JPH01181469A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH01181469A
JPH01181469A JP288388A JP288388A JPH01181469A JP H01181469 A JPH01181469 A JP H01181469A JP 288388 A JP288388 A JP 288388A JP 288388 A JP288388 A JP 288388A JP H01181469 A JPH01181469 A JP H01181469A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon film
semiconductor device
wiring
transistor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP288388A
Other languages
Japanese (ja)
Inventor
Shigeji Yoshii
吉井 成次
Shozo Okada
岡田 昌三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP288388A priority Critical patent/JPH01181469A/en
Publication of JPH01181469A publication Critical patent/JPH01181469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To facilitate high speed operation and high density integration, by forming a polycrystalline silicon wiring layer on a semiconductor substrate, in the manner in which the thickness is large in a transistor region part, and making a polycide structure by arranging high melting point metallic silicide on the polycrystalline silicon. CONSTITUTION:Only the gate wiring of a transistor forming region is constituted by a thick polycrystalline silicon film 14, in order to stabilize element characteristics, and a polycide structure wherein high melting point metallic silicide 16 is formed on the polycrystalline silicon film 14 is made. Since the polycrystalline silicon film 14 of transistor region of the gate wiring is thick, the reaction between a gate oxide film 13 and elements to constitute silicide is restrained, thereby enabling the manufacture of a semiconductor device having stable element characteristics. Further, since a polycrystalline silicon film 16 to constitute the wiring except the transistor region is thin, the step-difference is reduced, and the later manufacturing process is facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置およびその製造方法に関し、特にゲ
ート遅延が少なくトランジスタ部の安定化が容易なゲー
ト配線構造をもつ半導体装置およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to a semiconductor device having a gate wiring structure with low gate delay and easy stabilization of the transistor portion, and a method for manufacturing the same. be.

従来の技術  ・ 従来の半導体装置のゲート配線構造は、第2図に示すよ
うな、多結晶シリコン19上に高融点金属シリサイド1
6を形成した二層のポリサイドゲート構造のものか、多
結晶シリコン、または、高融点金属シリサイドを用いた
単層構造のものよりなっていた。
Conventional technology - The gate wiring structure of a conventional semiconductor device consists of high melting point metal silicide 1 on polycrystalline silicon 19, as shown in FIG.
6, or a single layer structure using polycrystalline silicon or high melting point metal silicide.

第4図において、11は半導体基体、12はフィールド
酸化膜、19は多結晶シリコン、16が高融点金属シリ
サイド、13はゲート酸化膜、17は絶縁膜、18はア
ルミ配線である。
In FIG. 4, 11 is a semiconductor substrate, 12 is a field oxide film, 19 is polycrystalline silicon, 16 is a refractory metal silicide, 13 is a gate oxide film, 17 is an insulating film, and 18 is an aluminum wiring.

発明が解決しようとする課題 しかし、以上のような構造では、半導体装置が高速、高
集積化された場合、多結晶シリコンゲートでは配線遅延
が問題となり、高融点金属シリサイドゲート及びポリサ
イドゲートでぽゲート酸化膜とゲート材料の反応による
素子特性の劣化やゲ−ト材料中の不純部の影響による素
子特性の劣化が課題となっている。
Problems to be Solved by the Invention However, with the structure described above, when semiconductor devices become faster and more highly integrated, interconnect delay becomes a problem with polycrystalline silicon gates, and high-melting point metal silicide gates and polycide gates become problematic. Deterioration of device characteristics due to reaction between the gate oxide film and gate material and deterioration of device characteristics due to the influence of impurities in the gate material have become issues.

本発明は、このような課題に鑑み、半導体装置において
配線遅延が少なく素子特性の安定化が容易なゲート配線
構造を形成するものである。
In view of these problems, the present invention forms a gate wiring structure in a semiconductor device that has less wiring delay and can easily stabilize element characteristics.

課題を解決するための手段 上記課題を解決するため本発明では、トランジスタ形成
領域のゲート配線のみ素子特性が安定になる様、厚い多
結晶シリコン膜を形成し、上記多結晶シリコン膜上に高
融点金属シリサイドを形成したポリサイド構造とする。
Means for Solving the Problems In order to solve the above problems, in the present invention, a thick polycrystalline silicon film is formed so that the device characteristics are stabilized only for the gate wiring in the transistor formation region, and a high melting point film is formed on the polycrystalline silicon film. It has a polycide structure in which metal silicide is formed.

すなわち、本発明は半導体基板上にゲート電極となる多
結晶シリコン配線層全役け、上記多結晶シリコン配線層
のトランジスタ領域以外の部分の多結晶シリコン膜を一
部エッチング除去したの板上記多結晶シリコン膜上に高
融点金属シリサイドを形成したポリサイド構造とする。
That is, the present invention provides a polycrystalline silicon wiring layer on a semiconductor substrate, in which all of the polycrystalline silicon wiring layer serving as a gate electrode is formed, and a portion of the polycrystalline silicon film in a portion of the polycrystalline silicon wiring layer other than the transistor region is removed by etching. It has a polycide structure in which high melting point metal silicide is formed on a silicon film.

又、トランジスタ領域以外の部分の多結晶シリコン膜は
すべて除去した構造としてもよい。
Alternatively, a structure may be adopted in which all of the polycrystalline silicon film in areas other than the transistor region is removed.

作用 本発明によると、ゲート配線のトランジスタ領域の多結
晶シリコン膜が厚いため、ゲート酸化膜とシリサイド構
成元素との反応が抑制される結果、素子特性の安定な半
導体装置の製造が可能となる。
According to the present invention, since the polycrystalline silicon film in the transistor region of the gate wiring is thick, the reaction between the gate oxide film and the silicide constituent elements is suppressed, so that it is possible to manufacture a semiconductor device with stable device characteristics.

また、トランジスタ領域以外のゲート配線を構成する多
結晶シリコン膜厚が薄いので、段差が軽減され以降の製
造プロセスが容易になる。
Furthermore, since the polycrystalline silicon film constituting the gate wiring in areas other than the transistor region is thin, the step difference is reduced and subsequent manufacturing processes are facilitated.

実施例 本発明の一実施例装置の構造を第1図に、その製造工程
を第3図に示す。第1図において、11は半導体基板、
12は選択酸化膜、13はゲート酸化膜、14はトラン
ジスタ領域の多結晶シリコン、16はトランジスタ領域
以外の多結晶シリコン、17は層間絶縁膜、18はアル
ミ配線である。
EXAMPLE The structure of an apparatus according to an embodiment of the present invention is shown in FIG. 1, and the manufacturing process thereof is shown in FIG. In FIG. 1, 11 is a semiconductor substrate;
12 is a selective oxide film, 13 is a gate oxide film, 14 is polycrystalline silicon in the transistor region, 16 is polycrystalline silicon in areas other than the transistor region, 17 is an interlayer insulating film, and 18 is an aluminum wiring.

第2図にこの装置の製造工程を示す。まず第2図aに示
す様に、従来の方法で形成したゲート酸化膜13上に例
えば2oooへの多結晶シリコン15を形成する。この
とき、上記多結晶シリコン膜はトランジスタ形成領域と
選択酸化膜上では同じ膜厚で形成される。その上にフォ
トレジストを塗布し、フォトレジストと多結晶シリコン
との等速エツチング金行なったのち、フォトレジストを
除去すると第2図すに示す様に、トランジスタ領域の多
結晶シリコン膜厚は厚いままで選択酸化膜上の多結晶シ
リコン16は薄く形成される。このとき、トランジスタ
領域の多結晶シリコン膜14の膜厚は1oooÅ以上に
なる様にエツチングを行う。但し、選択酸化膜上の多結
晶シリコン膜16は無くなってしまってもよい。さらに
、多結晶シリコン14.15上に高融点金属シリサイド
16を形成する。例えば、3000人のwsi2f:形
成すれば、3〜4Ω/口程度のシート抵抗が得られる。
Figure 2 shows the manufacturing process of this device. First, as shown in FIG. 2A, polycrystalline silicon 15 of, for example, 200 mm is formed on gate oxide film 13 formed by a conventional method. At this time, the polycrystalline silicon film is formed to have the same thickness in the transistor formation region and on the selective oxide film. After applying a photoresist on top of the photoresist and performing uniform etching of the photoresist and polycrystalline silicon, the photoresist is removed, and as shown in Figure 2, the polycrystalline silicon film in the transistor region becomes thicker. Until then, the polycrystalline silicon 16 on the selective oxide film is formed thin. At this time, etching is performed so that the thickness of the polycrystalline silicon film 14 in the transistor region becomes 100 Å or more. However, the polycrystalline silicon film 16 on the selective oxide film may be removed. Further, a high melting point metal silicide 16 is formed on the polycrystalline silicon 14.15. For example, if 3,000 people are formed with wsi2f, a sheet resistance of about 3 to 4 Ω/mouth can be obtained.

なお、高融点金属シリサイドとしては、WSi2  ・
の他に、TaSi2 、 MoSi2 でも良い。次に
上記高融点金属シリサイド16と多結晶シリコン14゜
16を所定のパターンのレジストマスクを用いてエツチ
ングして電極パターンを形成する。上記レジストマスク
を除去したのち、眉間絶縁膜17を形成し、コンタクト
ホールを形成したのち、アルミ配線18を形成する。
Note that the high melting point metal silicide is WSi2.
Besides, TaSi2 and MoSi2 may also be used. Next, the high melting point metal silicide 16 and polycrystalline silicon 14.degree. 16 are etched using a resist mask with a predetermined pattern to form an electrode pattern. After removing the resist mask, a glabellar insulating film 17 is formed, a contact hole is formed, and then an aluminum wiring 18 is formed.

上記形成法において、多結晶シリコン14.15中への
不純物注入は、POCe5拡散、隣のイオン注入法の何
れでもゲート酸化膜耐圧の良好な特性が得られる。また
、選択酸化膜12上のポリサイド配線を薄く形成でき、
段差の低減が実現できる。
In the above formation method, when impurity is implanted into the polycrystalline silicon 14.15, good characteristics of gate oxide film breakdown voltage can be obtained by either POCe5 diffusion or the adjacent ion implantation method. In addition, the polycide wiring on the selective oxide film 12 can be formed thinly,
It is possible to reduce the level difference.

また第3図に示す様に、フォトレジストパターンにより
、トランジスタ領域にのみ多結晶シリコン20を形成し
ても良い。
Alternatively, as shown in FIG. 3, polycrystalline silicon 20 may be formed only in the transistor region using a photoresist pattern.

発明の効果 本発明によれば、従来の安定した多結晶シリコンゲート
素子の特徴を失うことなく半導体装置の高速、高集積化
が容易となる。
Effects of the Invention According to the present invention, high speed and high integration of semiconductor devices can be easily achieved without losing the characteristics of conventional stable polycrystalline silicon gate elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における半導体装置の断面図
、第2図は本発明の実施例における半導体装置の製造方
法を示す工程断面図、第3図は第2図の実施例の半導体
装置の断面図、第4図は従来のポリサイド構造を用いた
半導体装置の断面図である。 11・・・・・・半導体基板、12・・・・・・選択酸
化膜、13・・・・・・ゲート酸化膜、14.15・・
・・・・多結晶シリコン、16・・・・・・高融点金属
シリサイド、17・・・・・・層間絶縁膜、18・・・
・・・アルミ配線、2o・・・・・・トランジスタ領域
の多結晶シリコン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/l
−斗籐件基板 /2−i−」1−酸イしパタリ /3−m−勺パ二)昨タイヒ」月り1 /4.15−−一多φ占轟ソリコン /6−−−4り幼虫ア豪よヌも゛ン′ツブイド/7−4
間、杷株吸 /δ−−−アルミ配線 第1図 第2図 /4 第3図 73/I
FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a process cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a semiconductor device of the embodiment of FIG. FIG. 4 is a cross-sectional view of a semiconductor device using a conventional polycide structure. 11... Semiconductor substrate, 12... Selective oxide film, 13... Gate oxide film, 14.15...
... Polycrystalline silicon, 16 ... High melting point metal silicide, 17 ... Interlayer insulating film, 18 ...
...Aluminum wiring, 2o...Polycrystalline silicon in the transistor area. Name of agent: Patent attorney Toshio Nakao and 1 other person/l
-Toto board/2-i-"1-Ashii Patari/3-m-Taihi"Monday 1/4.15--Ita φ Sango Solicon/6---4 The larva is a big fish.
Between, Loquat strain/δ---Aluminum wiring Figure 1 Figure 2/4 Figure 3 73/I

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート電極となる多結晶シリコン
配線層を設け、上記多結晶シリコン配線層をトランジス
タ領域部において厚く形成し、上記多結晶シリコン上に
、高融点金属シリサイドを設け、ポリサイド構造とした
半導体装置。
(1) A polycrystalline silicon interconnection layer serving as a gate electrode is provided on a semiconductor substrate, the polycrystalline silicon interconnection layer is formed thickly in the transistor region, and a refractory metal silicide is provided on the polycrystalline silicon to form a polycide structure. semiconductor device.
(2)半導体基板上にゲート電極となる多結晶シリコン
膜を形成し、上記多結晶シリコン膜をトランジスタ領域
部以外の多結晶シリコンを一部エッチング除去し、トラ
ンジスタ部において厚く形成された多結晶シリコン配線
層を形成し、上記多結晶シリコン配線層上に、高融点金
属シリサイドを設け、ポリサイド構造を形成する半導体
装置の製造方法。
(2) Form a polycrystalline silicon film that will become a gate electrode on a semiconductor substrate, and remove a portion of the polycrystalline silicon from the polycrystalline silicon film outside the transistor area by etching away the polycrystalline silicon film to form a thick polycrystalline silicon film in the transistor area. A method for manufacturing a semiconductor device, comprising forming a wiring layer, and providing a refractory metal silicide on the polycrystalline silicon wiring layer to form a polycide structure.
JP288388A 1988-01-08 1988-01-08 Semiconductor device and its manufacture Pending JPH01181469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP288388A JPH01181469A (en) 1988-01-08 1988-01-08 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP288388A JPH01181469A (en) 1988-01-08 1988-01-08 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH01181469A true JPH01181469A (en) 1989-07-19

Family

ID=11541757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP288388A Pending JPH01181469A (en) 1988-01-08 1988-01-08 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH01181469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176737A (en) * 1993-12-17 1995-07-14 Nec Corp Manufacture of semiconductor device
JPH08213612A (en) * 1995-02-08 1996-08-20 Nec Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176737A (en) * 1993-12-17 1995-07-14 Nec Corp Manufacture of semiconductor device
JPH08213612A (en) * 1995-02-08 1996-08-20 Nec Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
JPH01181469A (en) Semiconductor device and its manufacture
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JPH01201962A (en) Semiconductor device and manufacture thereof
JPS58155767A (en) Manufacture of metal oxide semiconductor type semiconductor device
KR960006339B1 (en) Fabricating method of semiconductor device
JP2911255B2 (en) Semiconductor device and manufacturing method thereof
JPS58130569A (en) Manufacture of semiconductor device
JPS6235554A (en) Semiconductor device and manufacture thereof
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS62281351A (en) Manufacture of semiconductor device
JPS6167270A (en) Semiconductor device
JPS6235555A (en) Semiconductor device and manufacture thereof
JPH1032264A (en) Semiconductor device and manufacture thereof
JPH0444250A (en) Manufacture of semiconductor device
JPH021922A (en) Manufacture of semiconductor device
JPS61224414A (en) Manufacture of semiconductor device
JPS60245159A (en) Manufacture of semiconductor device
JPS61150338A (en) Manufacture of semiconductor device
JPS60113471A (en) Manufacture of semiconductor device
JPH01120065A (en) Manufacture of semiconductor device
JPS61170029A (en) Semiconductor device and manufacture thereof
JPH05259104A (en) Semiconductor device and its manufacture
JPS62142361A (en) Manufacture of field effect transistor