JPS5931839A - High-strength electrically-conductive copper alloy - Google Patents

High-strength electrically-conductive copper alloy

Info

Publication number
JPS5931839A
JPS5931839A JP14239582A JP14239582A JPS5931839A JP S5931839 A JPS5931839 A JP S5931839A JP 14239582 A JP14239582 A JP 14239582A JP 14239582 A JP14239582 A JP 14239582A JP S5931839 A JPS5931839 A JP S5931839A
Authority
JP
Japan
Prior art keywords
strength
alloy
brass
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14239582A
Other languages
Japanese (ja)
Other versions
JPH0123542B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Shuhei Mori
森 周平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14239582A priority Critical patent/JPS5931839A/en
Publication of JPS5931839A publication Critical patent/JPS5931839A/en
Publication of JPH0123542B2 publication Critical patent/JPH0123542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength, electric conductivity, stress corrosion cracking resistance and creep resistance of the resulting Cu alloy by providing a specified composition consisting of Zn, Sn, Fe, P and the balance essentially Cu. CONSTITUTION:This high-strength electrically-conductive Cu alloy has a composition consisting of, by weight, 5.0-12.5% Zn, 0.2-2.0% Sn, 0.02-0.50% Fe, 0.01-0.1% P and the balance essentially Cu. The Cu alloy is comparable to brass in strength, comparable or superior to brass in electric conductivity, and superior to brass in stress corrosion cracking resistance and creep resistance.

Description

【発明の詳細な説明】 本発明は高力導電性銅合金に関し、さらに詳しくは、電
気および電子部品用として好適な導電性の良好な高力導
電性銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength conductive copper alloy, and more particularly to a high-strength conductive copper alloy with good electrical conductivity suitable for electrical and electronic parts.

一般的に、黄銅は優れた強度と適当な導電性を有し、加
工性が良いため端子、フネクタ一部品等電気電子部品用
材料として広く使用されている。
In general, brass has excellent strength, appropriate conductivity, and good workability, so it is widely used as a material for electrical and electronic parts such as terminals and funector parts.

しかしながら、この黄銅は応力腐蝕割れを起し易く、か
つ、耐クリープ性が悪いという欠点がある。
However, this brass has the drawbacks of being susceptible to stress corrosion cracking and having poor creep resistance.

本発明は」二記に説明した黄銅の優れた性質を保持し、
さらに黄銅と同等の強度を有し、がっ、黄銅と同等かそ
れ以」二の導電性を有し、及び、黄銅以上の耐応力腐蝕
割れ性、耐クリープ性を有する高力導電性銅合金を提供
するものである。
The present invention retains the excellent properties of brass explained in Section 2,
Furthermore, it is a high-strength conductive copper alloy that has strength equivalent to brass, conductivity equivalent to or better than brass, and stress corrosion cracking resistance and creep resistance superior to that of brass. It provides:

本発明に係る高力導電性銅合金の特徴とするところは、
Zn 5.0〜12.5u+L%、Sn0.2〜2.0
u+t%、Fe O,02−0,50wL%、P O,
01−0,1u+L%を含み、残部が本質的にCuから
なることにある。
The characteristics of the high strength conductive copper alloy according to the present invention are as follows:
Zn 5.0-12.5u+L%, Sn0.2-2.0
u+t%, Fe O, 02-0, 50wL%, P O,
01-0.1u+L%, and the remainder essentially consists of Cu.

本発明に係る高力導電性銅合金において、その含有成分
及び成分割合について説明する。
In the high-strength conductive copper alloy according to the present invention, the contained components and component ratios thereof will be explained.

Znは含有量が5wt%未満では強度の向上が充分でな
く、また12,5wL%を越えて含有されると耐応力腐
蝕割れ感受性が大軽(なる。よって、Zn含有量は5.
0−12.5111t%とする。
If the Zn content is less than 5 wt%, the improvement in strength will not be sufficient, and if the content exceeds 12.5 wL%, the stress corrosion resistance and cracking susceptibility will be very low. Therefore, the Zn content will be 5.
0-12.5111t%.

Snは含有量が0,2wt%未満では強度の向上が充分
でなく、また、2.OwL%を越えて含有されると導電
率の低下が大きくなる。よって、Sn含有量は0.2〜
2.0畦%とする。
If the Sn content is less than 0.2 wt%, the strength will not be improved sufficiently; If the content exceeds OwL%, the conductivity will decrease significantly. Therefore, the Sn content is 0.2~
It is set as 2.0%.

Fe及びPは、Fe、Pが共に含有されることによって
Feと丁)の金属間化合物(燐化鉄)が形成され、単独
含有の場合に比して強度及び導電性が向上し、がっ、耐
応力腐蝕割れ性が改善されるものである。そして、Fe
は含有量が0.0211IL%未満では11と共イーし
ても強度、導電性及び耐応力腐蝕割れ性の改善に効果が
なく、また、0,50u+L%を越えて含有されると中
間焼鈍材の強度の向上率が低下し、かつ、加工硬化が激
しくなり加工性が劣化する。よって、Fe含有量は0.
02〜0,50u+L%とする。
When Fe and P are contained together, an intermetallic compound (iron phosphide) of Fe and P is formed, which improves strength and conductivity compared to when they are contained alone. , stress corrosion cracking resistance is improved. And Fe
If the content is less than 0.0211IL%, even if it is the same as 11, it will not be effective in improving the strength, conductivity, and stress corrosion cracking resistance, and if the content exceeds 0.50u+L%, the intermediate annealing material The rate of improvement in strength decreases, and work hardening becomes severe, resulting in deterioration of workability. Therefore, the Fe content is 0.
02~0.50u+L%.

Pは含有量が0.01u+t%未満ではFeが共存して
も強度及び耐応力腐蝕割れ性向上への効果がなく、0、
]、u+L%を越えて含有されると1:′eと化合物を
形成せずにCu−Fn相中に存在するPが多くなり導電
性及び耐応力腐蝕割れ性を(氏子させる。よって、■)
誉有量は0.01〜OA、1llL%とする。
If the P content is less than 0.01u+t%, even if Fe coexists, it has no effect on improving strength and stress corrosion cracking resistance, and 0,
], if the content exceeds u+L%, the amount of P present in the Cu-Fn phase increases without forming a compound with 1:'e, which impairs conductivity and stress corrosion cracking resistance. )
The amount of honor is 0.01~OA, 1llL%.

次に、本発明に係る高力導電性銅合金の実施例を説明す
る。
Next, examples of high-strength conductive copper alloys according to the present invention will be described.

実施例 ×;比較合金 第1表に示す含有成分、成分割合となるように辺、下t
、二説明する方法により本発明合金及び比較合金を調整
した。
Example ×: Comparative alloy The side and bottom t were adjusted so that the contained components and component ratios shown in Table 1
The invention alloy and comparative alloy were prepared by the method described in .

即ち、クリプトルミ電炉を用いて高純度銅を溶解し溶湯
面を木炭で被覆した状態てFeを添加し、1・eが完全
に溶解したのを確認後、Z++、 S++の順に添加し
、最後にPをC,u  15畦%P合金として添加して
溶解し、次いで、45+n+ntX70n+u+u+X
200m+nlの金型に鋳造した(6Kg/1ch)。
That is, high-purity copper was melted using a cryptoluminium electric furnace, Fe was added with the surface of the molten metal covered with charcoal, and after confirming that 1.e was completely dissolved, Z++ and S++ were added in that order, and finally Add P as C, u 15% P alloy and melt, then 45+n+ntX70n+u+u+X
It was cast into a 200m+nl mold (6Kg/1ch).

本発明合金の鋳塊は、面側後、900℃で15+nIn
厚さまで熱間圧延を行ない、熱間圧延終了時の温度を揃
えるため850’CX 1.l+r加熱後水中急冷した
。この後、0.46m+o厚さまで冷間圧延し、この段
階で試料には500℃X21+rの析出処理を施した。
The ingot of the alloy of the present invention has 15+nIn at 900°C after the face side.
850'CX 1. To perform hot rolling to the thickness and to equalize the temperature at the end of hot rolling. After l+r heating, it was rapidly cooled in water. Thereafter, it was cold rolled to a thickness of 0.46 m+o, and at this stage the sample was subjected to a precipitation treatment at 500°C x 21+r.

その後、更に冷間圧延を行ない試料厚さ0.32+n+
nLに調整した。
After that, further cold rolling is performed to obtain a sample thickness of 0.32+n+
Adjusted to nL.

この0.32+n+aL厚さの状態で引張強さ、導電率
、耐応力腐蝕割れ性及び耐クリープ性を調査した。
Tensile strength, electrical conductivity, stress corrosion cracking resistance, and creep resistance were investigated in this 0.32+n+aL thickness state.

第2表に、本発明合金及び比較合金の引張強さと導電率
とを示す。
Table 2 shows the tensile strength and electrical conductivity of the alloys of the present invention and comparative alloys.

第2表から明らかであるか゛、本発明合金(No、6、
No、8)は引張強さ、導電率が共に比較合金より1襞
れているもので′あり、また、本発明合金(No、1.
2.3.4.5.7)は引張強さ、又は導電率の阿れか
一力で比較合金より優れているものである。
It is clear from Table 2 that the alloys of the present invention (No. 6, No. 6,
No. 8) has tensile strength and electrical conductivity that are one fold lower than the comparative alloy, and the alloy of the present invention (No. 1.
2.3.4.5.7) is superior to the comparative alloys in terms of tensile strength or electrical conductivity.

次に、第1表に示す本発明合金No、6と比較合金No
、9を、第1図に示すように試料をループ状に曲げ、試
料両端を銅線で固定して曲げ応力を加えて24hr放置
後、35°Cアンモニア蒸気中にさらしtこ後、固定を
解除して試験片両端の!11離を測定する( D 、 
H、T bo+ol+soB+の方法)。
Next, the present invention alloy No. 6 shown in Table 1 and the comparative alloy No.
, 9, the sample was bent into a loop shape as shown in Figure 1, both ends of the sample were fixed with copper wire, bending stress was applied, left for 24 hours, exposed to 35°C ammonia vapor, and then fixed. Release both ends of the test piece! Measure 11 distances (D,
H, T bo+ol+soB+ method).

11:アンモニアにさらす前の試験片両端のlli離1
2:アンモニアにさらした後の試験片両端の距離この測
定結果を第:3表に示す。
11: lli distance of both ends of the test piece before exposure to ammonia 1
2: Distance between both ends of the test piece after exposure to ammonia The results of this measurement are shown in Table 3.

本発明合金が比較合金より非常に1憂れた耐応力腐蝕割
れ性を示していることがわかる。
It can be seen that the alloy of the present invention exhibits stress corrosion cracking resistance that is far superior to that of the comparative alloy.

さらに、第1表の本発明合金No、6と比較合金No、
9について、125°Cにおける応力緩和率の測定を行
なった結果を第2図に示す。この試験方法は第3図に示
すようなボルト2で締められるチタン製ホルダー1.1
の治具によって試料Sに耐力の80%の曲げ応力が負荷
され、この状態で24br室温に保持後試験を開始する
(N =5)。
Furthermore, the present invention alloy No. 6 in Table 1 and the comparative alloy No.
9, the stress relaxation rate was measured at 125° C. The results are shown in FIG. This test method consists of a titanium holder 1.1 tightened with bolts 2 as shown in Figure 3.
A bending stress of 80% of the yield strength is applied to the sample S using the jig, and the test is started after keeping the sample S at 24br room temperature in this state (N = 5).

この場合の応力緩和率は、 で示される。The stress relaxation rate in this case is It is indicated by.

Ll、 二 治具の長さ 1、、  :  開始時の長さ I−2二  一定時間経過後の試料の長さこの場合にお
いても、本発明合金No、6が比較合金N o、9より
優れていることがわかる。
Ll, 2 Length of the jig 1, : Length at the start I-2 2 Length of the sample after a certain period of time In this case as well, the alloy No. 6 of the present invention is superior to the comparative alloy No. 9. It can be seen that

以−1−説明したように、本発明に係る高力導電性iシ
1合金は上記の構成を有しているものであるから、強度
及び導電率は黄銅と同等か又はそれ以上に優れてお1)
、又、耐応力腐蝕割れ性、耐クリープ性は黄銅以りであ
り、従って、電気電子部品用材料としては応力腐蝕割れ
が起1)難く、又、(挟合力の経時劣化も減少する等機
器の信頼性が向−1−シ、使用可能範囲も広くなるとい
う効果を奏するものである。
As explained above, since the high-strength conductive i-Si 1 alloy according to the present invention has the above-mentioned structure, its strength and conductivity are equal to or superior to that of brass. 1)
In addition, the stress corrosion cracking resistance and creep resistance are better than that of brass, so as a material for electrical and electronic parts, stress corrosion cracking is less likely to occur (1), and (the deterioration of the clamping force over time is also reduced), etc. This has the effect of improving reliability and widening the usable range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は応力腐蝕割れ試験法を示す図、第2図は応力緩
和率と経過時間を示す図、第3図は応力緩和率測定治具
を示す図である。 1・・チタン製ホルダー、2・・ボルト、3・・試料。
FIG. 1 is a diagram showing the stress corrosion cracking test method, FIG. 2 is a diagram showing stress relaxation rate and elapsed time, and FIG. 3 is a diagram showing a stress relaxation rate measurement jig. 1. Titanium holder, 2. Bolt, 3. Sample.

Claims (1)

【特許請求の範囲】[Claims] Zn  5.0−12.5u+t%、  Sn  O,
2−2,OwL%、  FeO,02=0.50+uL
%、P O,01〜0.11IIL%を含み、残部が本
質的にCuからなることを特徴とする高力導電性銅合金
Zn 5.0-12.5u+t%, SnO,
2-2, OwL%, FeO,02=0.50+uL
%, PO,01-0.11IIL%, the balance consisting essentially of Cu.
JP14239582A 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy Granted JPS5931839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14239582A JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14239582A JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS5931839A true JPS5931839A (en) 1984-02-21
JPH0123542B2 JPH0123542B2 (en) 1989-05-02

Family

ID=15314354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14239582A Granted JPS5931839A (en) 1982-08-17 1982-08-17 High-strength electrically-conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS5931839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299429A (en) * 1985-10-25 1987-05-08 Kobe Steel Ltd Material for lead frame having superior suitability to shearing work
EP0222406A2 (en) * 1985-11-13 1987-05-20 Kabushiki Kaisha Kobe Seiko Sho Copper alloy excellent in migration resistance
JPS63128143A (en) * 1986-11-17 1988-05-31 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPS63161134A (en) * 1986-12-23 1988-07-04 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPS6462429A (en) * 1987-09-02 1989-03-08 Furukawa Electric Co Ltd Busbar for electrical connection box
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575835A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575835A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299429A (en) * 1985-10-25 1987-05-08 Kobe Steel Ltd Material for lead frame having superior suitability to shearing work
EP0222406A2 (en) * 1985-11-13 1987-05-20 Kabushiki Kaisha Kobe Seiko Sho Copper alloy excellent in migration resistance
US4822562A (en) * 1985-11-13 1989-04-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy excellent in migration resistance
JPS63128143A (en) * 1986-11-17 1988-05-31 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPS63161134A (en) * 1986-12-23 1988-07-04 Mitsui Mining & Smelting Co Ltd Copper alloy for electrical parts
JPS6462429A (en) * 1987-09-02 1989-03-08 Furukawa Electric Co Ltd Busbar for electrical connection box
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same

Also Published As

Publication number Publication date
JPH0123542B2 (en) 1989-05-02

Similar Documents

Publication Publication Date Title
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPS62227051A (en) Terminal and connector made of cu alloy
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPS5931839A (en) High-strength electrically-conductive copper alloy
JPS5823452B2 (en) Softening resistant copper alloy
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JPH032341A (en) High strength and high conductivity copper alloy
JPH0418016B2 (en)
JPS62199741A (en) Copper alloy for terminal and connector having superior migration resistance
JPS6142772B2 (en)
JPH09316569A (en) Copper alloy for lead frame and its production
JPH0314901B2 (en)
JPS5832220B2 (en) Softening resistant copper alloy
JP2001032028A (en) Copper alloy for electronic parts, and its manufacture
JPS63161134A (en) Copper alloy for electrical parts
JPS6345342A (en) High strength conductive copper alloy
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance
JP2002003966A (en) Copper alloy for electronic and electric apparatus excellent in solder weldnability
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH02129326A (en) High strength copper alloy
JP2534917B2 (en) High strength and high conductivity copper base alloy
JPH03271340A (en) High strength and high conductivity copper base alloy