JPS5921376B2 - Copper alloy for work hardening springs - Google Patents

Copper alloy for work hardening springs

Info

Publication number
JPS5921376B2
JPS5921376B2 JP2171578A JP2171578A JPS5921376B2 JP S5921376 B2 JPS5921376 B2 JP S5921376B2 JP 2171578 A JP2171578 A JP 2171578A JP 2171578 A JP2171578 A JP 2171578A JP S5921376 B2 JPS5921376 B2 JP S5921376B2
Authority
JP
Japan
Prior art keywords
copper alloy
corrosion resistance
work hardening
alloy
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2171578A
Other languages
Japanese (ja)
Other versions
JPS54114428A (en
Inventor
俊彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2171578A priority Critical patent/JPS5921376B2/en
Publication of JPS54114428A publication Critical patent/JPS54114428A/en
Publication of JPS5921376B2 publication Critical patent/JPS5921376B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、加工性、耐食性、はね特性などに優れた加工
硬化型ばね用銅合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a work-hardening copper alloy for springs that has excellent workability, corrosion resistance, spring characteristics, and the like.

この種の合金として良く知られているりん青銅は、成形
加工性、耐食性、はね特性、はんだ付は性に優れた銅合
金であるため、電気機器用ばね材料として賞月されてい
る。
Phosphor bronze, which is well known as this type of alloy, is a copper alloy with excellent moldability, corrosion resistance, spring characteristics, and solderability, and is therefore prized as a spring material for electrical equipment.

しかし、その反面、高価なSnを多量に含むという欠点
がある。
However, on the other hand, it has the drawback of containing a large amount of expensive Sn.

Snの価格のCuに対する比は、地球上の資源のバラン
スを考慮すると、今後ますます高くなることは明白であ
る。
It is clear that the ratio of the price of Sn to Cu will become higher and higher in the future, considering the balance of resources on the earth.

本発明は、りん青銅の長所を損うことなく、コスト低減
を図ろうとするものであり、Snの一部をZnとNiと
置き替えたことを特徴とし、以下図面を参照しながら詳
細を説明する。
The present invention aims to reduce costs without sacrificing the advantages of phosphor bronze, and is characterized by replacing a portion of Sn with Zn and Ni. Details will be explained below with reference to the drawings. do.

Cu −N i −Z n−8n系の合金は、既に以前
から知られているが、本発明は、Zn、Niの上限を規
制することにより、良好な耐食性とはんだ付は性を保ち
、かつクリープ特性を重視してNiの下限を決めたとこ
ろに特徴がある。
Cu-Ni-Z n-8n alloys have been known for some time, but the present invention maintains good corrosion resistance and solderability by regulating the upper limits of Zn and Ni. The feature is that the lower limit of Ni was determined with emphasis on creep characteristics.

まず、初めに、本発明者が行なった実験およびその結果
について以下に述べる。
First, an experiment conducted by the present inventor and its results will be described below.

すなわち、試料は、高周波溶解炉で直径20龍、高さ2
001mの鋳塊を作成し、これに溝ロール圧延、熱処理
、伸線、皮むき、伸線加工を施した後、更に、熱処理、
酸洗、伸線加工をくり返し与え、最終線径0.55mm
の線材とし、これに機械矯正加工を施したものである。
That is, the sample was placed in a high-frequency melting furnace with a diameter of 20 mm and a height of 2 mm.
After creating an ingot of 0.001 m in length and subjecting it to groove roll rolling, heat treatment, wire drawing, peeling, and wire drawing processing, further heat treatment,
After repeated pickling and wire drawing processing, the final wire diameter is 0.55mm.
This is a wire rod that has been subjected to mechanical straightening processing.

ここで、中間加工率は、40〜80係、最終加工率は5
0%、熱処理温度は600℃とした。
Here, the intermediate processing rate is 40 to 80, and the final processing rate is 5.
0%, and the heat treatment temperature was 600°C.

なお、溶解時の脱酸剤は、Znを含む場合は新たに使用
せず、Znのない場合にのみ、■5%Pを含むりん銅を
用いた。
As for the deoxidizer during dissolution, no new deoxidizing agent was used when Zn was included, and copper phosphorus containing 5% P was used only when Zn was absent.

表1は、これらの試料から得られた緒特性の測定結果で
ある。
Table 1 shows the measurement results of the core properties obtained from these samples.

ここで、引張試験、縦弾性係数、はね限界値、応力緩和
特性の調査用試料数は、同一条件で、それぞれ2本とし
、その平均を求めた。
Here, the number of samples for investigation of the tensile test, longitudinal elastic modulus, spring limit value, and stress relaxation property was two each under the same conditions, and the average thereof was determined.

また、縦弾性係数は、片持はりの方法で行ない、さらに
応力緩和特性も片持はり方式とし、各試料に表面最大曲
げ応力が40 kgf /maとなるような初期応力を
定変位で与え、120°Cで400時間経過後の応力緩
和量を求めた。
In addition, the longitudinal elastic modulus was determined using the cantilever beam method, and the stress relaxation properties were also determined using the cantilever beam method, and an initial stress such that the maximum surface bending stress was 40 kgf/ma was applied to each sample at a constant displacement. The amount of stress relaxation after 400 hours at 120°C was determined.

(実際には、10時間、25時間、50時間・・・など
の途中経過における状態も測定したが、ここでは400
時間経過後の値のみを示す。
(Actually, we also measured the state at intermediate intervals such as 10 hours, 25 hours, 50 hours, etc., but here we measured the condition at 400 hours.
Shows only the value after time has elapsed.

)また、アンモニア腐食試験は、底に12.5%の濃度
のアンモニア液を溜めたデシケータ中に、試料を液から
離して放置し、初期曲げ応力40 kgf 7m4を与
えて実施した。
) Furthermore, the ammonia corrosion test was carried out by leaving the sample in a desiccator with an ammonia solution at a concentration of 12.5% stored in the bottom of the desiccator, separated from the solution, and applying an initial bending stress of 40 kgf 7 m4.

この場合の試験温度は25℃である。The test temperature in this case is 25°C.

なお、Znが少ない場合は、応力腐食よりも、むしろ、
試料の一部が溶けてピンホール状に侵され破断を起した
ので、その時間を記録している。
In addition, when Zn is low, rather than stress corrosion,
A part of the sample melted and eroded into a pinhole, causing a break, and the time was recorded.

また、試料数は各条件につき5本とし、表1には、その
最大、最少および平均を示している。
The number of samples was five for each condition, and Table 1 shows the maximum, minimum, and average.

そして、上述した実験結果により得られた値をもとに解
析した結果、次のような結論に至った。
As a result of analysis based on the values obtained from the above-mentioned experimental results, the following conclusion was reached.

第1図は上述した実験による50%加工を施した各種C
u=Zn−8n合金線の成分と引張強さとの関係を状態
図的に示し、同図甲丸内の数字は各成分における引張強
さく単位はkg/mm)を示している。
Figure 1 shows various types of C processed by 50% in the experiment described above.
The relationship between the components and tensile strength of the u=Zn-8n alloy wire is shown in a phase diagram, and the numbers in the circles at the top of the figure indicate the tensile strength (unit: kg/mm) for each component.

同図において、引張強さの等しい点を結ぶと、たとえば
、引張強さが66のCu −5S nは、Cu−3,5
8n−5Z n、 Cu−2,58n −10Znに、
同じく58のCu−3Snは、Cu−1,5S n−5
Zn、 Cu−I S n−10Znにほぼ等しいこと
がわかる。
In the figure, when connecting points with equal tensile strength, for example, Cu-5S n with a tensile strength of 66 becomes Cu-3,5
8n-5Zn, Cu-2,58n-10Zn,
Similarly, Cu-3Sn of 58 is Cu-1,5S n-5
It can be seen that Zn and Cu-I S n-10 are approximately equal to Zn.

すなわち、同一強度を対象とした場合、重量比が5%の
Znの添加でSn1.5%、10係で5n2−2.5%
が節約できる。
In other words, when targeting the same strength, the addition of Zn at a weight ratio of 5% results in Sn1.5%, and the addition of Zn at a weight ratio of 10% results in 5n2-2.5%.
can be saved.

しかし、Znの添加は、耐食性、クリープ特注を低下さ
せるので、本発明では耐食性の観点から、Znの上限を
規制し、クリープ特性をりん青銅以上に保つために、N
iを添加している。
However, the addition of Zn lowers corrosion resistance and creep customization, so in the present invention, from the viewpoint of corrosion resistance, the upper limit of Zn is regulated, and in order to keep the creep characteristics higher than that of phosphor bronze, N is added.
i is added.

第2図は3%sn入銅に、Znを添加してGりたときの
耐アンモニア腐食性の変化を示したもので、前述したよ
うに一定のテスト条件下で、Znを含まないときの折損
までの時間を100とし、その比で示したもので、同図
中各点における上下の線は各試料によるバラツキの範囲
を示し、黒丸印はその平均値を示しである。
Figure 2 shows the change in ammonia corrosion resistance when Zn is added to 3% Sn-containing copper. The time until breakage is set as 100, and the ratio is shown. In the figure, the upper and lower lines at each point indicate the range of variation depending on each sample, and the black circles indicate the average value.

この第2図からZnが10係以下であると、耐食性は、
りん青銅と大差ないことがわかる。
From this figure 2, when Zn is less than 10, the corrosion resistance is
It can be seen that it is not much different from phosphor bronze.

本発明合金には、上記以外にNiが含まれているが、N
iは、むしろ耐食性を改善する効果があるので、Cu−
Zn −8n系の耐食性を損うことはない。
The alloy of the present invention contains Ni in addition to the above, but N
In fact, since i has the effect of improving corrosion resistance, Cu-
It does not impair the corrosion resistance of Zn-8n type.

第3図はZn及びNi量とクリープ特注との関係を状態
図的に示すもので、円内の数字は、50係加工材に対し
、初期応力40kgf/maを与え120℃で400時
間放置後の応力緩和量を、Cu−28nを100として
、比で示したものである。
Figure 3 shows the relationship between Zn and Ni content and creep customization in a phase diagram.The numbers in the circle indicate the initial stress of 40 kgf/ma for the 50% workpiece and after leaving it at 120℃ for 400 hours. The amount of stress relaxation is expressed as a ratio, with Cu-28n being 100.

同図から、Zn10に対し、Niを4以上の割で添加す
ると、りん青銅以上のクリープ特性を有する合金が得ら
れることがわかる。
From the figure, it can be seen that when Ni is added at a ratio of 4 or more to 10 Zn, an alloy having creep characteristics superior to that of phosphor bronze can be obtained.

したがって、以上の結果から、本発明によれば、Znを
5〜10係、Niを2〜10係、Snを1〜6%含み、
かつ第4図において斜線で示す通りNi量がZn量との
対比においてその40係以上となるようにされた銅合金
は、これと同等の強度、耐食性、クリープ特性を有する
りん青銅よりも安価で、しかも汎用性が高いことが確認
された。
Therefore, from the above results, according to the present invention, Zn is contained in 5 to 10 parts, Ni is contained in 2 to 10 parts, Sn is contained in 1 to 6%,
In addition, as shown by the diagonal lines in Figure 4, a copper alloy in which the Ni content is 40 times higher than the Zn content is cheaper than phosphor bronze, which has equivalent strength, corrosion resistance, and creep properties. , and was confirmed to be highly versatile.

なお、ここで、Niの上限を10係としたのは、これ以
上Niば増えると、はんだ付は性を劣化させるためであ
る。
Note that the reason why the upper limit of Ni is set to 10 is that if Ni increases further than this, the soldering properties will deteriorate.

また、Snは少なければ少ない程安価になるが、1条未
満では強度がなくなってしまうので不可であり、6係を
越えると加工しにくくなる不具合が現われてくる。
Furthermore, the smaller the amount of Sn, the cheaper it will be, but if it is less than 1 thread, it will lose its strength, so it is not acceptable, and if it exceeds 6 threads, it will become difficult to process.

さらに、Znの下限を5係としたのは、これ以下の量で
あると、強度の点でりん青銅の代替効果がうすらぐため
である。
Furthermore, the reason why the lower limit of Zn is set to the factor 5 is that if the amount is less than this, the effect of replacing phosphor bronze in terms of strength will be diminished.

以上は、本発明合金の加工硬化型合金としての特徴を示
したが、りん青銅或は析出硬化・スピノーダル硬化型の
他の合金吉同様、低温加熱により、ばね特性の向上を図
ることも可能である。
The above has shown the characteristics of the alloy of the present invention as a work hardening type alloy, but like other alloys such as phosphor bronze or precipitation hardening/spinodal hardening type alloys, it is also possible to improve the spring characteristics by heating at low temperature. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は50係加工を施した各種Cu−Zn−Sn合金
線の成分との引張強さとの関係を状態図的に示す特性図
、第2図は3%sn入銅にZnを添加していった時の耐
アンモニア腐食性の変化を示す特注図、第3図はZn、
Niの割合とりIJ−プ特性の関係を示した特性図、第
4図はZnとNiとの対比において使用可能な範囲を示
す特性図である。
Figure 1 is a phase diagram showing the relationship between the components and tensile strength of various Cu-Zn-Sn alloy wires subjected to 50% processing, and Figure 2 is a characteristic diagram showing the relationship between the tensile strength and the components of various Cu-Zn-Sn alloy wires subjected to 50% processing. A custom-made diagram showing changes in ammonia corrosion resistance over time, Figure 3 shows Zn,
FIG. 4 is a characteristic diagram showing the relationship between the proportion of Ni and the IJ-p characteristic, and FIG. 4 is a characteristic diagram showing the usable range in comparison with Zn and Ni.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で、Zn:5〜10%、Sn:1〜6係、N
i:2〜10係、残部Cu及び不純物からなり、かつN
i量はZn量との対比においてその40係以上となるよ
うに設定されていることを特徴とする加工硬化型ばね用
銅合金。
1 Weight ratio: Zn: 5-10%, Sn: 1-6%, N
i: 2 to 10, the balance consists of Cu and impurities, and N
A work-hardening copper alloy for springs, characterized in that the amount of i is set to be a factor of 40 or more compared to the amount of Zn.
JP2171578A 1978-02-27 1978-02-27 Copper alloy for work hardening springs Expired JPS5921376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171578A JPS5921376B2 (en) 1978-02-27 1978-02-27 Copper alloy for work hardening springs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171578A JPS5921376B2 (en) 1978-02-27 1978-02-27 Copper alloy for work hardening springs

Publications (2)

Publication Number Publication Date
JPS54114428A JPS54114428A (en) 1979-09-06
JPS5921376B2 true JPS5921376B2 (en) 1984-05-19

Family

ID=12062755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171578A Expired JPS5921376B2 (en) 1978-02-27 1978-02-27 Copper alloy for work hardening springs

Country Status (1)

Country Link
JP (1) JPS5921376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159079U (en) * 1988-04-25 1989-11-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026188A (en) * 2003-07-03 2005-01-27 Koa Corp Current fuse and manufacturing method of current fuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159079U (en) * 1988-04-25 1989-11-02

Also Published As

Publication number Publication date
JPS54114428A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
KR100787269B1 (en) Method for manufacturing high-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
JPH0336241B2 (en)
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
CA1249736A (en) Processing of copper alloys
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JP3856073B2 (en) Method for producing Cu-Ag alloy
JPS5921376B2 (en) Copper alloy for work hardening springs
US20210079505A1 (en) Copper-coated steel wire and canted coil spring
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP2000129377A (en) Copper-base alloy for terminal
JPH079048B2 (en) Corrosion resistant Ni-base alloy wire rod with high strength and hardness
JPH0123542B2 (en)
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPS6012421B2 (en) Manufacturing method of lead wire material
JPH04236736A (en) Copper-base alloy for terminal and terminal using the same
JPH0416534B2 (en)
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPS6121293B2 (en)
JPS5821019B2 (en) Copper alloy for lead material
JP2682577B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP2500143B2 (en) Copper alloy member with both conductivity and strength
JPS6160132B2 (en)
JPH1096036A (en) High strength and high conductivity copper alloy wire rod