JPH0123542B2 - - Google Patents

Info

Publication number
JPH0123542B2
JPH0123542B2 JP57142395A JP14239582A JPH0123542B2 JP H0123542 B2 JPH0123542 B2 JP H0123542B2 JP 57142395 A JP57142395 A JP 57142395A JP 14239582 A JP14239582 A JP 14239582A JP H0123542 B2 JPH0123542 B2 JP H0123542B2
Authority
JP
Japan
Prior art keywords
strength
alloy
present
content
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57142395A
Other languages
Japanese (ja)
Other versions
JPS5931839A (en
Inventor
Motohisa Myato
Shuhei Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14239582A priority Critical patent/JPS5931839A/en
Publication of JPS5931839A publication Critical patent/JPS5931839A/en
Publication of JPH0123542B2 publication Critical patent/JPH0123542B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高力導電性銅合金に関し、さらに詳し
くは、電気および電子部品用として好適な導電性
の良好な高力導電性銅合金に関するものである。 一般的に、黄銅は優れた強度と適当な導電性を
有し、加工性が良いため端子、コネクター部品等
電気電子部品用材料として広く使用されている。
しかしながら、この黄銅は応力腐蝕割れを起し易
く、かつ、耐クリープ性が悪いという欠点があ
る。 本発明は上記に説明した黄銅の優れた性質を保
持し、さらに黄銅と同等の強度を有し、かつ、黄
銅と同等がそれ以上の導電性を有し、及び、黄銅
以上の耐応力腐蝕割れ性、耐クリープ性を有する
高力導電性銅合金を提供するものである。 本発明に係る高力導電性銅合金の特徴とすると
ころは、Zn5.0〜12.5wt%、Sn0.2〜2.0wt%、
Fe0.02〜0.50wt%、P0.01〜0.1wt%を含み、残部
が本質的にCuからなることにある。 本発明に係る高力導電性銅合金において、その
含有成分及び成分割合について説明する。 Znは含有量が5wt%未満では強度の向上が充分
でなく、また12.5wt%を越えて含有されると耐応
力腐蝕割れ感受性が大きくなる。よつて、Zn含
有量は5.0〜12.5wt%とする。 Snは含有量が0.2wt%未満では強度の向上が充
分でなく、また2.0wt%を越えて含有されると導
電率の低下が大きくなる。よつて、Sn含有量は
0.2〜2.0wt%とする。 Fe及びPは、Fe、Pが共に含有されることに
よつてFeとPの金属間化合物(燐化鉄)が形成
され、単独含有の場合に比して強度及び導電性が
向上し、かつ、耐応力腐蝕割れ性が改善されるも
のである。そして、Feは含有量が0.02wt%未満
ではPと共存しても強度、導電性及び耐応力腐蝕
割れ性の改善に効果がなく、また、0.50wt%を越
えて含有されると中間焼鈍材の強度の向上率が低
下し、かつ、加工硬化が激しくなり加工性が劣化
する。よつて、Fe含有量は0.02〜0.50wt%とす
る。Pは含有量が0.01wt%未満ではFeが共存し
ても強度及び耐応力腐蝕割れ性向上への効果がな
く、0.1wt%を越えて含有されるとFeと化合物を
形成せずにCu母相中に存在するPが多くなり導
電性及び耐応力腐蝕割れ性を低下させる。よつ
て、P含有量は0.01〜0.1wt%とする。 次に、本発明に係る高力導電性銅合金の実施例
を説明する。 実施例
The present invention relates to a high-strength conductive copper alloy, and more particularly to a high-strength conductive copper alloy with good electrical conductivity suitable for use in electrical and electronic components. In general, brass has excellent strength, appropriate conductivity, and good workability, so it is widely used as a material for electrical and electronic parts such as terminals and connector parts.
However, this brass has the drawbacks of being susceptible to stress corrosion cracking and having poor creep resistance. The present invention maintains the excellent properties of brass described above, has strength equivalent to that of brass, has electrical conductivity equivalent to or higher than that of brass, and has stress corrosion resistance and cracking resistance higher than that of brass. The purpose of the present invention is to provide a high-strength conductive copper alloy that has high strength and creep resistance. The characteristics of the high-strength conductive copper alloy according to the present invention are: Zn5.0-12.5wt%, Sn0.2-2.0wt%,
It contains 0.02 to 0.50 wt% of Fe, 0.01 to 0.1 wt% of P, and the balance essentially consists of Cu. In the high-strength conductive copper alloy according to the present invention, the contained components and component ratios thereof will be explained. If the Zn content is less than 5 wt%, the strength will not be improved sufficiently, and if the Zn content exceeds 12.5 wt%, the stress corrosion cracking resistance will increase. Therefore, the Zn content is set to 5.0 to 12.5 wt%. If the Sn content is less than 0.2 wt%, the strength will not be improved sufficiently, and if the content exceeds 2.0 wt%, the electrical conductivity will decrease significantly. Therefore, the Sn content is
The content should be 0.2-2.0wt%. When Fe and P are contained together, an intermetallic compound of Fe and P (iron phosphide) is formed, which improves strength and conductivity compared to when Fe and P are contained alone, and , stress corrosion cracking resistance is improved. If the Fe content is less than 0.02wt%, even if it coexists with P, it will not be effective in improving the strength, electrical conductivity, and stress corrosion cracking resistance, and if the content exceeds 0.50wt%, the intermediate annealing material will not be effective. The rate of improvement in strength decreases, and work hardening becomes severe, resulting in deterioration of workability. Therefore, the Fe content is set to 0.02 to 0.50 wt%. If the content of P is less than 0.01wt%, it has no effect on improving strength and stress corrosion cracking resistance even if Fe coexists; The amount of P present in the phase decreases, resulting in decreased electrical conductivity and stress corrosion cracking resistance. Therefore, the P content is set to 0.01 to 0.1 wt%. Next, examples of high-strength conductive copper alloys according to the present invention will be described. Example

【表】 ※:比較合金
第1表に示す含有成分、成分割合となるように
以下に説明する方法により本発明合金及び比較合
金を調整した。 即ち、クリプトル電気炉を用いて高純度銅を溶
解し溶湯面を木炭で被覆した状態でFeを添加し、
Feが完全に溶解したのを確認後、Zn、Snの順に
添加し、最後にPをCu―15wt%P合金として添
加して溶解し、次いで、45mmt×70mmw×200mm
lの金型に鋳造した(6KgX/1ch)。 本発明合金の鋳塊は、面削後、900℃で15mm厚
さまで熱間圧延を行ない、熱間圧延終了時の温度
を揃えるため850℃×1hr加熱後水中急冷した。こ
の後、0.46mm厚さまで冷間圧延し、この段階で試
料には500℃×2hrの析出処理を施した。その後、
更に冷間圧延を行ない試料厚さ0.32mmtに調整し
た。 この0.32mmt厚さの状態で引張強さ、導電率、
耐応力腐蝕割れ性及び耐クリープ性を調整した。 第2表に、本発明合金及び比較合金の引張強さ
と導電率とを示す。
[Table] *: Comparative alloy The present invention alloy and comparative alloy were adjusted by the method described below so that the components and component ratios shown in Table 1 were obtained. That is, high-purity copper is melted using a Kryptor electric furnace, and Fe is added while the surface of the molten metal is covered with charcoal.
After confirming that Fe is completely dissolved, Zn and Sn are added in that order, and finally P is added as a Cu-15wt%P alloy and dissolved, and then 45mmt x 70mmw x 200mm
It was cast in a mold of 1 (6KgX/1ch). After facing the ingot of the alloy of the present invention, it was hot rolled at 900°C to a thickness of 15 mm, heated at 850°C for 1 hour, and then rapidly cooled in water to equalize the temperature at the end of hot rolling. Thereafter, it was cold rolled to a thickness of 0.46 mm, and at this stage the sample was subjected to a precipitation treatment at 500°C for 2 hours. after that,
Further cold rolling was performed to adjust the sample thickness to 0.32 mmt. At this 0.32 mm thickness, tensile strength, electrical conductivity,
Stress corrosion cracking resistance and creep resistance were adjusted. Table 2 shows the tensile strength and electrical conductivity of the alloys of the present invention and comparative alloys.

【表】【table】

【表】 ※:比較合金
第2表からら明らかであるが、本発明合金(No.
6、No.8)は引張強さ、導電率が共に比較合金よ
り優れているものであり、また、本発明合金(No.
1,2,3,4,5,7)は引張強さ、又は導電
率の何れか一方で比較合金より優れているもので
ある。 次に、第1表に示す本発明合金No.6と比較合金
No.9を、第2表の特性となるよう調整した試料か
ら、それぞれ0.33mm厚さ×12.7mm幅×150mm長さ
(両端から6.35mmの部分を中心に直径5mmφの穴
をあけたもの)の試験片を各5枚製作し、試験片
の長手方向の中央で第1図に示すように、19mmφ
の丸棒の周りで160゜曲げを行ない、試験片の両端
がつくようにビニル被覆銅線により固定する。 次いで、35℃恒温のデシケータ中に入れ、24時
間後初期クリープ値の影響を見るため、結び目を
解き、試験片両端の距離l1を測定する。 別に、28%アンモニア水を等量の蒸留水で薄め
て11とし、51容量のデシケータ中に入れ35℃に保
つ。 このアンモニア蒸気中に両端を固定した試験片
を吊し、定時間に結び目を解いて、試験片の両端
の距離l2を測定する。 これを繰り返し、応力緩和率を算出する(DH.
Thompsonの方法)。 応力緩和率(%)=l1―l2/l1×100 l1:アンモニアにさらす前の試験片両端の距離 l2:アンモニアにさらした後の試験片両端の距
離この測定結果を第3表に示す。
[Table] *: Comparative alloy As is clear from Table 2, the invention alloy (No.
6, No. 8) is superior to the comparative alloys in both tensile strength and electrical conductivity, and the invention alloy (No.
Nos. 1, 2, 3, 4, 5, and 7) are superior to the comparative alloys in either tensile strength or electrical conductivity. Next, the present invention alloy No. 6 and comparative alloy shown in Table 1
No. 9 was adjusted to have the characteristics shown in Table 2. Each sample was 0.33 mm thick x 12.7 mm wide x 150 mm long (holes with a diameter of 5 mmφ were drilled at 6.35 mm from both ends) Five test pieces each were made, and the center of the test piece in the longitudinal direction had a diameter of 19 mmφ as shown in Figure 1.
Bend the specimen 160° around the round rod and secure it with vinyl-coated copper wire so that both ends of the specimen touch. Next, the test piece was placed in a desiccator kept at a constant temperature of 35°C, and after 24 hours, the knot was untied and the distance l 1 between both ends of the test piece was measured to see the effect on the initial creep value. Separately, dilute 28% ammonia water with an equal volume of distilled water to make 11, and place it in a 51-capacity desiccator and keep it at 35°C. A test piece with both ends fixed is suspended in this ammonia vapor, the knot is untied at a fixed time, and the distance l 2 between both ends of the test piece is measured. Repeat this to calculate the stress relaxation rate (DH.
Thompson's method). Stress relaxation rate (%) = l 1 - l 2 / l 1 × 100 l 1 : Distance between both ends of the test piece before exposure to ammonia l 2 : Distance between both ends of the test piece after exposure to ammonia Shown in the table.

【表】 本発明合金が比較合金より非常に優れた耐応力
腐蝕割れ性を示していることがわかる。 さらに、第1表の本発明合金No.6と比較合金No.
9について、125℃における応力緩和率の測定を
行なつた結果を第2図に示す。この試験方法は第
3図に示すようなボルト2で締められるチタン製
ホルダー1,1の治具によつて試料Sに耐力の80
%の曲げ応力が負荷され、この状態で24hr室温に
保持後試験を開始する(N=5)。 この場合の応力緩和率は、 応力緩和率=L1―L2/L1―L0×100 で示される。 L0:治具の長さ L1:開始時の長さ L2:一定時間経過後の試料の長さ この場合においても、本発明合金No.6が比較合
金No.9より優れていることがわかる。 以上説明したように、本発明に係る高力導電性
銅合金は上記の構成を有しているものであるか
ら、強度及び導電率は黄銅と同等か又はそれ以上
に優れており、又、耐応力腐蝕割れ性、耐クリー
プ性は黄銅以上であり、従つて、電気電子部品用
材料としては応力腐蝕割れが起り難く、又、嵌合
力の経時劣化も減少する等機器の信頼性が向上
し、使用可能範囲も広くなるという効果を奏する
ものである。
[Table] It can be seen that the alloy of the present invention exhibits stress corrosion cracking resistance that is much superior to that of the comparative alloy. Furthermore, the invention alloy No. 6 and comparative alloy No. 6 in Table 1.
9, the stress relaxation rate was measured at 125°C and the results are shown in Figure 2. This test method uses a jig made of titanium holders 1 and 1 that are tightened with bolts 2 as shown in Figure 3.
% bending stress was applied and the test was started after being kept at room temperature for 24 hours in this state (N=5). The stress relaxation rate in this case is expressed as stress relaxation rate=L 1 −L 2 /L 1 −L 0 ×100. L 0 : Length of the jig L 1 : Length at the start L 2 : Length of the sample after a certain period of time In this case as well, Invention Alloy No. 6 is superior to Comparative Alloy No. 9. I understand. As explained above, since the high-strength conductive copper alloy according to the present invention has the above-mentioned structure, its strength and conductivity are equal to or superior to that of brass, and it also has high durability. Its stress corrosion cracking resistance and creep resistance are higher than that of brass, and therefore, as a material for electrical and electronic parts, stress corrosion cracking is less likely to occur, and the reliability of equipment is improved, such as reducing the deterioration of fitting force over time. This has the effect of widening the usable range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は応力腐蝕割れ試験法を示す図、第2図
は応緩和率と経過時間を示す図、第3図は応力緩
和率測定治具を示す図であある。 1……チタン製ホルダー、2……ボルト、3…
…試料。
FIG. 1 is a diagram showing the stress corrosion cracking test method, FIG. 2 is a diagram showing the stress relaxation rate and elapsed time, and FIG. 3 is a diagram showing the stress relaxation rate measurement jig. 1... Titanium holder, 2... Bolt, 3...
…sample.

Claims (1)

【特許請求の範囲】[Claims] 1 Zn5.0〜12.5wt%、Sn0.2〜2.0wt%、Fe0.02
〜0.50wt%、P0.01〜0.1wt%を含み、残部が本質
的にCuからなることを特徴とする高力導電性銅
合金。
1 Zn5.0~12.5wt%, Sn0.2~2.0wt%, Fe0.02
~0.50wt%, P0.01~0.1wt%, and the balance essentially consists of Cu.
JP14239582A 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy Granted JPS5931839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14239582A JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14239582A JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS5931839A JPS5931839A (en) 1984-02-21
JPH0123542B2 true JPH0123542B2 (en) 1989-05-02

Family

ID=15314354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14239582A Granted JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS5931839A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299429A (en) * 1985-10-25 1987-05-08 Kobe Steel Ltd Material for lead frame having superior suitability to shearing work
US4822562A (en) * 1985-11-13 1989-04-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy excellent in migration resistance
JPH0672277B2 (en) * 1986-11-17 1994-09-14 三井金属鉱業株式会社 Copper alloy for conductive material
JPH0676630B2 (en) * 1986-12-23 1994-09-28 三井金属鉱業株式会社 Copper alloy for wiring connector
JPS6462429A (en) * 1987-09-02 1989-03-08 Furukawa Electric Co Ltd Busbar for electrical connection box
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575835A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575835A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material

Also Published As

Publication number Publication date
JPS5931839A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPH06184679A (en) Copper alloy for electrical parts
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JPH036341A (en) High strength and high conductivity copper-base alloy
JP2001262255A (en) Copper based alloy bar for terminal and its producing method
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPH0123542B2 (en)
JP2019151867A (en) Copper alloy material having excellent aluminum contact corrosion resistance, and terminal
JPS6231059B2 (en)
JP3105392B2 (en) Manufacturing method of copper base alloy for connector
JPH0690887B2 (en) Cu alloy terminal for electrical equipment
US4715910A (en) Low cost connector alloy
JPS59145746A (en) Copper alloy for lead material of semiconductor apparatus
JPS58210140A (en) Heat resistant conductive copper alloy
JPH032341A (en) High strength and high conductivity copper alloy
JPH0418016B2 (en)
JPS6142772B2 (en)
JPH0379417B2 (en)
JPS63230837A (en) Copper alloy for fuse
JPH0355532B2 (en)
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0314901B2 (en)
JPS5989743A (en) High-strength copper alloy with high electric conductivity