JP2002003966A - Copper alloy for electronic and electric apparatus excellent in solder weldnability - Google Patents

Copper alloy for electronic and electric apparatus excellent in solder weldnability

Info

Publication number
JP2002003966A
JP2002003966A JP2000184342A JP2000184342A JP2002003966A JP 2002003966 A JP2002003966 A JP 2002003966A JP 2000184342 A JP2000184342 A JP 2000184342A JP 2000184342 A JP2000184342 A JP 2000184342A JP 2002003966 A JP2002003966 A JP 2002003966A
Authority
JP
Japan
Prior art keywords
copper alloy
solder
compounds
present
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000184342A
Other languages
Japanese (ja)
Inventor
Kuniteru Mihara
邦照 三原
Yoshimasa Oyama
好正 大山
Masaaki Kurihara
正明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000184342A priority Critical patent/JP2002003966A/en
Publication of JP2002003966A publication Critical patent/JP2002003966A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy capable of stably obtaining good solder weldability. SOLUTION: This copper alloy has a composition containing, by weight, 3.0 to 9.0% Sn and Fe, Ni and P by 0.05 to 1.0% in total, in which the atomic weight ratio of Fe, Ni and P shown by the formula of [(Fe+Ni)/P] is 0.2 to 3.0, and the balance Cu with inevitable impurities, and the number of P compounds with a diameter of 0.001 to 1 μm is >=100 pieces/mm. Since Sn, Fe, Ni and P are contained by suitable amounts, mechanism properties required for the material for electronic parts are satisfied, since the atomic weight ratio of Fe, Ni and P shown by the formula of [(Fe+Ni)/P] is prescribed to 0.2 to 3.0, and further, the number of P compounds with a diameter of 0.001 to 1 μm is prescribed to >=100 pieces/mm, most P is present as compounds and does not diffuse into the boundary of the solder joint, so that secular deterioration in the solder joinability can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良好な半田接合性
が安定して得られる電子電気機器用銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic and electric equipment which can stably obtain good solderability.

【0002】[0002]

【従来の技術】電子電気機器や自動車内配線に用いられ
るコネクタ、端子、リレースイッチなどの電子部品に
は、鉄系材料或いは電気・熱伝導性に優れるりん青銅、
丹銅、黄銅などの銅系材料が広く使用されており、前記
電子部品の接合には半田が多用されている。
2. Description of the Related Art Electronic components such as connectors, terminals and relay switches used in electronic and electrical equipment and wiring in automobiles are made of iron-based materials or phosphor bronze having excellent electric and thermal conductivity.
Copper-based materials such as copper and brass are widely used, and solder is often used for joining the electronic components.

【0003】[0003]

【発明が解決しようとする課題】前記銅系材料、特に、
SnおよびPを含む銅合金は半田接合性が経時的に劣化
し易いことが知られており、しかも、電子電気機器の小
型化、軽量化および高密度実装化が進展する中で半田接
合部の面積が減少する傾向にある。このような状況の中
で、銅系材料については、半田接合性の改善のために、
半田量の増加や半田実装技術の改善策が種々試みられて
いるが、未だ十分な効果が得られていない。そこで、本
発明者等は、SnおよびPを含む銅合金の半田接合性改
善について研究を行い、半田接合性の経時的劣化は銅合
金中のPが半田接合界面に拡散して前記接合界面に変質
層を形成するためであることを見いだし、さらに研究を
重ねて本発明を完成させるに至った。本発明は、良好な
半田接合性が安定して得られる電子電気機器用銅合金の
提供を目的とする。
The copper-based material, in particular,
It is known that the solderability of a copper alloy containing Sn and P is liable to deteriorate with time. The area tends to decrease. Under such circumstances, for copper-based materials, in order to improve solder jointability,
Various attempts have been made to increase the amount of solder and to improve the solder mounting technique, but no satisfactory effect has been obtained yet. Therefore, the present inventors conducted research on the improvement of the solder joint property of a copper alloy containing Sn and P, and the deterioration of the solder joint property with the lapse of time showed that P in the copper alloy diffused to the solder joint interface and the solder joint interface was deteriorated. The inventors have found that the purpose is to form an altered layer, and have conducted further studies to complete the present invention. SUMMARY OF THE INVENTION An object of the present invention is to provide a copper alloy for electronic and electrical equipment in which good solder jointability can be obtained stably.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Snを3.0〜9.0wt%、Fe、NiおよびPを合
計で0.05〜1.0wt%含有し、前記Fe、Niお
よびPの〔(Fe+Ni)/P〕の式で示される原子量
比が0.2〜3.0であり、残部がCuおよび不可避不
純物からなる銅合金であって、前記銅合金内に分布する
直径が0.001〜1μmのP化合物の個数が100個
/mm2 以上であることを特徴とする半田接合性に優れ
る電子電気機器用銅合金である。
According to the first aspect of the present invention,
It contains 3.0 to 9.0 wt% of Sn and 0.05 to 1.0 wt% in total of Fe, Ni and P, and has an atomic weight of Fe, Ni and P represented by the formula of [(Fe + Ni) / P]. The ratio is 0.2 to 3.0, and the balance is a copper alloy composed of Cu and inevitable impurities, and the number of P compounds having a diameter of 0.001 to 1 μm distributed in the copper alloy is 100 / mm. It is a copper alloy for electronic and electrical equipment which is excellent in solderability, characterized by being 2 or more.

【0005】請求項2記載の発明は、Znを5.0〜4
0wt%、Snを0.01〜5.0wt%、Fe、Ni
およびPを合計で0.05〜1.0wt%含有し、前記
Fe、NiおよびPの〔(Fe+Ni)/P〕の式で示
される原子量比が0.2〜3.0であり、残部がCuお
よび不可避不純物からなる銅合金であって、前記銅合金
内に分布する直径が0.001〜1μmのP化合物の個
数が100個/mm2以上であることを特徴とする半田
接合性に優れる電子電気機器用銅合金である。
According to a second aspect of the present invention, Zn is contained in a range of 5.0 to 4%.
0 wt%, Sn: 0.01 to 5.0 wt%, Fe, Ni
And P in total of 0.05 to 1.0 wt%, and the atomic weight ratio of Fe, Ni and P represented by the formula [(Fe + Ni) / P] is 0.2 to 3.0, and the balance is A copper alloy comprising Cu and unavoidable impurities, wherein the number of P compounds having a diameter of 0.001 to 1 μm distributed in the copper alloy is 100 / mm 2 or more, and is excellent in solder jointability. It is a copper alloy for electronic and electrical equipment.

【0006】[0006]

【発明の実施の形態】本発明は、Pを化合物となして、
その拡散を抑制し、以て半田接合性の経時的劣化を改善
したものである。請求項1記載発明の銅合金において、
Sn、Fe、Ni、Pは機械的性質の向上に寄与し、ま
たPは脱酸作用も果たす。前記Snの含有量を3.0〜
9.0wt%に、またFe、NiおよびPの合計含有量
を0.05〜1.0wt%に規定する理由は、いずれが
前記下限値未満でもその効果が十分に得られず、いずれ
が前記上限値を超えても製造加工性が低下するためであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method for converting P into a compound,
The diffusion is suppressed, and thus the deterioration with time of the solder joint property is improved. The copper alloy according to claim 1,
Sn, Fe, Ni, and P contribute to the improvement of mechanical properties, and P also plays a deoxidizing effect. The content of Sn is 3.0 to 3.0.
The reason for setting the content to 9.0 wt% and the total content of Fe, Ni and P to 0.05 to 1.0 wt% is that even if any of them is less than the lower limit, the effect is not sufficiently obtained, and This is because even if the upper limit value is exceeded, the manufacturing processability decreases.

【0007】この発明において、Fe、NiおよびPの
〔(Fe+Ni)/P〕の式で示される原子量比を0.
2〜3.0に規定する理由は、前記原子量比が0.2未
満では、Fe−P、Ni−P、Fe−Ni−PなどのP
化合物が十分生成せず、3.0を超えるとP化合物とな
らないFeやNiが銅合金中に固溶して銅合金の導電性
を低下させるためである。
In the present invention, the atomic weight ratio of Fe, Ni and P expressed by the formula [(Fe + Ni) / P] is set to 0.1.
The reason that the atomic weight ratio is less than 0.2 is that P, such as Fe-P, Ni-P, or Fe-Ni-P,
This is because Fe or Ni which does not become a P compound when the compound is not sufficiently formed and exceeds 3.0 does not form a solid solution in the copper alloy and lowers the conductivity of the copper alloy.

【0008】この発明において、直径が0.001〜1
μmのP化合物の個数を100個/mm2 以上に規定す
る理由は、0.001μm未満ではP化合物が不安定で
Pが銅合金中に再固溶する可能性が高く、1μmより大
きいと電子部品に成形加工する際に割れのオリジンとな
るためであり、またP化合物の量が100個/mm2
満では、固溶するPが多くなって半田接合性が経時的に
劣化するためである。本発明において、P化合物の大き
さおよび個数は、銅合金材料表面を腐食し、この腐食面
を電子顕微鏡(SEM)で写真撮影し、この写真上で計
測した値とする。
In the present invention, the diameter is 0.001-1.
The reason why the number of P compounds of μm is defined to be 100 / mm 2 or more is that if it is less than 0.001 μm, the P compound is unstable and P is likely to be dissolved again in the copper alloy. This is because it becomes the origin of cracking when it is formed into a part, and if the amount of the P compound is less than 100 / mm 2 , the amount of dissolved P increases and the soldering property deteriorates with time. . In the present invention, the size and the number of the P compounds are values measured by photographing the corroded surface with an electron microscope (SEM) and corroding the surface of the copper alloy material.

【0009】請求項1記載の発明では、Snを3.0〜
9.0wt%含む、市販のJIS−C5111、JIS
−C5102、JIS−C5191、JIS−C521
2などを用いるのが簡便かつ経済的である。
According to the first aspect of the present invention, Sn is set to 3.0 to 3.0.
Commercially available JIS-C5111, JIS containing 9.0 wt%
-C5102, JIS-C5191, JIS-C521
It is simple and economical to use 2 or the like.

【0010】請求項2記載の発明は、請求項1記載発明
の銅合金のSnの一部をZnに置き換えたもので、Zn
はSnと同様に機械的性質の向上に寄与するうえ、半田
流動性も改善する。Znの含有量を5.0〜40wt%
に規定した理由は、5.0wt%未満ではその効果が十
分に得られず、40wt%を超えると製造加工性が低下
するためである。請求項2記載の発明においても、F
e、NiおよびPの作用効果は請求項1に述べたものと
同じである。
According to a second aspect of the present invention, a part of Sn of the copper alloy according to the first aspect of the present invention is replaced with Zn.
Contributes to the improvement of the mechanical properties like Sn, and also improves the solder fluidity. Zn content of 5.0 to 40 wt%
The reason is that if the content is less than 5.0% by weight, the effect cannot be sufficiently obtained, and if the content exceeds 40% by weight, the processability in manufacturing is reduced. According to the second aspect of the present invention, F
The functions and effects of e, Ni and P are the same as those described in the first aspect.

【0011】本発明の銅合金は、溶解鋳造、均質化処
理、面削、熱間圧延、中間焼鈍を含む冷間圧延を施す常
法により製造することができる。本発明において、直径
が0.001〜1μmのP化合物の個数を100個/m
2 以上に分散させる方法としては、例えば、最終冷間
圧延前の中間焼鈍条件を規定する方法などがある。前記
中間焼鈍では、400〜800℃の温度で20分〜4時
間程度加熱する条件が推奨される。本発明の銅合金で
は、半田が通常のPb−Sn半田でも、Pbフリー半田
でも同様の効果が発現される。
[0011] The copper alloy of the present invention can be produced by a conventional method of performing melt casting, homogenization treatment, face milling, hot rolling, and cold rolling including intermediate annealing. In the present invention, the number of P compounds having a diameter of 0.001 to 1 μm is defined as 100 / m.
As a method of dispersing the particles to m 2 or more, for example, there is a method of defining intermediate annealing conditions before final cold rolling. In the intermediate annealing, it is recommended that heating be performed at a temperature of 400 to 800 ° C. for about 20 minutes to 4 hours. In the copper alloy of the present invention, the same effect is exhibited whether the solder is ordinary Pb-Sn solder or Pb-free solder.

【0012】[0012]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)請求項1記載発明で規定する組成範囲内の
種々のCu−Sn−Fe−Ni−P合金を高周波溶解炉
により溶解し、これを10〜30℃/秒の冷却速度でD
C鋳造して厚さ30mm、幅100mm、長さ150m
mの鋳塊を得た。これら鋳塊のうち、Snの含有量が
5.0wt%以上の鋳塊は800℃で1時間加熱する均
質化処理を施したのち徐冷し、次いで両面を面削して酸
化皮膜を除去し、次いで冷間圧延を施して厚さ1.2m
mの板材としたのち、不活性ガス雰囲気中で700℃で
1時間熱処理し、その後冷間圧延し、次いで400〜6
00℃で0.01〜1時間熱処理したのち、最終冷間圧
延を施して厚さ0.25mmの板材を製造した。
The present invention will be described below in detail with reference to examples. (Example 1) Various Cu-Sn-Fe-Ni-P alloys within the composition range specified in the first aspect of the present invention are melted by a high-frequency melting furnace, and are melted at a cooling rate of 10 to 30 ° C / sec.
Cast C, thickness 30mm, width 100mm, length 150m
m was obtained. Of these ingots, the ingot with a Sn content of 5.0 wt% or more was subjected to a homogenization treatment of heating at 800 ° C. for 1 hour, then slowly cooled, and then both surfaces were ground to remove an oxide film. And then cold rolled to a thickness of 1.2 m
m, and heat-treated at 700 ° C. for 1 hour in an inert gas atmosphere, then cold-rolled, and then 400 to 6
After heat treatment at 00 ° C. for 0.01 to 1 hour, a final cold rolling was performed to produce a 0.25 mm thick plate.

【0013】Snの含有量が5.0wt%未満の鋳塊は
900℃で0.5時間の再熱処理を不活性ガス中で施
し、そのまま厚さ10mmに熱間圧延し、熱間圧延材の
両面を面削したのち、冷間圧延して厚さ1.2mmの板
材とし、次いでこれを不活性ガス雰囲気中で700℃で
1時間熱処理し、その後冷間圧延し、次いで400〜6
00℃で0.01〜1時間熱処理したのち、最終冷間圧
延を施して厚さ0.25mmの板材を製造した。
[0013] The ingot having a Sn content of less than 5.0 wt% is subjected to a reheat treatment at 900 ° C for 0.5 hours in an inert gas, and hot-rolled to a thickness of 10 mm as it is. After chamfering both surfaces, the plate was cold-rolled into a sheet having a thickness of 1.2 mm, which was then heat-treated at 700 ° C. for 1 hour in an inert gas atmosphere, and then cold-rolled.
After heat treatment at 00 ° C. for 0.01 to 1 hour, a final cold rolling was performed to produce a 0.25 mm thick plate.

【0014】(実施例2)請求項2記載発明で規定する
組成範囲内の種々のCu−Zn−Sn−Fe−Ni−P
合金を用いた他は、実施例1と同じ方法により厚さ0.
25mmの板材を製造した。
(Example 2) Various Cu-Zn-Sn-Fe-Ni-P within the composition range specified in the second aspect of the present invention.
Except that an alloy was used, the same method as in Example 1 was applied to obtain a thickness of 0.1 mm.
A 25 mm plate was produced.

【0015】(比較例1)請求項1記載発明で規定する
組成範囲外の種々のCu−Sn−Fe−Ni−P合金を
用いた他は、実施例1と同じ方法により厚さ0.25m
mの板材を製造した。
Comparative Example 1 A thickness of 0.25 m was obtained in the same manner as in Example 1 except that various Cu-Sn-Fe-Ni-P alloys outside the composition range specified in the first aspect of the present invention were used.
m plate material was manufactured.

【0016】(比較例2)請求項2記載発明で規定する
組成範囲外の種々のCu−Zn−Sn−Fe−Ni−P
合金を用いた他は、実施例2と同じ方法により厚さ0.
25mmの板材を製造した。
(Comparative Example 2) Various Cu-Zn-Sn-Fe-Ni-P outside the composition range specified in the second aspect of the present invention.
Except that an alloy was used, the same method as in Example 2 was applied to a thickness of 0.1 mm.
A 25 mm plate was produced.

【0017】実施例1、2、比較例1、2で製造した各
々の板材の半田接合性を下記方法により調べた。即ち、
図1(イ)に示すように、前記板材から20mm×20
mmの供試材1を切り出し、片面に5mmφの穴aの開
いたシール2を貼り付け、このシール2上に、5mmφ
の穴bを開けたアルミニウム製の半田保持治具(50×
50×5mm)3を、穴aと穴bを合致させて配置し、
前記穴a、b内に溶融半田4を盛り、この溶融半田4に
2mmφのEF線(Cu被覆Fe線、長さ100mm)
5の先を差し入れ、EF線5を供試材1に対し垂直に保
持し、溶融半田4が凝固したのち、半田保持治具3およ
びシール2を外し、図1(ロ)に示す引張試験材6を得
た。EF線5は半田7から抜けないように先端から約2
mmの箇所を直角に折り曲げた。
The solder bonding properties of the respective plates manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 were examined by the following method. That is,
As shown in FIG. 1 (a), a 20 mm × 20
mm of a test material 1 was cut out, and a seal 2 having a hole a of 5 mmφ was stuck on one side, and a 5 mmφ
Aluminum solder holding jig (50 ×
50 × 5 mm) 3 is arranged with the hole a and the hole b matched.
A molten solder 4 is placed in the holes a and b, and an EF wire of 2 mmφ (Cu-coated Fe wire, length 100 mm) is placed on the molten solder 4.
5, the EF wire 5 is held perpendicular to the test material 1, and after the molten solder 4 solidifies, the solder holding jig 3 and the seal 2 are removed, and the tensile test material shown in FIG. 6 was obtained. The EF wire 5 is about 2
mm was bent at a right angle.

【0018】このようにして得られた各々の引張試験材
6を大気中で150℃で1000時間加熱したのち、引
張試験をして破断強度tを測定し、この破断強度の加熱
前の破断強度Tに対する比率S=(t/T)×100%
を求めて、半田接合性を判定した。S値が大きい程、半
田接合性に優れることを示す。前記引張試験は供試材1
とEF線5を各々専用チャックで挟持して行った。引張
試験での破断箇所は殆どが半田接合面であった。なお、
P化合物の個数は、供試材表面を希薄酸(硫酸+過酸化
水素)で約30秒間腐食し、電子顕微鏡(SEM)によ
り500〜2000倍に拡大して写真撮影し、写真上で
直径が0.001〜1μmのP化合物の個数を計測し
た。結果を、図2〜4に示す。
Each of the tensile test materials 6 thus obtained was heated in the air at 150 ° C. for 1000 hours, and then subjected to a tensile test to measure the breaking strength t. Ratio S to T = (t / T) × 100%
Was determined, and the solder jointability was determined. The larger the S value is, the more excellent the solder bonding property is. The tensile test was performed on the test material 1
And the EF wire 5 were each held by a dedicated chuck. Most of the fractures in the tensile test were solder joint surfaces. In addition,
The number of P compounds was determined by corroding the surface of the test material with a dilute acid (sulfuric acid + hydrogen peroxide) for about 30 seconds, taking a photograph at a magnification of 500 to 2000 times with an electron microscope (SEM), The number of 0.001 to 1 μm P compounds was counted. The results are shown in FIGS.

【0019】図2には、Fe、Ni、Pの合計含有量と
S値の関係を示した。Fe、Ni、Pの合計含有量が
0.05〜1.0wt%の範囲内において、S値はCu
−Sn系合金の場合40〜67%、Cu−Zn−Sn系
合金の場合54〜80%であり、良好な半田接合性を示
した。Fe、Ni、Pの合計含有量が0.05〜1.0
wt%の範囲外ではS値は急激に低下した。なお、ここ
では(Fe+Ni)/Pの比率は0.2〜3.0の範囲
内とした。
FIG. 2 shows the relationship between the total content of Fe, Ni and P and the S value. When the total content of Fe, Ni, and P is in the range of 0.05 to 1.0 wt%, the S value is Cu.
In the case of -Sn-based alloy, it was 40-67%, and in the case of Cu-Zn-Sn-based alloy, it was 54-80%, showing good solderability. The total content of Fe, Ni and P is 0.05 to 1.0
Outside the range of wt%, the S value sharply decreased. Here, the ratio of (Fe + Ni) / P was in the range of 0.2 to 3.0.

【0020】図3には、(Fe+Ni)/Pの比率とS
値の関係を示した。(Fe+Ni)/Pの比率が0.2
〜3.0の範囲内において、S値は、Cu−Sn系合金
の場合30〜67%、Cu−Zn−Sn系合金の場合4
6〜80%であり、良好な半田接合性を示した。(Fe
+Ni)/Pの比率が0.2〜3.0の範囲外ではS値
は急激に低下した。なお、ここではFe、Ni、Pの合
計含有量は0.05〜1.0wt%の範囲内とした。
FIG. 3 shows the ratio of (Fe + Ni) / P and S
The relationship between the values is shown. (Fe + Ni) / P ratio is 0.2
Within the range of ~ 3.0, the S value is 30-67% for the Cu-Sn-based alloy and 4 for the Cu-Zn-Sn-based alloy.
6 to 80%, indicating good solder jointability. (Fe
When the ratio of (+ Ni) / P was out of the range of 0.2 to 3.0, the S value sharply decreased. Here, the total content of Fe, Ni, and P was in the range of 0.05 to 1.0 wt%.

【0021】図4には、直径が0.001〜1μmのP
化合物の個数とS値の関係を示した。前記P化合物の個
数が100以上において、S値は、Cu−Sn系合金の
場合31〜67%、Cu−Zn−Sn系合金の場合46
〜80%であり、良好な半田接合性を示した。P化合物
の個数が100未満ではS値は28%以下に低下した。
なお、ここでは(Fe+Ni)/Pの比率は0.2〜
3.0の範囲内、Fe、Ni、Pの合計含有量は0.0
5〜1.0wt%の範囲内とした。
FIG. 4 shows a P having a diameter of 0.001 to 1 μm.
The relationship between the number of compounds and the S value was shown. When the number of the P compounds is 100 or more, the S value is 31 to 67% in the case of the Cu-Sn-based alloy and 46 in the case of the Cu-Zn-Sn-based alloy.
~ 80%, indicating good solderability. When the number of P compounds was less than 100, the S value was reduced to 28% or less.
Here, the ratio of (Fe + Ni) / P is 0.2 to
Within the range of 3.0, the total content of Fe, Ni, and P is 0.0
The content was in the range of 5 to 1.0 wt%.

【0022】実施例1で製造した本発明の各々の銅合金
板材について、機械的性質、導電率、応力緩和特性、曲
げ加工性などを調べたが、いずれも、電子部品用材料と
して必要な特性を満足するものであった。
Each of the copper alloy sheets of the present invention produced in Example 1 was examined for mechanical properties, electrical conductivity, stress relaxation properties, bending workability, etc., all of which were required as materials for electronic parts. Was satisfied.

【0023】[0023]

【発明の効果】以上に述べたように、請求項1記載発明
の銅合金はSn、Fe、NiおよびPが適量含有されて
いるので、電子部品用材料に要求される機械的性質など
が満足され、さらにFe、NiおよびPの〔(Fe+N
i)/P〕の式で示される原子量比を0.2〜3.0に
規定し、また直径が0.001〜1μmのP化合物の個
数を100個/mm2 以上に規定するので、Pはその多
くが化合物として存在して半田接合界面に拡散するよう
なことがなく、従って半田接合性の経時的劣化が抑制さ
れる。請求項2記載発明の銅合金は、さらにZnを適量
含有させたもので、請求項1記載発明の銅合金と同じ効
果を有する。依って、本発明の銅合金はコネクタ、端
子、リレースイッチなどの電子部品に用いて良好な半田
接合性が安定して得られ、工業上顕著な効果を奏する。
As described above, since the copper alloy according to the first aspect of the present invention contains Sn, Fe, Ni and P in appropriate amounts, the mechanical properties required for the material for electronic parts are satisfied. And ([Fe + N] of Fe, Ni and P
i) / P] is defined as 0.2 to 3.0, and the number of P compounds having a diameter of 0.001 to 1 μm is defined as 100 / mm 2 or more. Most of them are present as compounds and do not diffuse to the solder joint interface, so that the deterioration with time of the solder joint is suppressed. The copper alloy according to the second aspect of the invention further contains an appropriate amount of Zn, and has the same effect as the copper alloy according to the first aspect of the invention. Therefore, the copper alloy of the present invention can be used for electronic components such as connectors, terminals, and relay switches, so that good solder bonding properties can be stably obtained, and have a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)、(ロ)は、半田接合強度を測定する方
法の説明図である。
FIGS. 1A and 1B are explanatory diagrams of a method for measuring a solder joint strength. FIG.

【図2】S値とFe、NiおよびPの合計含有量との関
係図である。
FIG. 2 is a diagram showing the relationship between the S value and the total content of Fe, Ni and P.

【図3】S値と((Fe+Ni)/P)比との関係図で
ある。
FIG. 3 is a relationship diagram between an S value and a ratio of ((Fe + Ni) / P).

【図4】S値とP化合物個数との関係図である。FIG. 4 is a graph showing the relationship between the S value and the number of P compounds.

【符号の説明】[Explanation of symbols]

1 供試材 2 シール 3 半田保持治具 4 溶融半田 5 EF線 6 引張試験材 7 半田 REFERENCE SIGNS LIST 1 sample material 2 seal 3 solder holding jig 4 molten solder 5 EF wire 6 tensile test material 7 solder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Snを3.0〜9.0wt%、Fe、N
iおよびPを合計で0.05〜1.0wt%含有し、前
記Fe、NiおよびPの〔(Fe+Ni)/P〕の式で
示される原子量比が0.2〜3.0であり、残部がCu
および不可避不純物からなる銅合金であって、前記銅合
金内に分布する直径が0.001〜1μmのP化合物の
個数が100個/mm2 以上であることを特徴とする半
田接合性に優れる電子電気機器用銅合金。
1. An alloy containing Sn in an amount of 3.0 to 9.0 wt%, Fe, N
i and P are contained in a total amount of 0.05 to 1.0 wt%, and the atomic weight ratio of Fe, Ni and P represented by the formula [(Fe + Ni) / P] is 0.2 to 3.0, and the balance is Is Cu
And a copper alloy comprising unavoidable impurities, wherein the number of P compounds having a diameter of 0.001 to 1 μm distributed in the copper alloy is not less than 100 / mm 2 , and is excellent in solder jointability. Copper alloy for electrical equipment.
【請求項2】 Znを5.0〜40wt%、Snを0.
01〜5.0wt%、Fe、NiおよびPを合計で0.
05〜1.0wt%含有し、前記Fe、NiおよびPの
〔(Fe+Ni)/P〕の式で示される原子量比が0.
2〜3.0であり、残部がCuおよび不可避不純物から
なる銅合金であって、前記銅合金内に分布する直径が
0.001〜1μmのP化合物の個数が100個/mm
2 以上であることを特徴とする半田接合性に優れる電子
電気機器用銅合金。
2. A Zn content of 5.0 to 40 wt% and a Sn content of 0.
01 to 5.0 wt%, Fe, Ni and P are added in a total amount of 0.1 to 5.0 wt%.
And the atomic weight ratio of Fe, Ni and P represented by the formula [(Fe + Ni) / P] is 0.1 to 1.0 wt%.
2 to 3.0, the balance being a copper alloy composed of Cu and unavoidable impurities, wherein the number of P compounds having a diameter of 0.001 to 1 μm distributed in the copper alloy is 100 / mm.
A copper alloy for electronic and electrical equipment having an excellent solderability, characterized in that it is 2 or more.
JP2000184342A 2000-06-20 2000-06-20 Copper alloy for electronic and electric apparatus excellent in solder weldnability Pending JP2002003966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184342A JP2002003966A (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electric apparatus excellent in solder weldnability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184342A JP2002003966A (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electric apparatus excellent in solder weldnability

Publications (1)

Publication Number Publication Date
JP2002003966A true JP2002003966A (en) 2002-01-09

Family

ID=18684799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184342A Pending JP2002003966A (en) 2000-06-20 2000-06-20 Copper alloy for electronic and electric apparatus excellent in solder weldnability

Country Status (1)

Country Link
JP (1) JP2002003966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
WO2012096237A1 (en) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071220A1 (en) * 2008-12-19 2010-06-24 古河電気工業株式会社 Copper alloy material for electrical/electronic components, and method for producing same
WO2012096237A1 (en) * 2011-01-13 2012-07-19 三菱マテリアル株式会社 Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
JP2012158829A (en) * 2011-01-13 2012-08-23 Mitsubishi Materials Corp Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
US8951369B2 (en) 2012-01-06 2015-02-10 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device and terminal
US9653191B2 (en) 2012-12-28 2017-05-16 Mitsubishi Materials Corporation Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal

Similar Documents

Publication Publication Date Title
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2009104615A1 (en) Copper alloy material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP2007039735A (en) Method for producing copper alloy sheet with deformed cross section
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JPH036341A (en) High strength and high conductivity copper-base alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPS58124254A (en) Copper alloy for lead material of semiconductor device
JP4431741B2 (en) Method for producing copper alloy
JP2002003966A (en) Copper alloy for electronic and electric apparatus excellent in solder weldnability
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS59145746A (en) Copper alloy for lead material of semiconductor apparatus
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP4845747B2 (en) Copper alloy material with plating for fuse and manufacturing method thereof
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP4781008B2 (en) Modified cross-section copper alloy plate and manufacturing method thereof
JPS60152646A (en) Material for lead frame for semiconductor
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Effective date: 20061212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070213

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070330