JPS60113471A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60113471A
JPS60113471A JP22093483A JP22093483A JPS60113471A JP S60113471 A JPS60113471 A JP S60113471A JP 22093483 A JP22093483 A JP 22093483A JP 22093483 A JP22093483 A JP 22093483A JP S60113471 A JPS60113471 A JP S60113471A
Authority
JP
Japan
Prior art keywords
oxide film
gate
layer
polycrystalline
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22093483A
Other languages
Japanese (ja)
Inventor
Masaru Oki
勝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22093483A priority Critical patent/JPS60113471A/en
Publication of JPS60113471A publication Critical patent/JPS60113471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive to make semiconductor elements fine by a method wherein the part of polycrystalline semiconductor serving as a gate layer in contact with the side surface of a thin film is formed by etching a polycrystalline semiconductor layer by anisotropic dry etching. CONSTITUTION:A field oxide film layer 2 is formed on a semiconductor substrate 1, and a gate oxide film layer 6 is formed in the element region. The thin film 5 of such a form that one end terminates on the gate oxide film is formed. The polycrystalline Si layer 3 is formed over the entire surfce. The polycrystalline region 3' remaining only on the gate oxide film from the terminal of the oxide film 5 to a fixed distance is formed by anisotropic dry etching with no masks, and the thin film 5 is removed. Since the film thickness of the polycrystalline 3 can be freely varied, the gate length can be freely controlled into micro-fine structure.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置の製造方法に関し、特にシリコンゲ
ー)MO8型電界効果トランジスタ(以下、MOSFE
Tと記す)の多結晶シリコンゲート電極の形成方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device (silicon gate) MO8 field effect transistor (hereinafter referred to as MOSFE).
The present invention relates to a method for forming a polycrystalline silicon gate electrode (denoted as T).

(従来技術) 従来、シリコンゲー)MOSFETに於て、ゲート多結
晶シリコン電極の形成は、第1図に示す様な方法により
行なわれて来た。即ち、同図(a)に示す様に、フィー
ルド酸化膜2およびゲート酸化ゲート多結晶シリコン電
極形成部にフォトレジスト膜4を形成する。しかる後、
フォトレジスト膜4をマスクとして例えば異方性ドライ
エツチング等により多結晶シリコンをエッチイング除去
し、フォトレジスト膜4を除去することにより第1図俤
)のようにゲート多結晶シリコン電極3′が形成される
(Prior Art) Conventionally, in a silicon gate MOSFET, a gate polycrystalline silicon electrode has been formed by a method as shown in FIG. That is, as shown in FIG. 4A, a photoresist film 4 is formed on the field oxide film 2 and the gate oxide gate polycrystalline silicon electrode formation portion. After that,
Using the photoresist film 4 as a mask, the polycrystalline silicon is etched away by, for example, anisotropic dry etching, and by removing the photoresist film 4, a gate polycrystalline silicon electrode 3' is formed as shown in FIG. be done.

この方法によりゲート多結晶シリコン電極3′を形成す
ると、ゲート電極3′はマスクの精度、リソグラフィー
の精度、ニッティングの精度等の不安定要素の影響を受
けて多結晶ゲート電極の長さくMOSFETのゲート長
)を均−j形成することは困難である。しかも、最近の
微細化に伴(・MOSFETのゲート長が短かくなり均
一に形成することがLSIにとって必須であり、上記3
つの条件は製造プロセス上増々重要な要素をなって来て
いる。
When the gate polycrystalline silicon electrode 3' is formed by this method, the gate electrode 3' is affected by unstable factors such as mask accuracy, lithography accuracy, knitting accuracy, etc. It is difficult to form a gate with a uniform gate length. Moreover, with recent miniaturization (・MOSFET gate length has become shorter, uniform formation is essential for LSIs, and the above three
These conditions are becoming increasingly important factors in the manufacturing process.

(発明の目的) 本発明の目的は素子の微細化に対応出来る多結晶シリコ
ンゲート電極の形成方法を提供するものである。
(Object of the Invention) An object of the present invention is to provide a method for forming a polycrystalline silicon gate electrode that is compatible with miniaturization of devices.

(発明の構成) 本発明は、異方性ドライエツチングを利用してシリコン
ゲート層を選択的に形成することを特徴とする。
(Structure of the Invention) The present invention is characterized in that a silicon gate layer is selectively formed using anisotropic dry etching.

(実施例) 以下、実施例を図面で詳述すると、第2図(a)〜(d
)は本発明の一実施例であり、まず、同図(a)の様に
半導体基板1に例えば選択酸化等により素子分離用のフ
ィールド酸化膜層2を形成し、素子領域に例えば熱酸化
等によりゲート酸化膜層6を形成する。しかる後、ゲー
ト酸化膜6上でその一端が終端するような形状をした例
えばCVD酸化膜層5を形成する。次に、同図(b)の
様に周知の方法により多結晶シリコン層3を全面に形成
する。次に同図(C)の様に例えば異方性ドライエツチ
ング等により、多結晶シリコンをニッティングする。こ
のとき、酸化膜5の上表面上の多結晶シリコン層厚およ
び酸化膜5の終端部から所定距離はなれたところからゲ
ート酸化膜6およびフィールド酸化膜2上にある多結晶
シリコン層厚に同じであるから、伺らマスクをすること
なく異方性ドライエツチングをすれば、酸化膜5の終端
部から所定距離までのゲート酸化膜6上にのみ残る多結
晶シリコン領域3′が形成される。所定距離は多結晶3
の厚さに依存する。次に、同図(d)のようにCVD酸
化膜5を除去することにより多結晶シリコンゲート電極
3′が形成される。
(Example) Hereinafter, the example will be described in detail with reference to the drawings.
) is an embodiment of the present invention. First, as shown in FIG. 2(a), a field oxide film layer 2 for element isolation is formed on a semiconductor substrate 1 by, for example, selective oxidation. A gate oxide film layer 6 is formed by the following steps. Thereafter, for example, a CVD oxide film layer 5 having a shape such that one end thereof terminates on the gate oxide film 6 is formed. Next, as shown in FIG. 3B, a polycrystalline silicon layer 3 is formed on the entire surface by a well-known method. Next, as shown in FIG. 2C, the polycrystalline silicon is knitted by, for example, anisotropic dry etching. At this time, the thickness of the polycrystalline silicon layer on the upper surface of oxide film 5 is the same as the thickness of the polycrystalline silicon layer on gate oxide film 6 and field oxide film 2 from a predetermined distance away from the end of oxide film 5. Therefore, if anisotropic dry etching is performed without using a mask, a polycrystalline silicon region 3' remaining only on gate oxide film 6 up to a predetermined distance from the end of oxide film 5 is formed. The specified distance is polycrystalline 3
depends on the thickness. Next, as shown in FIG. 4(d), the CVD oxide film 5 is removed to form a polycrystalline silicon gate electrode 3'.

以上述べた様に、本発明によって形成されたゲート電極
は、マスク精度、リソグラフィー精度エツチング精度等
の影響を受けずに、多結晶シリコン層3の成長膜厚の精
度だけしか影響を受け外い。
As described above, the gate electrode formed according to the present invention is not affected by mask accuracy, lithography accuracy, etching accuracy, etc., but is only affected by the accuracy of the growth thickness of polycrystalline silicon layer 3.

又、多結晶シリコン3の膜厚(・ま自由に変えられるこ
とから1つのマスクで、ゲート長を自由に制御出来、微
細化にも有効である。なお、CVD酸化膜5に代えて、
例えばA−e等の金属薄膜や、多結晶シリコン上を薄く
酸化したもの等、薄膜を形成出来るものであれば選択は
自由である。
In addition, since the film thickness of the polycrystalline silicon 3 can be changed freely, the gate length can be controlled freely with one mask, which is effective for miniaturization.In addition, instead of the CVD oxide film 5,
For example, any material can be selected as long as a thin film can be formed, such as a metal thin film such as A-e, or a thin oxidized film on polycrystalline silicon.

第3図は本発明の他の実施例であり、第2図(a)乃至
(d)に従って多結晶シリコンゲート層3′を形成した
後、舛酸化等によってシリコンゲート層3′の上および
側表面に酸化膜を形成し、この後、第3図に示すように
、異方性ドライエツチングによりシリコンゲート層3′
の上表面の酸化膜だけを除去し、その側表面に葭化、摸
7を残したものである。
FIG. 3 shows another embodiment of the present invention, in which after a polycrystalline silicon gate layer 3' is formed according to FIGS. 2(a) to (d), the top and sides of the silicon gate layer 3' are An oxide film is formed on the surface, and then, as shown in FIG. 3, the silicon gate layer 3' is etched by anisotropic dry etching.
Only the oxide film on the top surface of the oxide film was removed, leaving the oxide film 7 on the side surface.

本構造の応用として、この後、MOSFETのソース領
域、ドレイン領域を形成し、ゲート多結晶シリコン電極
、ソース領域、ドレイン領域を高融点シリサイド化する
ことも出来る。又、薄膜層5を酸化膜層の異方性ドライ
エッチイングのエラ5− チング速度に比べて十分に早い様な薄膜層を用いること
により、薄膜層除去の工程を力くすことも可能である。
As an application of this structure, the source region and drain region of the MOSFET can be formed after this, and the gate polycrystalline silicon electrode, the source region, and the drain region can be made into high melting point silicide. Furthermore, by using a thin film layer 5 that is sufficiently faster than the etching speed of the anisotropic dry etching of the oxide film layer, it is possible to reduce the process of removing the thin film layer. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来の方法を示す工程断面
図、第2図(al乃至(d)は本発明の一実施例を示す
工程断面図、第3図は本発明の他の実施例を示す断面図
である。 lは半導体基板、2は素子分離酸化膜、3は多結晶シリ
コン層、4はフォトレジスト膜、5は薄膜、6はゲート
酸化膜層、7は絶縁体膜をそれぞれ示す。 6− 縞2図 乙 、3′ 2
FIGS. 1(a) and (b) are process sectional views showing a conventional method, FIGS. 1 is a sectional view showing an embodiment of the present invention. l is a semiconductor substrate, 2 is an element isolation oxide film, 3 is a polycrystalline silicon layer, 4 is a photoresist film, 5 is a thin film, 6 is a gate oxide film layer, and 7 is an insulator. The membranes are shown respectively. 6- Stripes 2, 3' 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にゲート絶縁膜を形成する工程と、その一
端が前記ゲート絶縁膜上に終端するよう殴薄膜を形成す
る工程と、少なくとも該薄膜上および前記ゲート絶縁膜
上に多結晶半導体層を形成する工程と、異方性ドライエ
ツチングにより前記多結を形成する工程とを有すること
を特徴とする半導体装置の製造方法。
forming a gate insulating film on a semiconductor substrate; forming a punched thin film such that one end thereof terminates on the gate insulating film; and forming a polycrystalline semiconductor layer at least on the thin film and on the gate insulating film. 1. A method for manufacturing a semiconductor device, comprising the steps of: forming the multilayer structure by anisotropic dry etching.
JP22093483A 1983-11-24 1983-11-24 Manufacture of semiconductor device Pending JPS60113471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22093483A JPS60113471A (en) 1983-11-24 1983-11-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22093483A JPS60113471A (en) 1983-11-24 1983-11-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60113471A true JPS60113471A (en) 1985-06-19

Family

ID=16758842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22093483A Pending JPS60113471A (en) 1983-11-24 1983-11-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60113471A (en)

Similar Documents

Publication Publication Date Title
JPH05206451A (en) Mosfet and its manufacture
JPS60113471A (en) Manufacture of semiconductor device
JP2672596B2 (en) Method for manufacturing semiconductor device
JPS6149473A (en) Manufacture of polycide gate mos ic
JPS583244A (en) Manufacture of semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPH01208831A (en) Manufacture of semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JP2705187B2 (en) Semiconductor element manufacturing method
JPS6384161A (en) Manufacture of semiconductor device
JPH0513436A (en) Semiconductor device
KR950014268B1 (en) Forming method of contact
JPH0369168A (en) Thin film field effect transistor
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH01181469A (en) Semiconductor device and its manufacture
JPH1032264A (en) Semiconductor device and manufacture thereof
JPH01179360A (en) Manufacture of semiconductor device
JPS62150885A (en) Manufacture of semiconductor device
JPH0443663A (en) Semiconductor device and its manufacture
JPS62273773A (en) Manufacture of semiconductor device
JPS6246527A (en) Manufacture of semiconductor device
JPS6049677A (en) Manufacture of field-effect transistor
JPS6235554A (en) Semiconductor device and manufacture thereof
JPS63122272A (en) Mos type field effect transistor and its manufacture
JPS6212165A (en) Manufacture of semiconductor device