JPS59129471A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59129471A
JPS59129471A JP336183A JP336183A JPS59129471A JP S59129471 A JPS59129471 A JP S59129471A JP 336183 A JP336183 A JP 336183A JP 336183 A JP336183 A JP 336183A JP S59129471 A JPS59129471 A JP S59129471A
Authority
JP
Japan
Prior art keywords
film
gate electrode
resistance
gate
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP336183A
Other languages
Japanese (ja)
Other versions
JPH0532910B2 (en
Inventor
Kyoichi Suguro
恭一 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP336183A priority Critical patent/JPS59129471A/en
Publication of JPS59129471A publication Critical patent/JPS59129471A/en
Publication of JPH0532910B2 publication Critical patent/JPH0532910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To lower the resistance of a gate electrode or an electric wire for an IG-FET while improving chemical resistance and oxidation resistance by constituting these gate electrode or electric wire by two layer structure of metallic layers mainly comprising a high melting-point metal-silicon alloy and Al. CONSTITUTION:A thick field oxide film 2 is formed to the peripheral section of a P type Si substrate 1, a thin gate insulating film 3 is formed on the surface of the substrate 1 surrounded by the film 2, and a MoSi2 film 4 in approximately 2,000Angstrom thickness and a Si3N4 film 5 in approximately 1,000Angstrom thickness are laminated and applied on the whole surface containing these films. The central surface of the laminated films is coated with a mask made of a photo-resist film 6, only a section functioning as a gate electrode is left through reactive ion etching, and other laminated films are removed. The film 5 is removed, N type impurity ions are implanted into the substrate 1 on both sides of the gate electrode while using the gate electrode as a mask to form source-drain regions 7, the regions 7 are coated with oxide films 8, an oxide film 9 is also formed on the side surface of the gate electrode, and the surface is coated with an Al film 10.

Description

【発明の詳細な説明】 (発明の・蛍する技術分野) 本発明け、高融点余興硅化物又は、AIをゲート電極配
線材料として用いた半導体基板上びその製造方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an improvement in a semiconductor substrate using a high melting point entertainment silicide or AI as a gate electrode wiring material and a method for manufacturing the same.

(従来技術とその間囲屯) 近年、多結晶シリコン・ゲート電極を有する半導体装置
の代りにMo%Wなど高帥点金属の硅化物のゲート電極
を有する半導体装置が、台頭しつつあみ。その理由は、
多結晶シリコンと比べ約1桁以上抵抗が低く、かつ硅化
物である車から、後の酸化及びその他の熱処理工程にお
いて安定f′A為事である。
(Prior art and its surroundings) In recent years, semiconductor devices having gate electrodes made of silicides of high-strength point metals such as Mo%W have been gaining popularity instead of semiconductor devices having polycrystalline silicon gate electrodes. The reason is,
The resistance is about one order of magnitude lower than that of polycrystalline silicon, and since it is a silicide, it has a stable f'A property during subsequent oxidation and other heat treatment steps.

しかしながら金属硅化物のみを用いる場合、その比抵抗
値が、50〜100μΩmであるため、4000Aの厚
みにしても1.Q/口均下の抵抗値を得るのは併しい。
However, when only metal silicide is used, its specific resistance value is 50 to 100 μΩm, so even if the thickness is 4000A, the resistivity is 1. It is difficult to obtain the resistance value of Q/mouth.

抵抗値の低下を考えると、硅化物で々く金属単一層を用
いる方法が、あるが、耐薬品性、耐酸化性の点で、従来
の多結晶Siゲートプロセスと互換性が々く、その点で
硅化物より劣る。又、 A18 + 02系は、500
℃程度の熱処理工程において、A1が、SiO□を還元
し、自らA1□03を形成する反応のため、ゲート酸化
膜の劣化け、呻けられない。
Considering the reduction in resistance value, there is a method of using a single metal layer made of silicide, but it is not compatible with the conventional polycrystalline Si gate process in terms of chemical resistance and oxidation resistance. In this respect, it is inferior to silicide. Also, A18 + 02 series is 500
In the heat treatment process at temperatures of about .degree. C., A1 reduces SiO□ and forms A1□03 by itself, so that no deterioration of the gate oxide film occurs.

又、高錦点金属の低抵抗性を生かすべく工夫もあり、例
えば、耐薬品性、耐酸化性を改善するため、高融点金属
を所望のパターンに加工した後、その上にSi層を堆積
するか又はS r H4などにより金属層の外部を硅化
物化する方法があるが、いずれの方法も後の熱処fI!
により金属と硅化物が混合し、中間相を形ri’i シ
、最終的には、高融点金属層本来の長所である低抵抗性
が失われてし壕う。
There are also ways to take advantage of the low resistance of high melting point metals. For example, in order to improve chemical resistance and oxidation resistance, after processing a high melting point metal into a desired pattern, a Si layer is deposited on top of it. Alternatively, there is a method of turning the outside of the metal layer into a silicide using S r H4, etc., but both methods require subsequent heat treatment fI!
This causes the metal and the silicide to mix, form an intermediate phase, and ultimately cause the high melting point metal layer to lose its inherent advantage of low resistance.

(発明の目的) 本発明は、ゲート電極もしくは配線の低抵抗化を実現す
ることを目的としている。
(Objective of the Invention) The object of the present invention is to realize a reduction in resistance of a gate electrode or wiring.

(発明の概要) 本発明によるMIS型電界効果トランジスタのゲート1
1t極・配線構造の基本構造は、ゲート絶縁膜上に高一
点金属−8+合金層及びAIを主成分とする金属層との
積層を形成し、これをゲート電極・配線とすることを特
徴とする。高融点金属−Si合金層は、従来からある多
結晶Srプロセスを大きく変可せずに嫡用できるためで
、その合金層上にAl系金属層を積t@することで、低
抵抗化を実現している。さらに合金層は、AIとゲート
絶縁膜との反応の咀市層の役割も果す。従って合金層の
代りに多結晶Siで置きか乏、ると、A1/Si共晶反
応のためMIS特性が不安定と々す、代替材料とけたり
えない。
(Summary of the invention) Gate 1 of MIS type field effect transistor according to the invention
The basic structure of the 1T electrode/wiring structure is to form a stack of a high point metal-8+ alloy layer and a metal layer mainly composed of AI on the gate insulating film, and use this as the gate electrode/wiring. do. This is because the high melting point metal-Si alloy layer can be used without major changes in the conventional polycrystalline Sr process, and by stacking an Al-based metal layer on top of the alloy layer, lower resistance can be achieved. It has been realized. Furthermore, the alloy layer also serves as a barrier layer for the reaction between the AI and the gate insulating film. Therefore, if polycrystalline Si is used instead of the alloy layer, the MIS characteristics will become unstable due to the A1/Si eutectic reaction, and alternative materials cannot be used.

本発明による製造方法は、高融点金属−Si合金層上に
砦化硅素膜を積層させることにより、パターニング後の
酸化性雰囲気熱処理で合金層上に酸化膜が形成すること
を15目止する。又、熱処理後学化膜の選捩エツチング
を行なうことにより、レジストエ稈を設けること々く、
合金上にAl系金属層とのコンタクトを実現でき、低抵
抗2層ゲート電極・配線が形成される。
The manufacturing method according to the present invention prevents the formation of an oxide film on the alloy layer during heat treatment in an oxidizing atmosphere after patterning by laminating a fortified silicon film on the high melting point metal-Si alloy layer. In addition, by selectively etching the chemical film after heat treatment, a resist culm is often provided.
Contact with the Al-based metal layer can be realized on the alloy, and a low-resistance two-layer gate electrode/wiring can be formed.

(発明の実施例) 次に本発明による半導体装置及びその製造方法を第1乃
至第5図を用いて謂、明する。
(Embodiments of the Invention) Next, a semiconductor device and a method for manufacturing the same according to the present invention will be described with reference to FIGS. 1 to 5.

本発明による基本的構造を第1図に示す第1図において
Sr半半導体版板1フィールド酸化膜2及びゲート絶縁
膜3が形成され、その上にゲート電極・配線として、高
融点金F%−8i合金層4及びA1を主成分とした金属
層5の積層導電膜が形成されている。
The basic structure according to the present invention is shown in FIG. 1. In FIG. 1, an Sr semi-semiconductor plate 1 field oxide film 2 and a gate insulating film 3 are formed, and a high melting point gold F%- A laminated conductive film including an 8i alloy layer 4 and a metal layer 5 mainly composed of A1 is formed.

次に高融点金Ji%Si合金とA1系金属の21@電極
・配線を実現すべき製造方法を第2図〜第5図に示す。
Next, a manufacturing method for realizing 21@ electrodes/wirings made of a high melting point gold Ji%Si alloy and an A1 metal is shown in FIGS. 2 to 5.

第2図においてP型(又はn型)Si基板1に7000
A−’のフィールド酸化膜2及び20OA’のゲート酸
化膜をを形成した後、例えば、約2OnOA’の高融点
金R−8i合金、例えば、Mo S + 2膜4及び1
000A’窒化硅素膜5を被着し、フォトレジストを塗
布1〜、所望のパターン6を形成した後、レジストをマ
スクとして9化硅素itα5及びMo5t2膜4を反応
性イオンエツチングにより第2図のように加工した後、
フォトレジストを除去し、ソース及びドレイン領域のゲ
ート酸化膜を除去し、第3図のように9化素膜5及びM
o S I 2膜4をマスクとし、イオン注入法により
Asを4QKeVにて3X10  cm  注入し、ソ
ース及びドレイン7を形成した移、第4図において乾燥
酸素雰囲気にて1000℃10分の酸化を行ないソース
及びドレイン上に酸化膜8を、MoSi2膜の側壁に酸
化膜9を形成し、MO812上の窒化硅素膜を除去し、
AI瞭を約20nOA’被着し、写真食刻法によりvJ
5rIソ1のようにNf o S + 2膜4の上にA
111α10を形成する。以十の方法を用いれば、ゲー
ト市、極とソース又は、ドレイ/との耐圧不向の事故も
少々く、低抵抗のゲート電極・配線が実現上れる。この
方法により字句したゲート配線材料のシート抵抗値1寸
、約0.1Ω/口であり、従来の高融点金網硅化物単一
に比べ1桁以上低抵抗化される。
In Fig. 2, a P-type (or n-type) Si substrate 1 has a
After forming the field oxide film 2 of A-' and the gate oxide film of 20 OA', for example, a high melting point gold R-8i alloy of about 2 On OA', for example, Mo S + 2 films 4 and 1 are formed.
000A' After depositing a silicon nitride film 5, applying photoresist 1 to 6, and forming a desired pattern 6, the silicon 9ide itα5 and Mo5t2 films 4 are etched by reactive ion etching using the resist as a mask as shown in FIG. After processing into
The photoresist is removed, the gate oxide film in the source and drain regions is removed, and the 9-oxide film 5 and the M9 film are removed as shown in FIG.
o Using the SI 2 film 4 as a mask, As was implanted to a thickness of 3×10 cm at 4Q KeV by ion implantation to form the source and drain 7. Oxidation was performed at 1000° C. for 10 minutes in a dry oxygen atmosphere as shown in FIG. An oxide film 8 is formed on the source and drain, an oxide film 9 is formed on the side wall of the MoSi2 film, and the silicon nitride film on the MO 812 is removed.
Approximately 20nOA' of AI resin was deposited, and vJ was formed by photolithography.
A on the Nf o S + 2 film 4 like 5rIso1
111α10 is formed. By using the above-mentioned methods, there is less chance of unfavorable withstand voltage between gate electrodes, electrodes and sources or drains, and gate electrodes and interconnections with low resistance can be realized. By this method, the sheet resistance value of the gate wiring material is approximately 0.1 Ω/unit, which is more than an order of magnitude lower than the conventional high melting point wire mesh silicide alone.

(発明の効果) uJ上の説明でわかるように本発明によれば、高融点金
属硅化物では実現できない低抵抗ゲート電極・明線が実
現できる。しかも、金属単層を用いた時に起こる耐薬品
性、耐酸化性における弱点がなく、第1鰯として金M−
8i合金を甲いているため従来の多結晶Si又は、金属
硅化物ゲートプロセスを適甲でき、第2層のA1を主成
分とした金属層が、低抵抗化ならしめる。
(Effects of the Invention) As can be seen from the explanation above, according to the present invention, a low-resistance gate electrode/bright line that cannot be realized with a high melting point metal silicide can be realized. Moreover, there are no weaknesses in chemical resistance and oxidation resistance that occur when using a single metal layer, and gold M-
Since it is made of 8i alloy, conventional polycrystalline Si or metal silicide gate processes can be applied, and the second layer, a metal layer mainly composed of A1, provides low resistance.

実施例で説明した第1層のM o S I 2は、他の
高融点金属−Si合金でも同様の効果をもつ。又第21
1〇A1け、純AIでなくてもCu%Si及び他の元紫
を添加したA1の場合にも同様の効果をもつ。
The first layer M o S I 2 described in the examples has similar effects with other high melting point metal-Si alloys. Also the 21st
10 A1 has the same effect even if it is not pure AI but A1 to which Cu%Si and other elements are added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるMIS−F’E’l’ゲート電
極・M襖の構造を示す断面図、plfJ2図〜第5図は
、本発明によるMIS−T’ET製造方法の簡単化した
工程図を示す。 1・・p刑(又はn深i、 ) S i基板、2・・フ
ィールド酸(k膜、3・・ゲート絶縁膜、4・・・高争
11点金属−8i合金膜、5・・窒化硅素嘩、6・・・
フォトレジスト層 7n+(又はp+)不純物注入層〔
ソース及びドレイン〕、8・・・酸化膜、9・・・酸化
膜、10・・A1を主成分とする金属際。 (7317)  代理人 弁理士 則近 憲 佑(1”
iか1名)(7) w&      法 +        0 滅       銖
FIG. 1 is a cross-sectional view showing the structure of the MIS-F'E'l' gate electrode/M sliding door according to the present invention, and plfJ2 to FIG. 5 are simplified views of the MIS-T'ET manufacturing method according to the present invention. A process diagram is shown. 1...p (or n depth i) Si substrate, 2...field acid (k film, 3...gate insulating film, 4...high-strength 11 point metal-8i alloy film, 5...nitriding Silicon fight, 6...
Photoresist layer 7n+ (or p+) impurity implantation layer [
Source and drain], 8... Oxide film, 9... Oxide film, 10... Metal border containing A1 as the main component. (7317) Agent Patent Attorney Kensuke Norichika (1”
(i or 1 person) (7) w & law + 0 destruction

Claims (2)

【特許請求の範囲】[Claims] (1)e縁ゲート型電界効果トランジスタのゲート電極
もしくは配線が、高融点金属−硅素合金及びAIを主成
分とした金属層の2層構造よりなることを特徴とする半
導体装置。
(1) A semiconductor device characterized in that the gate electrode or wiring of the e-edge gate type field effect transistor has a two-layer structure of a metal layer mainly composed of a high melting point metal-silicon alloy and AI.
(2)半導体基板上の素子形成領域にゲート絶縁膜を形
成し、次いで第1の全4騎である高融点金属−硅素合金
膜及び、窒化硅素膜を被差し、ゲート電極もしくけ配線
パターンを形成する工程と、次いで酸化性雰囲気中にて
、熱処理を行なった後前記第1の今生層上の窒化硅素膜
を除去(〜、第2の金尋誓であるAIを主成分とした金
属線を被着し、ゲート電極を形成する工程とを具備する
ことを特徴とする半導体装置の製造方法。
(2) Form a gate insulating film in the element formation region on the semiconductor substrate, then cover with the first four components, a refractory metal-silicon alloy film and a silicon nitride film, and form a gate electrode and wiring pattern. After the step of forming, and then heat treatment in an oxidizing atmosphere, the silicon nitride film on the first layer is removed. 1. A method for manufacturing a semiconductor device, comprising the steps of depositing a gate electrode and forming a gate electrode.
JP336183A 1983-01-14 1983-01-14 Semiconductor device and manufacture thereof Granted JPS59129471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP336183A JPS59129471A (en) 1983-01-14 1983-01-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP336183A JPS59129471A (en) 1983-01-14 1983-01-14 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59129471A true JPS59129471A (en) 1984-07-25
JPH0532910B2 JPH0532910B2 (en) 1993-05-18

Family

ID=11555206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP336183A Granted JPS59129471A (en) 1983-01-14 1983-01-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59129471A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687342A (en) * 1979-12-18 1981-07-15 Toshiba Corp Manufacture of semiconductor device
JPS5730328A (en) * 1980-06-30 1982-02-18 Ibm Method of forming high melting point metallic silicide layer
JPS57149776A (en) * 1981-03-12 1982-09-16 Sony Corp Formation of high-melting point metal and silicon compound thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687342A (en) * 1979-12-18 1981-07-15 Toshiba Corp Manufacture of semiconductor device
JPS5730328A (en) * 1980-06-30 1982-02-18 Ibm Method of forming high melting point metallic silicide layer
JPS57149776A (en) * 1981-03-12 1982-09-16 Sony Corp Formation of high-melting point metal and silicon compound thin film

Also Published As

Publication number Publication date
JPH0532910B2 (en) 1993-05-18

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
JPH02273934A (en) Semiconductor element and manufacture thereof
JPH11195753A (en) Semiconductor device and manufacture thereof
JP2002208695A (en) Semiconductor device and manufacturing method thereof
JPH06140519A (en) Semiconductor device and manufacture thereof
JPS59129471A (en) Semiconductor device and manufacture thereof
JPS59195870A (en) Semiconductor device
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS6165470A (en) Semiconductor ic device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0730108A (en) Mis type semiconductor device and its manufacture
JP2654175B2 (en) Method for manufacturing semiconductor device
JPS58155767A (en) Manufacture of metal oxide semiconductor type semiconductor device
JPH10242077A (en) Semiconductor device and its manufacture
JPH0644631B2 (en) Semiconductor device and manufacturing method thereof
JPH02203565A (en) Semiconductor device and its manufacture
JP2712230B2 (en) Method for manufacturing MOS type semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JPH0154853B2 (en)
JPH02194653A (en) Mis transistor
JPH07111969B2 (en) Method for manufacturing semiconductor device
JPS63160329A (en) Manufacture of semiconductor device
JPH01181469A (en) Semiconductor device and its manufacture
JPS63143841A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01175770A (en) Preparation of semiconductor device