JPS59127376A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS59127376A
JPS59127376A JP13683A JP13683A JPS59127376A JP S59127376 A JPS59127376 A JP S59127376A JP 13683 A JP13683 A JP 13683A JP 13683 A JP13683 A JP 13683A JP S59127376 A JPS59127376 A JP S59127376A
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
lithium
powder
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13683A
Other languages
Japanese (ja)
Other versions
JPH0474833B2 (en
Inventor
Tatsu Nagai
龍 長井
Shuichi Wada
秀一 和田
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP13683A priority Critical patent/JPS59127376A/en
Publication of JPS59127376A publication Critical patent/JPS59127376A/en
Publication of JPH0474833B2 publication Critical patent/JPH0474833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Abstract

PURPOSE:To increase discharge utility of lithium by forming a negative electrode by mixing lithium powder and solid electrolyte powder in a specific ratio. CONSTITUTION:Lithium powder and solid electrolyte powder are mixed in a specified ratio and pressed in a desired shape to form a negative electrode. The negative electrode is stacked with a solid electrolyte layer and they are bonded together by pressing. Lithium nitride family such as LiN, Li3N-LiI, Li3N-LiI- LiOH are preferable as solid electrolyte. Same or different material is used in solid electrolyte used in the negative electrode and that used in the solid electrolyte layer. A mixing ratio of lithium powder and solid electrolyte powder which form a negative electrode is a range of 1:0.7-1:1.8, preferably 1:1-1:1.2.

Description

【発明の詳細な説明】 のように、負峨活物質としてリチウムを用いる固体電解
質′市池の改良に係り、放電特性の向上をはかることを
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to improve the discharge characteristics of solid electrolyte batteries using lithium as a negative active material.

従来の固体電解質電池では負極としてリチクム板が用い
られているが、このものは放電進行に伴なって負極と固
体電解質層との開に隙1」が生じ、負極の放電利用率が
低下して充分な放電性能が得られないという欠点がある
。これはこの種電池の放電反応が負極側でリチウムが正
極と対向する側から徐々にイオン化し、固体電解質層を
通過して正極側に移行し正極活物質と反応して正極側で
放電生成物を生成する反応であるが、負極の放電消耗F
,’rK相当する量ほどには正極が体積膨張せず、また
固体電解質にまったく弾性がないため、放電に伴なう負
極の消耗に応じて固体電解質層が追従して変形できない
からである。
Conventional solid electrolyte batteries use lithic cum plates as negative electrodes, but as discharge progresses, a gap 1'' is created between the negative electrode and the solid electrolyte layer, reducing the discharge utilization rate of the negative electrode. The drawback is that sufficient discharge performance cannot be obtained. This is because the discharge reaction of this type of battery is such that lithium gradually ionizes from the side facing the positive electrode on the negative electrode side, passes through the solid electrolyte layer, moves to the positive electrode side, reacts with the positive electrode active material, and produces discharge products on the positive electrode side. However, the negative electrode discharge consumption F
, 'rK, and the solid electrolyte has no elasticity at all, so the solid electrolyte layer cannot follow and deform as the negative electrode wears out due to discharge.

そこで、負極を加圧して負極と固体電解質との接触を常
に保っておく必要があるが、小型でかつ薄形の電池では
そのような加圧手段を電池内部だ具備させるこ七は困難
である。
Therefore, it is necessary to pressurize the negative electrode to maintain contact between the negative electrode and the solid electrolyte at all times, but in small and thin batteries, it is difficult to provide such pressurizing means inside the battery. .

木発明者らは、そのような事情に鑑み種々研究を重ねた
結果、リチウム粉末と同体電解質粉末との理論体積比(
理論密度で計算した体積比をいう)が1. : 0. 
7〜1 : 1.8の混合物から負極を構成する七きは
、リチウムの放電利用率が向上して放電特性の良好な固
体電解質電池が得られることを見出し、本発明を完成す
るにいたった。
In view of these circumstances, the inventors of the tree have conducted various studies and have determined the theoretical volume ratio of lithium powder and isoelectrolyte powder (
volume ratio calculated using theoretical density) is 1. : 0.
7 to 1: Constructing a negative electrode from a mixture of 1.8 discovered that the discharge utilization rate of lithium was improved and a solid electrolyte battery with good discharge characteristics could be obtained, leading to the completion of the present invention. .

すなわち、大発明では放電が進行して固体電解質層近傍
のリチク′ムが消失しても負極中に分散する固体電11
質によってリチウムイオンの正極側への移行を可能なら
しめ、リチウムの放電利用率を向上させて放電特性の良
好な固体電解質電池が得られるようにしたのである。さ
らに詳述すると、本発明ではリチウムと電解質との実質
的な接触面積が増加することにより、単位面積あたりの
電流が減少し、その結果、リチウムの拡散速度と界面で
消費されるリチウムの消耗速度とが近つくため、リチウ
ムのはがれが生じにくく、負極利用率が向上するものと
考えられる。
In other words, in the great invention, even if the lyticum near the solid electrolyte layer disappears as the discharge progresses, the solid electrolyte 11 dispersed in the negative electrode remains.
By making it possible for lithium ions to migrate to the positive electrode side, the discharge utilization rate of lithium is improved, and a solid electrolyte battery with good discharge characteristics can be obtained. More specifically, in the present invention, by increasing the substantial contact area between lithium and the electrolyte, the current per unit area is reduced, and as a result, the diffusion rate of lithium and the depletion rate of lithium consumed at the interface are reduced. It is thought that this makes it difficult for lithium to peel off and improves the negative electrode utilization rate.

リチウム粉末としては6oメツシュ以上の微粉末が好ま
しく、捷た負極に用いる固体゛電解質粉末も60メツシ
ュ以上の微粉末が好寸しい。
The lithium powder is preferably a fine powder with a mesh size of 60 mesh or more, and the solid electrolyte powder used in the shredded negative electrode is also preferably a fine powder with a mesh size of 60 mesh or more.

そして負極(廿これらのリチウム粉末と固体電解質粉末
とを所定の割合で混合したのち、約0.1〜1t/α2
の圧力で所定の形状に加圧成形される。なお、この負極
と固体電解質層とをそれぞれ予備成形したのち、両者を
重ね合わせて本成形により負極と固体電解質層を一体に
成形することもできる。
Then, the negative electrode (after mixing these lithium powders and solid electrolyte powder in a predetermined ratio, about 0.1 to 1t/α2
Pressure molded into a predetermined shape at a pressure of Note that, after the negative electrode and the solid electrolyte layer are each preformed, the negative electrode and the solid electrolyte layer can also be integrally formed by overlapping them and performing main molding.

固体電解質としてはLi、gN、 Li5N−LiI、
 Li5N−Lil−LiOHなどのチツ化リチウム系
のものが好ましく、負極に用する固体電解質と固体電解
質層を構成する固体電解質とは同一でもよいし、また異
なっていてもよい。
Solid electrolytes include Li, gN, Li5N-LiI,
A lithium oxide type material such as Li5N-Lil-LiOH is preferred, and the solid electrolyte used for the negative electrode and the solid electrolyte constituting the solid electrolyte layer may be the same or different.

負極を構成するリチウム粉末と固体電解質層末との混合
比としては理論体積比で1:0.7〜1 : 1.8の
範囲、符に1−1〜1:1.2の範囲が好ましい。こ。
The mixing ratio of the lithium powder constituting the negative electrode and the solid electrolyte layer powder is preferably in the range of 1:0.7 to 1:1.8 in terms of theoretical volume ratio, and preferably in the range of 1-1 to 1:1.2. . child.

れは固体電解質粉末の添加量がリチウム粉末に対して理
論体積比で0.7より少ないときは固体電解質を負極中
に混入させた効果が充分に発揮されず、逆に1.8を超
えると負極中のリチウムの絶対量が少なくなるからであ
る。
This is because when the amount of solid electrolyte powder added is less than 0.7 in theoretical volume ratio to lithium powder, the effect of mixing the solid electrolyte into the negative electrode is not fully exhibited, and on the other hand, when it exceeds 1.8. This is because the absolute amount of lithium in the negative electrode decreases.

つぎに実施例をあげて本発明を説り1する。Next, the present invention will be explained with reference to examples.

実施例1 リチウム粉末(140メツシユパス)とLi5N−Li
l粉末(60メツシユバス)を理論体積比で1=1で秤
取し充分に混合し、これを負極に用いる。
Example 1 Lithium powder (140 mesh pass) and Li5N-Li
1 powder (60 mesh baths) at a theoretical volume ratio of 1=1, thoroughly mixed, and used as a negative electrode.

Li5N−LiI 100qを固体電解質層とし、ヨク
化鉛トカルボニルニッケルの混合物(混合比は理論体積
比で4:1)450Jvを正極とし、前記リチウム粉末
とLi3N −Li I粉末との混合物21qを負極と
して圧着法で発車要素を形成し、第1図に示すような直
径[myt、厚さ約1酎の固体電解質電池を組み立てた
。なお第1図において、(1)け前記のようにリチウム
粉末とLi5N−Lil粉末の混合物から構成した負娠
、(2)は正極、(3)は固体電解質層であり、(4)
は負峨巣゛屯板、(5) i−i正極集電板、(6)は
セラミック製リング、(7)はロウ材である。
100q of Li5N-LiI is used as a solid electrolyte layer, 450Jv of a mixture of lead iodide and carbonyl nickel (mixing ratio is 4:1 in theoretical volume ratio) is used as a positive electrode, and 21q of a mixture of the lithium powder and Li3N-Li I powder is used as a negative electrode. A starting element was formed using a pressure bonding method, and a solid electrolyte battery having a diameter of [myt] and a thickness of about 1 inch as shown in Fig. 1 was assembled. In FIG. 1, (1) is a negative electrode composed of a mixture of lithium powder and Li5N-Lil powder as described above, (2) is a positive electrode, (3) is a solid electrolyte layer, and (4) is a positive electrode.
(5) is a positive current collector plate, (6) is a ceramic ring, and (7) is a brazing material.

この′上池を20°C130μAの定心流で放電したと
ころ、寿2図の曲線Aで示される特性が得られた。
When this upper pond was discharged with a constant flow of 130 μA at 20° C., the characteristics shown by curve A in the Kotobuki 2 diagram were obtained.

実施例2〜5および比較例1〜6 リチウム粉末(140メソンユパス)さLi3N  L
il粉末(60メツシユパス)を理論体積比で1対01
0.2.0.4.0.5.0.6.0.7.1.2.1
,4.1.8.2.0に々るように秤取し、充分に混合
した。これを負極に用いる。
Examples 2 to 5 and Comparative Examples 1 to 6 Lithium powder (140 mesonupas) Li3N L
il powder (60 mesh passes) at a theoretical volume ratio of 1:01
0.2.0.4.0.5.0.6.0.7.1.2.1
, 4.1.8.2.0 and thoroughly mixed. This is used for the negative electrode.

Li3 N −Li I 1001vを固体電解質とし
、実施例1と同様のヨウ化鉛とカルボニルニッケルとの
混合粉末450岬を正極とし、前記リチウム粉末とLi
3N−LI I粉末との混合物をそれぞれリチウム量が
5.1811vとなる量(2OmAh相当)を秤取し、
それを負極として圧着法で発電要素を形成し、実施例1
と同様の電池を組み立てた。
Li3 N -Li I 1001v was used as a solid electrolyte, mixed powder 450 Misaki of lead iodide and carbonyl nickel similar to that in Example 1 was used as a positive electrode, and the lithium powder and Li were used as a positive electrode.
Weigh out the amount of the mixture with 3N-LI I powder so that the amount of lithium is 5.1811v (equivalent to 20mAh),
Using this as a negative electrode, a power generation element was formed by a pressure bonding method.
I assembled a similar battery.

これらの電池を20°C130μAの定電流で放電させ
た。
These batteries were discharged at a constant current of 130 μA at 20°C.

負極の特性で重要な点は、一定の電気容量を放電するの
に必要な負極の体積であり、この値が小さいほど好まし
い。この特性で各電池を比較するため、上記の放電結果
を第8図に、縦軸に負極内のリチウム単位電気容量当り
の体積を負極利用率で割った値をとり、横軸にリチウム
/電解質の理論体積混合比(1:x)をとって表示した
An important characteristic of the negative electrode is the volume of the negative electrode required to discharge a certain electric capacity, and the smaller this value is, the better. In order to compare each battery with this characteristic, the above discharge results are shown in Figure 8. The vertical axis is the volume per unit electric capacity of lithium in the negative electrode divided by the negative electrode utilization rate, and the horizontal axis is the lithium/electrolyte. The theoretical volumetric mixing ratio (1:x) of

第3図から明らかなように、Li3N −Li Iの添
加によりリチウム単体(すなわち1:0のとき)の場合
に比べて一定の放電容量・を確保するのに必要な負極の
体積が小さくなる。この効果が顕著に現われるのはLi
5N−LiIの添加量がリチウムに対して体積比で1:
0.7以上であり、Li5N−LiIの添加量が1:1
〜1 : 1.2で特に効果が大となり、それ以上にな
ると効果が減少する。これは負極中のリチウムの絶対歌
が減少することによるものと考えられる。
As is clear from FIG. 3, the addition of Li3N-LiI reduces the volume of the negative electrode required to ensure a constant discharge capacity compared to the case of lithium alone (ie, 1:0). This effect is most noticeable when Li
The amount of 5N-LiI added is 1:1 by volume to lithium.
0.7 or more, and the amount of Li5N-LiI added is 1:1
~1: The effect is especially great at 1.2, and the effect decreases when it is higher than that. This is thought to be due to a decrease in the absolute lithium content in the negative electrode.

なお、リチウム単体のとき(比較例1)の20”C,3
0μAの定電流放電での放電特性を第2図に曲線゛Bで
示す。
In addition, in the case of lithium alone (comparative example 1), 20"C,3
The discharge characteristics at constant current discharge of 0 μA are shown by curve ``B'' in FIG.

実施例6 負i玉に添加する固体電解質をLi3Nに代えたほかは
実施例1と同様にして電池を製造した。
Example 6 A battery was manufactured in the same manner as in Example 1 except that the solid electrolyte added to the negative i-ball was replaced with Li3N.

得られた′ill!池を20°C18θμへの定電流で
放電したところ、第2図の曲線Aと同様の結果が得られ
た。
Got 'ill! When the cell was discharged at a constant current of 18θμ at 20°C, results similar to curve A in FIG. 2 were obtained.

実施例7 負極に添加する固体電解質をLi3N −LiI −L
iOHに代えたほかは実施例1と同様にして電池を製造
した。
Example 7 The solid electrolyte added to the negative electrode was Li3N -LiI -L
A battery was manufactured in the same manner as in Example 1 except that iOH was used instead.

得られた電池を20″0130μAの定電流で放電した
ところ、第2図の曲線Aと同様の結果が得られた。
When the obtained battery was discharged at a constant current of 20"0130 μA, results similar to curve A in FIG. 2 were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は末完廚の固体電解質電池の一実施例を示す断面
図であり、第2図は本発明の固体電解質電池と従来の固
体電解質電池の放電特性図である。 第8図は負極中のリチウムとLi、N−t、itとの混
合比とリチクム単位電気容量当りの体積/負極利用率の
関係を示す図である。 (1)・・・負極、 (2)・・・正極、 (3)・・
・固体電解質層、特許出願人 日立マクセル株式会社 71図 72図 放電容量(mAh) 芳3閏 (1:χ)
FIG. 1 is a cross-sectional view showing an example of a completely completed solid electrolyte battery, and FIG. 2 is a discharge characteristic diagram of the solid electrolyte battery of the present invention and a conventional solid electrolyte battery. FIG. 8 is a diagram showing the relationship between the mixing ratio of lithium and Li, Nt, and it in the negative electrode and the volume per unit electric capacity of lithicium/negative electrode utilization rate. (1)...Negative electrode, (2)...Positive electrode, (3)...
・Solid electrolyte layer, patent applicant Hitachi Maxell Co., Ltd. 71 Figure 72 Discharge capacity (mAh) Yoshi 3 (1:χ)

Claims (1)

【特許請求の範囲】 1、リチウムを活物質とする負極と、その負極と対向す
る位置VC配置された正極と、前記負極と正極との間に
介在された固体電解質層とを備えた固体′電解質電池に
おいて、負極をリチウム粉末と固体電解質粉末との理論
体積比で1 ニー0.7〜1 : 1.8の混合物から
構成したことを特徴とする固体7u解質′市池。 2、 固体電解質がLi3N、 Li5N−Lilまた
はLI y、 N  LI I−LI OHからなる特
許請求の範囲第1項記載の固体電解質電池。
[Claims] 1. A solid body comprising a negative electrode using lithium as an active material, a positive electrode placed in a position VC opposite to the negative electrode, and a solid electrolyte layer interposed between the negative electrode and the positive electrode. A solid 7U electrolyte battery for use in an electrolyte battery, characterized in that the negative electrode is composed of a mixture of lithium powder and solid electrolyte powder in a theoretical volume ratio of 0.7 to 1:1.8. 2. The solid electrolyte battery according to claim 1, wherein the solid electrolyte comprises Li3N, Li5N-Lil, or LIy, NLII-LIOH.
JP13683A 1983-01-04 1983-01-04 Solid electrolyte battery Granted JPS59127376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13683A JPS59127376A (en) 1983-01-04 1983-01-04 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13683A JPS59127376A (en) 1983-01-04 1983-01-04 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPS59127376A true JPS59127376A (en) 1984-07-23
JPH0474833B2 JPH0474833B2 (en) 1992-11-27

Family

ID=11465611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13683A Granted JPS59127376A (en) 1983-01-04 1983-01-04 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59127376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021632A1 (en) * 2000-08-19 2002-03-14 Xeno Energy Co., Ltd. Lithium powder anode, lithium battery using the same and preparation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595966B1 (en) * 2020-04-14 2023-11-01 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. Ion conductive material, electrolyte comprising ion conductive material, and method of forming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156673A (en) * 1980-03-31 1981-12-03 Toshiba Corp Lithium solid battery
JPS5795082A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Solid electrolyte cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156673A (en) * 1980-03-31 1981-12-03 Toshiba Corp Lithium solid battery
JPS5795082A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Solid electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021632A1 (en) * 2000-08-19 2002-03-14 Xeno Energy Co., Ltd. Lithium powder anode, lithium battery using the same and preparation thereof

Also Published As

Publication number Publication date
JPH0474833B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JPS59127376A (en) Solid electrolyte battery
US3565691A (en) High energy density silver oxide-hydrogen battery
JP2001093535A (en) Solid electrolyte cell
JP2001068116A (en) Lithium battery and method of manufacturing therefor
JPS5848354A (en) Solid electrolyte battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP2001266886A (en) Non-sintering type positive electrode for alkaline storage battery and alkaline storage battery
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPS59127362A (en) Manufacture of flat solid electrolyte battery
JPS5990360A (en) Solid secondary battery
JPS5920757Y2 (en) silver oxide battery
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPS60136176A (en) Fuel cell
JPS6243060A (en) Silver oxide battery
JPS58128658A (en) Silver oxide secondary battery
JPS60140661A (en) Negative electrode plate for nickel cadmium storage battery
JPS6142868A (en) Nonaqueous electrolyte battery
JPH01286256A (en) Electrode for fuel cell
JPS59114767A (en) Manufacture of hydrogen electrode
JPS5769671A (en) Solid lithium battert and its manufacture
JPS59230258A (en) Nonaqueous electrolyte battery
JPS58197684A (en) Air-zinc cell
JPS6216512B2 (en)
JPS62168341A (en) Manufacture of electrode plate for lead storage battery
JPS63126153A (en) Organic electrolyte cell