。
However, according to the study by the inventors,
It is important to precipitate the third additive at the grain boundary.
It is important. If a large amount of additives is used, the electrical resistance will always be high.
And the eddy current loss is reduced, but the additive ferrite
Conversely, the solid solution in the phase increases the hysteresis loss.
You. Therefore, the amount of additives should be as small as possible and
Low loss material can be obtained by uniform precipitation
You. That is, this M xOzConcentration of the grain boundary layer
By making it more than 5 times the internal concentration, further loss
Can be reduced.

【0025】その他、低磁気損失MnZnフェライトに
必要な特性としては、焼結体の相対密度が4.6g/c
3以上であることが望ましい。焼結密度が低いと、実
効断面積が減少するため損失が増大する。また、焼結密
度が低いと、焼成の冷却時に雰囲気の影響を受け易くな
り、特にFe23が多いような組成では、精密に雰囲気
制御を行わなければ本来の特性が得られにくくなる場合
があり、製造時の歩留まりを下げる原因となる。また、
電気抵抗率は、直流抵抗率が200〜2kΩ・cm程
度、交流抵抗率(1MHz)が20Ω・cm程度以上が
望ましい。透磁率や電気抵抗率は結晶粒径によって変化
し、粒径が小さすぎると透磁率が低くなり、また大きす
ぎると電気抵抗が低くなる。従って、平均結晶粒径は1
0μm以下が好ましく、2〜5μm程度が望ましい。
Other characteristics required for low magnetic loss MnZn ferrite include a sintered body having a relative density of 4.6 g / c.
Desirably, it is at least m 3 . If the sintering density is low, the loss increases because the effective area decreases. In addition, when the sintering density is low, the atmosphere is easily affected by cooling during firing, and in particular, in a composition having a large amount of Fe 2 O 3, it is difficult to obtain the original characteristics unless the atmosphere is precisely controlled. This causes a reduction in the yield during manufacturing. Also,
The electric resistivity is desirably a DC resistivity of about 200 to 2 kΩ · cm and an AC resistivity (1 MHz) of about 20 Ω · cm or more. The magnetic permeability and the electrical resistivity vary depending on the crystal grain size. If the grain size is too small, the magnetic permeability decreases, and if it is too large, the electrical resistance decreases. Therefore, the average crystal grain size is 1
0 μm or less is preferable, and about 2 to 5 μm is desirable.

【0026】本発明のMnZn系フェライト材料は、測
定周波数がMHz帯域であっても、60℃以上の磁気損
失極小温度を持ち、かつ超低磁気損失を示す。従って、
本発明の酸化物磁性体材料を磁気コアとして用いたスイ
ッチング周波数が100kHz〜5MHzのスイッチン
グ電源は、小型・高効率で、熱暴走する危険性が低いた
め好ましい応用分野である。
The MnZn-based ferrite material of the present invention has a minimum magnetic loss temperature of 60 ° C. or more and exhibits an extremely low magnetic loss even when the measurement frequency is in the MHz band. Therefore,
A switching power supply using the oxide magnetic material of the present invention as a magnetic core and having a switching frequency of 100 kHz to 5 MHz is a preferable application because it is small in size, high in efficiency and low in risk of thermal runaway.

【0027】以下、Mxzとして一部のものを用いた場
合を中心に、実施例によって本発明を説明するが、実施
例5および6に示すように、他の本発明の請求項に挙げ
た添加物を用いた場合にも、程度の差はあれ同様の効果
が認められた。
Hereinafter, the present invention will be described by way of examples, focusing on the case where a part of M x O z is used. However, as shown in Examples 5 and 6, other claims of the present invention will be described. Similar effects were also observed when the above-mentioned additives were used, albeit with varying degrees.

【0028】(実施例1)出発原料に純度99.5%の
α−Fe23、MnCO3、ZnOの各粉末を用いた。
これらの粉末を(表1)の組成比となり、合計重量が3
00gとなるようにそれぞれ秤量し、ボールミルにて湿
式10時間混合粉砕し、乾燥させた。これらの混合粉末
を850℃で2時間空気中で仮焼した後、CaOが0.
1重量%、SiO2が0.02重量%となるように、C
aCO3とSiO2を添加し、再度ボールミルにて10時
間、湿式混合粉砕して乾燥させ、仮焼粉末とした。
Example 1 Powders of α-Fe 2 O 3 , MnCO 3 , and ZnO having a purity of 99.5% were used as starting materials.
These powders have a composition ratio of (Table 1) and a total weight of 3
Each was weighed so as to be 00 g, mixed and pulverized by a ball mill for 10 hours in a wet system, and dried. After calcining these mixed powders in air at 850 ° C. for 2 hours, CaO was reduced to 0.1.
1 wt%, as SiO 2 is 0.02 wt%, C
aCO 3 and SiO 2 were added, wet-mixed and pulverized again by a ball mill for 10 hours, and dried to obtain a calcined powder.

【0029】これらの仮焼粉末にポリビニルアルコール
の5重量%水溶液を10重量%加え、30#のふるいを
通過させて造粒した。これらの造粒粉を一軸金型成形
し、この成形体を500℃で1時間、空気中でバインダ
アウトした後、次の2種類の焼成条件で焼成した。
A 10% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added to these calcined powders, and granulated by passing through a 30 # sieve. The granulated powder was formed into a uniaxial mold, and the formed body was binder-out at 500 ° C. for 1 hour in the air, and then fired under the following two firing conditions.

【0030】焼成条件は、焼成温度を1200℃とし、
昇温時および最高温度保持時をフェライトの平衡酸素分
圧に応じてO2雰囲気制御し、冷却時窒素中の雰囲気と
した。この時、焼成時間及び成形時の圧力を、焼結体の
平均結晶粒径が3〜5μm程度、焼結体密度がほぼ4.
6g/cm3程度で、4.5〜4.7g/cm3の範囲内
に入るように変化させた。
The firing conditions are as follows: a firing temperature of 1200 ° C.
The O 2 atmosphere was controlled according to the equilibrium oxygen partial pressure of the ferrite at the time of raising the temperature and maintaining the maximum temperature, and the cooling was performed in an atmosphere of nitrogen. At this time, the sintering time and the pressure at the time of molding were set such that the average crystal grain size of the sintered body was about 3 to 5 μm and the density of the sintered body was approximately
At about 6 g / cm 3, it was varied to fall within the scope of 4.5~4.7g / cm 3.

【0031】特性の測定は、得られた焼結体より外径2
0mm、内径14mm、厚さ3mmのリング状試料を切
り出し、1MHz・50mTにおける磁気損失を、20
℃〜120℃の間で20℃きざみで測定した。磁気損失
の測定方法はリング状フェライトコアに絶縁テープを一
層巻いた後、線径0.26mmφの絶縁導線を全周にわ
たって一層巻いた試料を準備し、交流B−Hカーブ・ト
レーサーを用いて測定した。結果を(表1)に示した。
The characteristics were measured by measuring the outer diameter of the obtained sintered compact by 2 mm.
A ring-shaped sample having a thickness of 0 mm, an inner diameter of 14 mm, and a thickness of 3 mm was cut out, and the magnetic loss at 1 MHz and 50 mT was determined to be 20
It measured between 20 degreeC between 120 degreeC-120 degreeC. The magnetic loss was measured by wrapping a single layer of insulating tape around a ring-shaped ferrite core and then wrapping a single layer of an insulated conductor with a wire diameter of 0.26 mm over the entire circumference, and measuring using an AC BH curve tracer. did. The results are shown in (Table 1).

【0032】[0032]

【表1】 [Table 1]

【0033】(表1)の結果より明らかなように、主組
成の効果について、F23が62mol%以上66m
ol以下、ZnOが10mol%以上20mol%以下
の範囲内で、60℃以上に損失極小温度を持ち、損失は
600kW/m3程度以下と超低損失となった。
[0033] As Table 1 Results from clear, with the effect of the main composition, F e 2 O 3 is more than 62 mol% 66m
ol or less, and ZnO within the range of 10 mol% or more and 20 mol% or less , the loss minimum temperature was found to be 60 ° C or more, and the loss was as low as about 600 kW / m 3 or less.

【0034】(実施例2)実施例1と同様の方法で、
(表2)の組成比となり、CaOが0.1重量%、Si
2が0.02重量%、Ta25が0.1重量%となる
ように、CaCO3とSiO2とTa25を添加し、実施
例1とおなじ焼成条件で焼結体を作製した。得られた焼
結体より、実施例1と同様の方法・条件で磁気損失の温
度特性を測定した。結果を(表2)に示した。
(Embodiment 2) In the same manner as in Embodiment 1,
(Table 2) The composition ratio is as follows: 0.1% by weight of CaO,
CaCO 3 , SiO 2 and Ta 2 O 5 were added so that O 2 was 0.02% by weight and Ta 2 O 5 was 0.1% by weight, and the sintered body was fired under the same firing conditions as in Example 1. Produced. From the obtained sintered body, the temperature characteristics of magnetic loss were measured by the same method and conditions as in Example 1. The results are shown in (Table 2).

【0035】[0035]

【表2】 [Table 2]

【0036】(表2)の結果より明らかなように、実施
例1と同様に、F23が62mol%以上66mol
%以下、ZnOが10mol%以上20mol%以下の
範囲内で、60℃以上に損失極小温度を持ち損失は20
0kW/m3程度以下、最低で90kW/m3と超低損失
となった。この結果を、実施例1の(表1)と比較する
と、CaOとSiO2以外にさらにTa25を添加した
(表2)では、主組成にもよるが、磁気損失が約100
kW/m3程度低下した。
As is clear from the results shown in Table 2, as in Example 1, the content of Fe 2 O 3 was 62 mol% or more and 66 mol%.
% Or less, in the range ZnO following 10 mol% or more 20 mol%, the loss has a loss minimum temperature 60 ° C. over 20
Very low loss of about 0 kW / m 3 or less, at least 90 kW / m 3 . When this result is compared with Table 1 of Example 1, the magnetic loss is about 100 when Ta 2 O 5 is added in addition to CaO and SiO 2 (Table 2), depending on the main composition.
It decreased by about kW / m 3 .

【0037】次にこれらの試料を破壊し、その破断面を
観察すると、いずれも粒界破壊を生じ、平均結晶粒径
は、約4μmであった。そこで、No.5,7,11,
17,19の試料について、破断面のTa元素の分布
を、SIMS(2次イオン質量分析装置)を用いて測定
した。まず、分析範囲を3μm径に絞って、同一試料に
ついて数十点分析したところ、Ta濃度は分析位置によ
って若干の差があった。そこで分析範囲を50×50μ
mとして、平均的なTa濃度を求めることとし、破断面
からのTa元素の深さ方向のプロファイルを測定した。
その結果、いずれの試料においても、Ta濃度は、破断
面(すなわち粒界部分)から深くなる(粒子内部に進
む)に従って低下し、数十nm程度の深さからあとはほ
ぼ一定となった。そこで粒界部分と、濃度がほぼ一定と
なった粒子内部のTa濃度を比較してみると、いずれの
試料においても粒界部分の濃度が約10倍高くなってい
た。
Next, when these samples were broken and their fractured surfaces were observed, all of them were broken at the grain boundaries, and the average crystal grain size was about 4 μm. Then, No. 5, 7, 11,
With respect to the samples 17 and 19, the distribution of the Ta element in the fracture surface was measured using SIMS (secondary ion mass spectrometer). First, the analysis range was narrowed down to a diameter of 3 μm, and several tens of points were analyzed for the same sample. As a result, the Ta concentration was slightly different depending on the analysis position. Therefore, the analysis range is set to 50 × 50μ
The average Ta concentration was determined as m, and the profile of the Ta element in the depth direction from the fracture surface was measured.
As a result, in each of the samples, the Ta concentration decreased as the depth became deeper from the fracture surface (that is, the grain boundary portion) (going into the inside of the particle), and became substantially constant from the depth of about several tens nm. Then, comparing the Ta concentration in the grain boundary portion and the Ta concentration inside the particle where the concentration became almost constant, the concentration in the grain boundary portion was about 10 times higher in all samples.

【0038】(実施例3)実施例1と同様の方法で、組
成比がFe23=65mol%、MnO=17mol
%、ZnO=18mol%となり、合計重量が300g
となるようにそれぞれの粉体を秤量し、ボールミルにて
湿式10h混合粉砕し、乾燥させた。この混合粉末を8
00℃で2時間空気中で仮焼した後、CaOとSiO2
が(表3)の量となるように、CaCO3とSiO2を添
加し、再度ボールミルにて10h、湿式混合粉砕して乾
燥させ、仮焼粉末とした。これらの仮焼粉末より、実施
例1の焼成条件と同様の方法で焼結体を作製した。
Example 3 In the same manner as in Example 1, the composition ratio was Fe 2 O 3 = 65 mol%, MnO = 17 mol.
%, ZnO = 18 mol%, and the total weight is 300 g.
Each powder was weighed so as to obtain a mixture, wet-mixed and pulverized for 10 hours by a ball mill, and dried. This mixed powder is
After calcination in air at 00 ° C. for 2 hours, CaO and SiO 2
Was adjusted to the amount shown in (Table 3), CaCO 3 and SiO 2 were added thereto, and wet-mixed and pulverized again by a ball mill for 10 hours, followed by drying to obtain a calcined powder. From these calcined powders, sintered bodies were produced in the same manner as in the firing conditions of Example 1.

【0039】これらの焼結体について、実施例1と同方
法・同条件(1MHz,50mT)で磁気損失の温度依
存性を測定した。その結果、焼結体の磁気損失はいずれ
のCaOとSiO2量においても、80℃で極小値を示
した。極小磁気損失値をkW/m3の単位で(表3)に示
した。
For these sintered bodies, the temperature dependence of the magnetic loss was measured by the same method and under the same conditions (1 MHz, 50 mT) as in Example 1. As a result, the magnetic loss of the sintered body showed a minimum value at 80 ° C. regardless of the amount of CaO and SiO 2 . The minimum magnetic loss values are shown in Table 3 in units of kW / m 3 .

【0040】[0040]

【表3】 [Table 3]

【0041】(表3)より明らかなように、CaOまた
はSiO2の単独添加では高磁気損失であるが、両者を
組み合わせることにより低磁気損失化し、特に0.05
≦CaO≦0.5重量%、0.005≦SiO2≦0.
2重量%の範囲内にあるときは、磁気損失が300kW
/m3前後と低磁気損失であった。
As is clear from Table 3, when only CaO or SiO 2 is added alone, high magnetic loss is obtained.
≦ CaO ≦ 0.5% by weight, 0.005 ≦ SiO 2 ≦ 0.
When it is within the range of 2% by weight, the magnetic loss is 300 kW.
/ M 3 and low magnetic loss.

【0042】(実施例4)実施例3と同様の方法で、組
成比がFe23=65mol%、MnO=17mol
%、ZnO=18mol%からなり、ZrO2が0.0
5重量%、CaOとSiO2が(表4)の量となるよう
に、ZrO2,CaCO3およびSiO2を添加し、実施
例1の焼成条件で焼結体を作製した。得られた焼結体よ
り切り出したリング状試料について、実施例3と同じ条
件で磁気損失の温度依存性を測定した。その結果、いず
れのCaOとSiO2量においても80℃で極小値を示
した。この極小磁気損失値をkW/m3の単位で(表4)
に示した。
Example 4 In the same manner as in Example 3, the composition ratio was Fe 2 O 3 = 65 mol%, MnO = 17 mol.
%, ZnO = 18 mol%, and ZrO 2
ZrO 2 , CaCO 3 and SiO 2 were added so that the amount of CaO and SiO 2 was 5 wt% (Table 4), and a sintered body was produced under the firing conditions of Example 1. With respect to the ring-shaped sample cut out from the obtained sintered body, the temperature dependence of the magnetic loss was measured under the same conditions as in Example 3. As a result, a minimum value was obtained at 80 ° C. for both CaO and SiO 2 amounts. This minimum magnetic loss value is expressed in units of kW / m 3 (Table 4).
It was shown to.

【0043】[0043]

【表4】 [Table 4]

【0044】実施例2の(表3)および(表4)を比較
すると明らかなように、どちらの焼結体においても、C
aOとSiO2量のあらゆる組合せに対して、さらにZ
rO2を添加したものはより低磁気損失化した。しかし
ながら、もともと磁気損失の低い、0.05≦CaO≦
0.5重量%、0.005≦SiO2≦0.2wt%の
範囲内に対するZrO2の添加が、磁気損失の絶対値か
ら考えて、効果的であった。
As is apparent from a comparison between (Table 3) and (Table 4) in Example 2, the C
For all combinations of aO and SiO 2 amounts, Z
Those to which rO 2 was added had lower magnetic loss. However, the magnetic loss is originally low, 0.05 ≦ CaO ≦
The addition of ZrO 2 within the range of 0.5 wt% and 0.005 ≦ SiO 2 ≦ 0.2 wt% was effective in view of the absolute value of the magnetic loss.

【0045】(実施例5)実施例1と同様に、組成比が
Fe23=65.5mol%、MnO=17.5mol
%、ZnO=17mol%となり、合計重量が300g
となるようにそれぞれの粉体を秤量し、ボールミルにて
湿式10時間混合粉砕し、乾燥させた。この混合粉末を
800℃で2時間空気中で仮焼した後、CaOが0.1
重量%、SiO2が0.02重量%となり、ZrO2、H
fO2、Ta25、Cr23、MoO3、WO3、Al2
3、Ga23、In23、GeO2、SnO2、Sb
23、Bi23が(表5)の量となるように、CaCO
3およびそれぞれの金属酸化物を添加した焼結体を、実
施例1の焼成条件で作製した。
Example 5 As in Example 1, the composition ratio was Fe 2 O 3 = 65.5 mol% and MnO = 17.5 mol.
%, ZnO = 17 mol%, and the total weight is 300 g.
Each powder was weighed so as to obtain a mixture, mixed and pulverized by a ball mill for 10 hours in a wet system, and dried. After calcining the mixed powder in air at 800 ° C. for 2 hours, CaO was reduced to 0.1%.
Wt%, next SiO 2 is 0.02 wt%, ZrO 2, H
fO 2 , Ta 2 O 5 , Cr 2 O 3 , MoO 3 , WO 3 , Al 2 O
3 , Ga 2 O 3 , In 2 O 3 , GeO 2 , SnO 2 , Sb
CaCO is adjusted so that 2 O 3 and Bi 2 O 3 have the amounts shown in (Table 5).
3 and sintered bodies to which respective metal oxides were added were produced under the firing conditions of Example 1.

【0046】得られた焼結体より切り出したリング状試
料について、実施例1と同じ条件で磁気損失の温度依存
性を測定したところ、損失はいずれの試料においても、
80℃で極小値を示した。この極小損失値をkW/m3
単位で(表5)に示した。
The temperature dependence of the magnetic loss of the ring-shaped sample cut from the obtained sintered body was measured under the same conditions as in Example 1.
It showed a minimum value at 80 ° C. The minimum loss value is shown in Table 5 in units of kW / m 3 .

【0047】[0047]

【表5】 [Table 5]

【0048】(表5)より明らかなように、CaOとS
iO2のみの添加に比べ、さらにZrO2、HfO2、T
25、Cr23、MoO3、WO3、Al23、Ga2
3、In23、GeO2、SnO2、Sb23、Bi2
3を複合して添加したものは、特定の添加範囲内でより
低磁気損失化し、最低損失値はGeO2=0.2重量%
添加で100kW/m3と超低損失であった。
As is clear from Table 5, CaO and S
Compared with the addition of only iO 2 , ZrO 2 , HfO 2 , T
a 2 O 5, Cr 2 O 3, MoO 3, WO 3, Al 2 O 3, Ga 2
O 3 , In 2 O 3 , GeO 2 , SnO 2 , Sb 2 O 3 , Bi 2 O
In the case where 3 was added in combination, the magnetic loss was further reduced within a specific addition range, and the minimum loss value was GeO 2 = 0.2% by weight.
The addition resulted in a very low loss of 100 kW / m 3 .

【0049】次にこれら各副成分を用いた試料のうち、
最も低損失となった添加量(0.1または0.2重量
%)の試料について、実施例2と同様の方法で、破断面
からの各添加金属元素の深さ方向のプロファイルを測定
した。その結果、いずれの試料においても、添加金属濃
度は粒界部分から粒子内部に進むに従って低下し、数十
nm程度の深さからあとはほぼ一定となった。そこで粒
界部分と濃度がほぼ一定となった粒子内部の濃度を比較
してみると、いずれの試料においても粒界部分の濃度が
約10〜数十倍高くなっていた。
Next, among the samples using these subcomponents,
With respect to the sample having the lowest addition amount (0.1 or 0.2% by weight), the depth profile of each additional metal element from the fracture surface was measured in the same manner as in Example 2. As a result, in each of the samples, the concentration of the added metal decreased as it progressed from the grain boundary to the inside of the grain, and became substantially constant from the depth of about several tens nm. Comparing the grain boundary portion with the concentration inside the grain where the concentration became almost constant, the concentration at the grain boundary portion was about 10 to several tens times higher in all samples.

【0050】(実施例7)実施例1と同様の方法で、F
23、MnCO3、ZnOの各粉末を用い、これらの
粉末を、組成比がFe23=63mol%、MnO=2
0mol%、ZnO=17mol%となり、合計重量が
300gとなるようにそれぞれ秤量し、これにさらに、
最終的な焼結体においてCaOが0.1重量%、SiO
2が0.02重量%、Ta25が0.05重量%となる
ように、CaCO3とSiO2とTa 25を秤量添加し、
ボールミルにて湿式10時間混合粉砕し、乾燥させた。
この混合粉末を800〜1200℃の各温度で2時間空
気中で仮焼した後、再度ボールミルにて10〜20時
間、湿式混合粉砕して乾燥させ、仮焼粉末とした。
(Embodiment 7) In the same manner as in Embodiment 1, F
eTwoOThree, MnCOThree, ZnO powders,
Powder with composition ratio FeTwoOThree= 63 mol%, MnO = 2
0 mol%, ZnO = 17 mol%, and the total weight is
Each was weighed so as to become 300 g, and further,
0.1% by weight of CaO in the final sintered body, SiO
TwoIs 0.02% by weight, TaTwoOFiveBecomes 0.05% by weight
Like CaCOThreeAnd SiOTwoAnd Ta TwoOFiveWeighed and added
The mixture was wet-pulverized for 10 hours by a ball mill and dried.
This mixed powder is emptied at 800 to 1200 ° C. for 2 hours.
After calcining in the air, again in a ball mill for 10 to 20 hours
During that time, the mixture was wet-mixed and pulverized and dried to obtain a calcined powder.

【0051】この仮焼粉末に、ポリビニルアルコールの
5重量%水溶液を10重量%加え、30#のふるいを通
過させて造粒し、一軸金型成形した後、1200℃で1
時間、実施例1に示した雰囲気条件で焼成し、焼結体を
得た。また同様の方法で、Ta25のみ、添加を仮焼後
の粉砕時とした試料を作製した。得られた焼結体より切
り出したリング状試料について、実施例1と同様に磁気
損失の温度依存性を測定したところ、損失はいずれの試
料においても80℃で極小値を示した。また焼結体破断
面の電子顕微鏡観察により、焼結体の平均結晶粒径を測
定した。さらに、実施例2と同様の方法で、粒界層およ
び粒子内部におけるTa濃度を測定し、粒界部濃度/粒
内部濃度比を決定した。結果を(表6)に示した。
To this calcined powder, 10% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added, and the mixture was passed through a 30 # sieve, granulated, and uniaxially molded.
Firing was performed under the atmosphere conditions shown in Example 1 for a time to obtain a sintered body. In the same manner, a sample was prepared in which only Ta 2 O 5 was added during pulverization after calcination. When the temperature dependence of the magnetic loss of the ring-shaped sample cut out from the obtained sintered body was measured in the same manner as in Example 1, the loss showed a minimum value at 80 ° C. in each of the samples. The average crystal grain size of the sintered body was measured by observing the fracture surface of the sintered body with an electron microscope. Further, in the same manner as in Example 2, the Ta concentration in the grain boundary layer and inside the grains was measured, and the ratio of the grain boundary concentration / the inside grain concentration was determined. The results are shown in (Table 6).

【0052】[0052]

【表6】 [Table 6]

【0053】(表6)より明かなように、無添加のもの
に比べ、Ta25により、より低磁気損失化するが、T
a濃度比が5以下の場合にはその効果が大幅に低減し
た。なお、焼結体密度が4.5g/cm3未満の試料10
では、Ta濃度比が5以上であっても、若干高損失であ
った。
As is clear from Table 6, the magnetic loss can be further reduced by Ta 2 O 5 as compared with the case where no additive is added.
When the concentration ratio a was 5 or less, the effect was greatly reduced. Sample 10 having a sintered body density of less than 4.5 g / cm 3
, The loss was slightly high even when the Ta concentration ratio was 5 or more.

【0054】(実施例8)実施例7と同様に、組成比が
Fe23=65mol%、MnO=22mol%、Zn
O=13mol%となり、CaOが0.1重量%、Si
2が0.02重量%、Ta25が0.05重量%とな
るように、CaCO3とSiO2とTa25を添加した焼
結体を、1200℃−5時間焼成で、実施例1の雰囲気
で焼成し、焼結体を得た。また同様の方法で、Ta25
のみ添加を仮焼後の粉砕時とした試料を作製した。得ら
れた焼結体より切り出したリング状試料について、実施
例1と同様に磁気損失の温度依存性を測定したところ、
損失はいずれの試料においても80℃で極小値を示し
た。また焼結体破断面の電子顕微鏡観察により、焼結体
の平均結晶粒径を測定した。さらに、実施例2と同様の
方法で、粒界層および粒子内部におけるTa濃度を測定
し、粒界部濃度/粒内部濃度比を決定した。結果を(表
7)に示した。
Example 8 As in Example 7, the composition ratio was Fe 2 O 3 = 65 mol%, MnO = 22 mol%, Zn
O = 13 mol%, 0.1% by weight of CaO, Si
The sintered body to which CaCO 3 , SiO 2 and Ta 2 O 5 are added so that O 2 is 0.02% by weight and Ta 2 O 5 is 0.05% by weight is fired at 1200 ° C. for 5 hours. It was fired in the atmosphere of Example 1 to obtain a sintered body. In the same manner, Ta 2 O 5
A sample was prepared in which only addition was performed during pulverization after calcination. For a ring-shaped sample cut out from the obtained sintered body, the temperature dependence of magnetic loss was measured in the same manner as in Example 1.
The loss showed a minimum value at 80 ° C. in all samples. The average crystal grain size of the sintered body was measured by observing the fracture surface of the sintered body with an electron microscope. Further, in the same manner as in Example 2, the Ta concentration in the grain boundary layer and inside the grains was measured, and the ratio of the grain boundary concentration / the inside grain concentration was determined. The results are shown in (Table 7).

【0055】[0055]

【表7】 [Table 7]

【0056】(表7)より明かなように、無添加のもの
に比べ、Ta25により、より低磁気損失化するが、T
a濃度比が5以下の場合にはその効果が大幅に低減し
た。なお、焼結体密度が4.5g/cm3未満の試料10
では、Ta濃度比が5以上であっても、若干高損失であ
った。
(Table 7) As is clear from Table 7, the magnetic loss can be further reduced by Ta 2 O 5 as compared with the case where no additive is added.
When the concentration ratio a was 5 or less, the effect was greatly reduced. Sample 10 having a sintered body density of less than 4.5 g / cm 3
, The loss was slightly high even when the Ta concentration ratio was 5 or more.

【0057】(実施例9)実施例2と同様の方法で、組
成比がFe23=64mol%、MnO=21mol
%、ZnO=15mol%となり、CaOを0.1重量
%、SiO2を0.02重量%、GeO2を0.05重量
%となる比率で添加した仮焼粉末を用意し、実施例1の
焼成条件で焼結体(a)を作製した。
Example 9 In the same manner as in Example 2, the composition ratio was Fe 2 O 3 = 64 mol%, MnO = 21 mol.
%, ZnO = 15 mol%, CaO 0.1% by weight, SiO 2 0.02% by weight, GeO 2 0.05% by weight were added to prepare a calcined powder. A sintered body (a) was produced under the firing conditions.

【0058】また同様に、主組成がFe23=64mo
l%、MnO=16mol%、ZnO=21mol%と
なり、CaOを0.1重量%、SiO2を0.02重量
%、GeO2を0.05重量%となる比率で添加した仮
焼粉末を用意し、実施例1の焼成条件で焼結体(b)を作
製した。
Similarly, the main composition is Fe 2 O 3 = 64 mo.
1%, MnO = 16 mol%, ZnO = 21 mol%, calcined powder prepared by adding CaO at 0.1 wt%, SiO 2 at 0.02 wt%, and GeO 2 at 0.05 wt% Then, a sintered body (b) was produced under the firing conditions of Example 1.

【0059】また同様に、主組成がFe23=52mo
l%、MnO=38mol%、ZnO=10mol%と
し、CaOを0.1重量%、SiO2を0.02重量
%、GeO2を0.05重量%添加し、実施例1の焼成
条件で焼結体(c)を作製した。これらの焼結体の磁気損
失を実施例1と同様の方法・条件で測定した。
Similarly, the main composition is Fe 2 O 3 = 52 mo.
1%, MnO = 38 mol%, ZnO = 10 mol%, 0.1% by weight of CaO, 0.02% by weight of SiO 2 , and 0.05% by weight of GeO 2 were added. The aggregate (c) was produced. The magnetic loss of these sintered bodies was measured by the same method and conditions as in Example 1.

【0060】焼結体は、密度4.63g/cm3で、80
℃で磁気損失極小温度を持ち、磁気損失値は100kW
/m3の本開発品の超低磁気損失材である。また焼結体
(b)は、密度4.59g/cm3で、100℃で磁気損失
極小温度を持ち、磁気損失値は230kW/ 3 である。
一方焼結体(c)は、密度4.55g/cm3で、60℃磁
気損失極小温度を持ち磁気損失値は850kW/m3
る。
The sintered body has a density of 4.63 g / cm 3 ,
With a minimum magnetic loss temperature at ℃, the magnetic loss value is 100 kW
/ m 3 is an ultra-low magnetic loss material of this newly developed product. Also sintered body
(b) is a density of 4.59 g / cm 3, has a magnetic loss minimum temperature at 100 ° C., the magnetic loss values Ru 230kW / m 3 der.
Meanwhile sintered body (c) is a density of 4.55 g / cm 3, the magnetic loss values have 60 ° C. magnetic loss minimum temperature Ah at 850kW / m 3
You.

【0061】これらの3種類の試料について、それぞれ
の損失極小温度において、磁束密度Bと周波数fの積、
B・f=50(mT・MHz)で一定となる条件で磁気
損失を測定した(この条件では、同一出力時の電源トラ
ンスでコアサイズが一定となる)。結果を(表8)に示
した。
For each of these three types of samples, the product of the magnetic flux density B and the frequency f at the minimum loss temperature,
The magnetic loss was measured under the condition that B · f = 50 (mT · MHz) was constant (under this condition, the core size was constant with the power transformer at the same output). The results are shown in (Table 8).

【0062】[0062]

【表8】 [Table 8]

【0063】(表8)より明らかなように、これらの焼
結体は0.5〜2MHz付近で損失が最小となる。(a)
(b)(c)を比較すると、300kHz以上で本発明の焼
結体(a)が有利となる。しかしながら10MHzでは、
かなり損失が増加し、他の材料(例えば、NiZn系フ
ェライト)に対する優位性がなくなる。
As is clear from Table 8, these sintered bodies have the minimum loss around 0.5 to 2 MHz. (a)
Comparing (b) and (c) , the sintered body (a) of the present invention is advantageous at 300 kHz or more. However, at 10 MHz,
The loss increases significantly and loses its advantage over other materials (eg, NiZn-based ferrites).

【0064】次にこれらの焼結体より、それぞれE型コ
アを切り出し、これを用いてフォワード方式のスイッチ
ング電源回路を試作し、磁気損失にあたる温度上昇を評
価した。一定の軽負荷条件下で、周波数、磁芯磁束密度
にたいする磁芯の温度上昇について測定した。結果を
(表9)に示した。
Next, an E-shaped core was cut out from each of these sintered bodies, and a forward-type switching power supply circuit was prototyped using the core, and the temperature rise corresponding to magnetic loss was evaluated. Under constant light load conditions, the temperature and the temperature rise of the magnetic core with respect to the magnetic core magnetic flux density were measured. The results are shown in (Table 9).

【0065】[0065]

【表9】 [Table 9]

【0066】(表9)より明らかなように、トランスの
磁芯損失による温度上昇許容値を25℃見込んだ場合、
焼結体(c)を用いた電源は温度上昇が大きく、あまり高
周波では使用できないことが分かる。これに対して、開
発したフェライト材料(a)を用いた電源は温度上昇が少
なく、50mTで2.2MHz以上まで充分使用でき
る。これは、用いた材料が超低磁気損失で、かつ温度特
性が良好なためである。より高周波では磁束密度を下げ
て使用するのが一般的であるので、(表8)の結果より
5MHzまで使用可能と考えられる。しかしながら、2
MHz以上のスイッチング電源は回路側の損失が増大す
るため、現時点では現実的ではない。
As is clear from Table 9, when the allowable temperature rise due to the core loss of the transformer is estimated at 25 ° C.,
It can be seen that the power supply using the sintered body (c) has a large temperature rise and cannot be used at a very high frequency. On the other hand, the power supply using the developed ferrite material (a) has a small temperature rise, and can be sufficiently used up to 2.2 MHz or more at 50 mT. This is because the material used has very low magnetic loss and good temperature characteristics. At higher frequencies, it is common to lower the magnetic flux density, so it is considered that up to 5 MHz can be used from the results in (Table 8). However, 2
Switching power supplies of MHz or higher are not realistic at present because the loss on the circuit side increases.

【0067】以上の結果より、開発したフェライト材料
を用いたスイッチング周波数が100kHz〜2MHz
の電源は、発熱が少なく高効率で、熱暴走する危険性が
低い。また、特に300kHz以上でその特徴が顕著と
なり、電源回路側の損失が減少すれば、5MHzまで使
用可能である。
From the above results, the switching frequency using the developed ferrite material is 100 kHz to 2 MHz.
Power supplies generate less heat, are more efficient, and have less risk of thermal runaway. In particular, the characteristic becomes remarkable above 300 kHz, and if the loss on the power supply circuit side is reduced, it can be used up to 5 MHz.

【0068】[0068]

【発明の効果】以上説明した通り本発明は、主組成とし
て、Fe2362mol%以上66mol%以下、M
nOを14mol%以上28mol%以下、ZnOを
0mol%以上20mol%以下含有し、かつ副成分と
してCaOを0.05重量%以上0.5重量%以下およ
びSiO2を0.005重量%以上0.2重量%以下を
少なくとも含有した焼結体の酸化物磁性体材料であるた
め、従来にない低磁気損失でかつ温度特性に優れた材料
である効果がある。また、本発明の酸化物磁性体材料を
例えばスイッチング電源の磁芯として応用すると、低発
熱・高効率で、温度暴走の危険性の少ないものとするこ
とができる効果もある。
As described above, according to the present invention, as a main composition, Fe 2 O 3 is not less than 62 mol% and not more than 66 mol%.
nO is 14 mol% or more and 28 mol% or less, and ZnO is 1 mol% or less.
A sintered body containing 0 mol% to 20 mol% , and at least 0.05% to 0.5% by weight of CaO and 0.005% to 0.2% by weight of SiO 2 as subcomponents Since it is an oxide magnetic material, there is an effect that the material has low magnetic loss and excellent temperature characteristics, which has not been achieved in the past. Further, when the oxide magnetic material of the present invention is applied to, for example, a magnetic core of a switching power supply, there is also an effect that low heat generation, high efficiency, and low risk of temperature runaway can be achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 青野 保之 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−67513(JP,A) 特開 昭60−262404(JP,A) 特開 平5−74621(JP,A) 特開 平5−21223(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/34 C01G 49/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Osamu Ishii 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-5-67513 (JP, A) JP-A-60-262404 (JP, A) JP-A-5-74621 (JP, A) JP-A-5-21223 (JP, A) (58) Fields surveyed (Int. Cl. 6 , DB name) H01F 1/34 C01G 49/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主組成として62 mol%≦Fe2366mol%14 mol%≦MnO ≦28mol%10mol%≦ ZnO ≦20mol% 副成分として 0.05重量%≦CaO≦0.5重量% 0.005重量%≦SiO2≦0.2重量% を少なくとも含有する焼結体であることを特徴とする酸
化物磁性体材料。
The main composition is as follows: 62 mol% ≦ Fe 2 O 366 mol% 14 mol% ≦ MnO ≦ 28 mol% 10 mol% ≦ ZnO ≦ 20 mol% 0.05 wt% ≦ CaO ≦ 0. An oxide magnetic material characterized by being a sintered body containing at least 5% by weight 0.005% by weight ≦ SiO 2 ≦ 0.2% by weight.
【請求項2】主組成として62 mol%≦Fe2366mol%14 mol%≦MnO ≦28mol%10mol%≦ ZnO ≦20mol% 副成分として 0.05重量%≦CaO≦0.5重量% 0.005重量%≦SiO2≦0.2重量% は必ず含み、さらに 0.01≦Mxz≦0.5重量% (但し、式中のMxzは、ZrO2、HfO2、Ta
25、Cr23、MoO3、WO3、Al23、Ga
23、In23、GeO2、SnO2、Sb23、Bi2
O3より選ばれた少なくとも1種類以上)を少なくとも
含有する焼結体であることを特徴とする酸化物磁性体材
料。
2. The main composition is 62 mol% ≦ Fe 2 O 366 mol% 14 mol% ≦ MnO ≦ 28 mol% 10 mol% ≦ ZnO ≦ 20 mol% 0.05 wt% ≦ CaO ≦ 0. 5% by weight 0.005% by weight ≦ SiO 2 ≦ 0.2% by weight, and 0.01 ≦ M x O z ≦ 0.5% by weight (where M x O z in the formula is ZrO 2 , HfO 2 , Ta
2 O 5 , Cr 2 O 3 , MoO 3 , WO 3 , Al 2 O 3 , Ga
2 O 3 , In 2 O 3 , GeO 2 , SnO 2 , Sb 2 O 3 , Bi 2
Oxide magnetic material characterized by being a sintered body containing at least one of at least one selected from O3).
【請求項3】Mxzの粒界層部分の濃度が、粒子内部の
濃度の5倍以上であることを特徴とする、請求項2記載
の酸化物磁性体材料。
3. The oxide magnetic material according to claim 2, wherein the concentration of M x O z in the grain boundary layer portion is at least five times the concentration inside the grains.
JP4268501A 1992-01-14 1992-10-07 Oxide magnetic material Expired - Lifetime JP2917706B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4268501A JP2917706B2 (en) 1992-10-07 1992-10-07 Oxide magnetic material
EP93100497A EP0551907B1 (en) 1992-01-14 1993-01-14 An oxide magnetic material
EP96101673A EP0716053B1 (en) 1992-01-14 1993-01-14 An oxide magnetic material
DE69324273T DE69324273T2 (en) 1992-01-14 1993-01-14 Oxidic magnetic material
DE69309503T DE69309503T2 (en) 1992-01-14 1993-01-14 Oxidic magnetic material
US08/314,546 US5518642A (en) 1992-01-14 1994-09-28 Oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4268501A JP2917706B2 (en) 1992-10-07 1992-10-07 Oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH06120022A JPH06120022A (en) 1994-04-28
JP2917706B2 true JP2917706B2 (en) 1999-07-12

Family

ID=17459381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4268501A Expired - Lifetime JP2917706B2 (en) 1992-01-14 1992-10-07 Oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2917706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337326A (en) * 2013-07-05 2013-10-02 无锡斯贝尔磁性材料有限公司 Wideband high-conductivity material and preparation process thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138602A (en) * 1994-11-08 1996-05-31 Hitachi Ltd Electron beam device
JP3488375B2 (en) * 1997-08-29 2004-01-19 Tdk株式会社 Manganese-zinc ferrite
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite
US20060118756A1 (en) * 2002-09-26 2006-06-08 Kenya Takagawa Ferrite material
US7481946B2 (en) 2003-01-10 2009-01-27 Tdk Corporation Method for producing ferrite material and ferrite material
JP4930816B2 (en) 2003-12-24 2012-05-16 日立金属株式会社 Ferrite sintered body and electronic component using the same
JP5678651B2 (en) * 2010-12-24 2015-03-04 Tdk株式会社 Ferrite core and electronic components
JP5834408B2 (en) * 2011-01-04 2015-12-24 Tdk株式会社 Ferrite composition and electronic component
JP5716538B2 (en) * 2011-05-23 2015-05-13 Tdk株式会社 Ferrite composition and electronic component
JP5786454B2 (en) * 2011-05-23 2015-09-30 Tdk株式会社 Ferrite core and electronic components
JP5810629B2 (en) * 2011-05-25 2015-11-11 Tdk株式会社 Ferrite composition and electronic component
JP5929119B2 (en) * 2011-11-21 2016-06-01 Tdk株式会社 Ferrite composition and electronic component
JP6314758B2 (en) * 2014-09-09 2018-04-25 Tdk株式会社 MnZn ferrite and MnZn ferrite large core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337326A (en) * 2013-07-05 2013-10-02 无锡斯贝尔磁性材料有限公司 Wideband high-conductivity material and preparation process thereof

Also Published As

Publication number Publication date
JPH06120022A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
JP2917706B2 (en) Oxide magnetic material
JP3108803B2 (en) Mn-Zn ferrite
US6458286B1 (en) Manganese-zinc (Mn-Zn) based ferrite
Liu et al. MnZn power ferrite with high Bs and low core loss
WO2017164350A1 (en) METHOD FOR PRODUCING MnZn-BASED FERRITE, AND MnZn-BASED FERRITE
JP3968188B2 (en) Ferrite
JP2007070209A (en) METHOD FOR PRODUCING Mn-Zn-BASED FERRITE
JP2007051052A (en) LOW LOSS MnZnNi-BASED FERRITE AND ELECTRONIC COMPONENT USING IT, AND SWITCHING POWER SUPPLY
EP1286366A2 (en) Mn-Zn ferrite and coil component with magnetic core made of same
JPH06310321A (en) Oxide magnetic substance material
US5518642A (en) Oxide magnetic material
JPH05335132A (en) Oxide magnetic body material
JPH06310320A (en) Oxide magnetic substance material
JP3108804B2 (en) Mn-Zn ferrite
JPH1064715A (en) Low loss ferrite magnetic core material
JP2855990B2 (en) Oxide magnetic material
JP3597673B2 (en) Ferrite material
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP3790606B2 (en) Mn-Co ferrite material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP3597665B2 (en) Mn-Ni ferrite material
JP3597666B2 (en) Mn-Ni ferrite material
JPH07130527A (en) Oxide magnetic material
KR100290233B1 (en) method for fabricating Mn-Zn ferrite core

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14