JP2001068116A - Lithium battery and method of manufacturing therefor - Google Patents

Lithium battery and method of manufacturing therefor

Info

Publication number
JP2001068116A
JP2001068116A JP24403999A JP24403999A JP2001068116A JP 2001068116 A JP2001068116 A JP 2001068116A JP 24403999 A JP24403999 A JP 24403999A JP 24403999 A JP24403999 A JP 24403999A JP 2001068116 A JP2001068116 A JP 2001068116A
Authority
JP
Japan
Prior art keywords
oxide
positive electrode
negative electrode
active material
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24403999A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Toshihiko Kamimura
俊彦 上村
Nobuyuki Kitahara
暢之 北原
Toru Hara
亨 原
Makoto Osaki
誠 大崎
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24403999A priority Critical patent/JP2001068116A/en
Publication of JP2001068116A publication Critical patent/JP2001068116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain high energy density, high safety and high reliability by including a conductive oxide or a carbon material as a conductive material in at least one of a positive electrode prepared by bonding an active material with oxide glass and a negative electrode arranged through an oxide-based inorganic solid electrolyte. SOLUTION: The positive electrode 1 is made of a porous body prepared by pressure-molding a mixture of a positive electrode active material, oxide glass, and a molding assistant, and heat-treating the molded body, and the negative electrode 3 is made of a porous body using a transition metal oxide having a charging/discharging potential lower than that of the positive electrode active material in the positive electrode 1 as an active material. An oxide conductive material of conductive materials to be after-impregnated into the positive electrode 1 and/or the negative electrode 3 is preferable to be SnO2, In2O3, SnO2 doped with Sb2O3, In2O3 doped with SnO2, or a carbon material, preferably carbon black. By binding the active material with the oxide glass, the electrode is made string, and by after-impregnating the conductive material, conductivity is imparted without decreasing battery capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池とその
製造方法に関し、特に電極を改良したリチウム電池とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery and a method for manufacturing the same, and more particularly, to a lithium battery having improved electrodes and a method for manufacturing the same.

【0002】[0002]

【従来技術および発明が解決しようとする課題】携帯電
話やパーソナルコンピュータに代表される携帯機器の近
年の目覚しい発達に伴い、その電源としての電池の需要
も急速に増加している。特に、リチウム電池は原子量が
小さく、かつイオン化エネルギーが大きなリチウムを使
う電池であることから、高エネルギー密度を得ることが
できる電池として盛んに研究され、現在では携帯機器の
電源をはじめとして広範囲に用いられるに至っている。
2. Description of the Related Art With the recent remarkable development of portable devices typified by portable telephones and personal computers, demand for batteries as power sources has been rapidly increasing. In particular, lithium batteries are batteries that use lithium, which has a small atomic weight and a large ionization energy, and are therefore being actively studied as batteries capable of obtaining high energy densities. Has been reached.

【0003】一般的に、リチウム電池は、正極活物質と
炭素系導電剤を有機系バインダーで結着したシート状正
極と、同じく負極活物質を有機系バインダーで結着した
シート状負極がセパレータを介して捲回された極群を電
槽缶内に挿入し、そこに有機電解液を注入して封口した
構造となっている。
In general, a lithium battery has a sheet-like positive electrode in which a positive electrode active material and a carbon-based conductive agent are bound with an organic binder, and a sheet-like negative electrode in which a negative electrode active material is bound with an organic binder. The electrode group wound through the container is inserted into a battery case, and an organic electrolyte is injected into the electrode group and sealed.

【0004】また、リチウム電池では、正極活物質とし
てコバルト酸リチウム(LiCoO2 )やマンガン酸リ
チウム(LiMn2 4 )が一般的に用いられ、負極活
物質には、コークスや炭素繊維などの炭素材料が用いら
れている。結果としてこれらの正極活物質と負極活物質
を組み合わせることでリチウム電池は公称電圧3.5V
以上の高電圧を達成している。
In a lithium battery, lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 O 4 ) is generally used as a positive electrode active material, and the negative electrode active material is carbon dioxide such as coke or carbon fiber. Materials are used. As a result, by combining these positive electrode active materials and negative electrode active materials, the lithium battery has a nominal voltage of 3.5V.
The above high voltage is achieved.

【0005】しかしながら、電解質に有機電解液を用い
ているため、有機電解液に起因する漏液や作動温度範囲
が狭いといった問題がある。
However, since the organic electrolyte is used as the electrolyte, there are problems such as leakage due to the organic electrolyte and a narrow operating temperature range.

【0006】さらに、負極活物質にコークスや炭素繊維
などの炭素材料を用いるリチウム電池は炭素材料の充放
電電圧が0V付近であることから、電池の充電過程でリ
チウム金属が負極表面に析出して内部短絡を引き起こす
可能性があり、十分な信頼性を有しているとはいえな
い。
Further, in a lithium battery using a carbon material such as coke or carbon fiber as a negative electrode active material, since the charge and discharge voltage of the carbon material is around 0 V, lithium metal precipitates on the surface of the negative electrode during the charging process of the battery. It may cause an internal short circuit and cannot be said to have sufficient reliability.

【0007】かかる問題を解決する方法として、例えば
特開平7−296850号公報では負極活物質にNb2
5 を用いると共に、正極活物質にLi2 MnO3 を用
いた電池が提案されており、また特開平8−22841
号公報では正極および負極活物質にスピネル系リチウム
含有金属酸化物を用いた電池が提案されている。
As a method for solving such a problem, for example, Japanese Patent Application Laid-Open No. Hei 7-296850 discloses that Nb 2
A battery using O 5 and using Li 2 MnO 3 as a positive electrode active material has been proposed.
In Japanese Patent Laid-Open Publication No. H11-157, a battery using a spinel-based lithium-containing metal oxide as a positive electrode and a negative electrode active material is proposed.

【0008】このように、正極および負極活物質に酸化
物を用いるとサイクル寿命や耐過放電特性が改善され、
高信頼性を有するリチウム電池となるが、電解質に有機
電解液を用いているため、やはり漏液や作動温度範囲が
狭いといった電解液に起因する問題を解決することがで
きない。
[0008] As described above, when an oxide is used for the positive and negative electrode active materials, the cycle life and the overdischarge resistance are improved.
Although a lithium battery having high reliability is obtained, problems caused by the electrolyte such as leakage and a narrow operating temperature range cannot be solved because the organic electrolyte is used as the electrolyte.

【0009】そこで、これら安全上の問題を解決するた
めに、不燃性の無機固体材料で構成される無機固体電解
質を用いた耐熱性、信頼性に優れた全固体リチウム電池
の開発が進められている。電解質に無機固体電解質を用
いたリチウム電池の例としては、例えば特開平11−7
942号公報に開示されるように固体電解質として硫化
物ガラスを用いたものがある。しかし、硫化物ガラスは
水分や酸素に対する安定性が乏しく電池製造コストの上
昇につながる問題がある。
Therefore, in order to solve these safety problems, development of an all-solid lithium battery excellent in heat resistance and reliability using an inorganic solid electrolyte composed of a nonflammable inorganic solid material has been promoted. I have. An example of a lithium battery using an inorganic solid electrolyte as an electrolyte is disclosed in, for example, JP-A-11-7.
As disclosed in Japanese Unexamined Patent Publication No. 942, there is one using sulfide glass as a solid electrolyte. However, sulfide glass has a problem in that it has poor stability against moisture and oxygen, which leads to an increase in battery manufacturing cost.

【0010】一方、リチウム電池に対する要求は安全
性、信頼性だけに止まらず、携帯機器の小型化軽量化に
伴い、さらなる高エネルギー密度化や高出力化が求めら
れている。
On the other hand, demands for lithium batteries are not limited to safety and reliability, and further higher energy density and higher output are required as portable devices become smaller and lighter.

【0011】かかる課題を解決するために、正極に含ま
れる導電剤の改良が種々試みられている。例えば黒鉛と
カーボンブラックの混合物を用いたり(特開平8−22
2206号公報)、形状の異なる鱗片状黒鉛と繊維状炭
素を混合したり(特開平9−27344号公報)、炭素
材料以外では遷移金属炭化物を用いたり(特開平5−2
17582号公報)、アルミニウム粉末やタンタル粉末
を用いることが提案されている(特開平8−78054
号公報)。しかしながら、これらの導電剤はいずれも電
池容量の増加には直接寄与しないため、導電剤を使用し
ないことで電池の高容量化、ひいては高エネルギー密度
化を図る試みがなされている。
In order to solve such problems, various attempts have been made to improve the conductive agent contained in the positive electrode. For example, a mixture of graphite and carbon black is used (see JP-A-8-22).
No. 2206), flaky graphite and fibrous carbon having different shapes are mixed (Japanese Patent Application Laid-Open No. 9-27344), and a transition metal carbide is used other than the carbon material (Japanese Patent Application Laid-Open No. 5-2).
17582), the use of aluminum powder or tantalum powder has been proposed (JP-A-8-78054).
No.). However, since none of these conductive agents directly contributes to an increase in battery capacity, attempts have been made to increase the capacity of the battery and thereby increase the energy density by not using a conductive agent.

【0012】特開平8−148141号公報では導電剤
やバインダーなどの電池容量の低下を招く材料を使わ
ず、活物質のみの焼成体を電極とすることで優れた充放
電特性を有するリチウム電池を提案している。
Japanese Patent Application Laid-Open No. 8-148141 discloses a lithium battery having excellent charge / discharge characteristics by using a fired body of only an active material as an electrode without using a material such as a conductive agent or a binder which causes a decrease in battery capacity. is suggesting.

【0013】しかしながら、前記提案では活物質層に結
着剤を含まないため、電極が脆く取扱が困難であるとい
う問題がある。さらに、電極に導電性を付与していない
ため、活物質層の厚みが20μmを越えると極端に充放
電容量が低下してしまい、実用電池として充分なエネル
ギー密度が得られないという問題があることが明らかと
なった。
However, in the above proposal, since the binder is not contained in the active material layer, there is a problem that the electrode is brittle and handling is difficult. Furthermore, since the electrode is not provided with conductivity, when the thickness of the active material layer exceeds 20 μm, the charge / discharge capacity is extremely reduced, and there is a problem that a sufficient energy density cannot be obtained as a practical battery. Became clear.

【0014】本発明はこのような従来の問題に鑑みてな
されたものであり、高エネルギー密度を有し、安全性お
よび信頼性に優れたリチウム電池を提供することを目的
とするものである。
The present invention has been made in view of such conventional problems, and has as its object to provide a lithium battery having a high energy density and excellent safety and reliability.

【0015】[0015]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1に係るリチウム電池では、活物質を酸化
物ガラスで結着して成る正極と負極との間に酸化物系無
機固体電解質を介在させて成るリチウム電池において、
前記正極と負極の少なくとも一方に導電剤として導電性
酸化物を含有していることを特徴とする上記リチウム電
池では、前記導電性酸化物がSnO2 および/またはI
2 3 であることが望ましい。
According to a first aspect of the present invention, there is provided a lithium battery according to the first aspect, wherein an oxide-based inorganic material is provided between a positive electrode and a negative electrode each formed by binding an active material with an oxide glass. In a lithium battery with a solid electrolyte interposed,
In the above lithium battery, at least one of the positive electrode and the negative electrode contains a conductive oxide as a conductive agent, wherein the conductive oxide is SnO 2 and / or I
Desirably, n 2 O 3 .

【0016】また、上記リチウム電池では、前記SnO
2 から成る導電性酸化物にSb2 3 がドープされてい
ることが望ましい。
In the above lithium battery, the SnO 2
It is desirable to Sb 2 O 3 is doped in the conductive oxide consisting of 2.

【0017】また、上記リチウム電池では、前記In2
3 から成る導電性酸化物にSnO2 がドープされてい
ることが望ましい。
In the above lithium battery, the In 2
It is desirable that SnO 2 be doped in the conductive oxide made of O 3 .

【0018】また、請求項5に係るリチウム電池の製造
方法では、活物質を酸化物ガラスで結着して成る正極と
負極との間に酸化物系無機固体電解質を介在させて成る
リチウム電池の製造方法において、前記活物質を酸化物
ガラスで結着した後に前記正極と負極の少なくとも一方
に導電剤として導電性酸化物を含浸させることを特徴と
する。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a lithium battery comprising an oxide-based inorganic solid electrolyte interposed between a positive electrode and a negative electrode each having an active material bound by oxide glass. In the manufacturing method, at least one of the positive electrode and the negative electrode is impregnated with a conductive oxide as a conductive agent after the active material is bound with oxide glass.

【0019】また、請求項6に係るリチウム電池では、
活物質を酸化物ガラスで結着して成る正極と負極との間
に酸化物系無機固体電解質を介在させて成るリチウム電
池において、前記正極と負極の少なくとも一方に導電剤
として炭素材料を含有していることを特徴とする。
Further, in the lithium battery according to claim 6,
In a lithium battery in which an oxide-based inorganic solid electrolyte is interposed between a positive electrode and a negative electrode obtained by binding an active material with oxide glass, at least one of the positive electrode and the negative electrode contains a carbon material as a conductive agent. It is characterized by having.

【0020】上記リチウム電池では、前記炭素材料がカ
ーボンブラックであることが望ましい。
In the above lithium battery, it is desirable that the carbon material is carbon black.

【0021】また、上記リチウム電池では、前記炭素材
料がカーボンブラックと黒鉛の混合物であることが望ま
しい。
In the above-mentioned lithium battery, the carbon material is preferably a mixture of carbon black and graphite.

【0022】また、上記リチウム電池では、前記正極と
負極の活物質がLi1+X Mn2-X 4 (0≦X≦0.
2)、LiMn2-Y MeYO4 (Me=Ni、Cr、C
u、Zn,0<Y≦0.6)、Li4 Ti5 12および
Li4 Mn5 12よりなる群から選択される少なくとも
1種類から成ることが望ましい。
In the above lithium battery, the active material of the positive electrode and the negative electrode is Li 1 + X Mn 2-X O 4 (0 ≦ X ≦ 0.
2), LiMn 2-Y MeYO 4 (Me = Ni, Cr, C
u, Zn, 0 <Y ≦ 0.6), desirably at least one selected from the group consisting of Li 4 Ti 5 O 12 and Li 4 Mn 5 O 12 .

【0023】また、請求項10に係るリチウム電池の製
造方法では、活物質を酸化物ガラスで結着して成る正極
と負極との間に酸化物系無機固体電解質を介在させて成
るリチウム電池の製造方法において、前記活物質を酸化
物ガラスで結着した後に前記正極と負極の少なくとも一
方に導電剤として炭素材料を含浸させることを特徴とす
る。
According to a tenth aspect of the present invention, there is provided a method for manufacturing a lithium battery comprising an oxide-based inorganic solid electrolyte interposed between a positive electrode and a negative electrode each having an active material bound by oxide glass. In the manufacturing method, after binding the active material with oxide glass, at least one of the positive electrode and the negative electrode is impregnated with a carbon material as a conductive agent.

【0024】[0024]

【作用】活物質を酸化物ガラスで結着することで電極が
強固になり、製造工程での電極の取扱いが容易になると
ともに、電極の隙間に導電剤を後から含浸させるので、
電池容量の低下を招くことなく電極に導電性を付与で
き、厚みが20μmを超える電極でも優れた充放電特性
が得られるため、リチウム電池のエネルギー密度を向上
させることができる。
[Function] By binding the active material with oxide glass, the electrodes are strengthened, and the handling of the electrodes in the manufacturing process is facilitated, and the gap between the electrodes is impregnated with a conductive agent later.
Conductivity can be imparted to the electrode without lowering the battery capacity, and excellent charge / discharge characteristics can be obtained even with an electrode having a thickness of more than 20 μm, so that the energy density of the lithium battery can be improved.

【0025】また、一般的に酸化物の充放電電圧は炭素
材料の充放電電圧よりも貴な電位を示すことから、活物
質、特に負極活物質にリチウム含有遷移金属酸化物を用
いると、原理的にリチウムの析出反応が起こらず、電池
の信頼性および安全性が向上する。
In general, the charge / discharge voltage of an oxide shows a more noble potential than the charge / discharge voltage of a carbon material. No lithium precipitation reaction occurs, and the reliability and safety of the battery are improved.

【0026】さらに、導電性酸化物としてSb2 3
ドープされたSnO2 および/またはSnO2 がドープ
されたIn2 3 を用いると、それ自身の導電性が高い
ために良好な充放電特性が得られることとなる。
Further, when SnO 2 doped with Sb 2 O 3 and / or In 2 O 3 doped with SnO 2 are used as the conductive oxide, good charge / discharge can be achieved due to its high conductivity. Characteristics will be obtained.

【0027】さらに、炭素材料としてカーボンブラック
あるいはカーボンブラックと黒鉛の混合物を用いると、
充填性、導電性が良好で優れた充放電特性が得られる。
Further, when carbon black or a mixture of carbon black and graphite is used as the carbon material,
Good chargeability and conductivity, and excellent charge / discharge characteristics can be obtained.

【0028】[0028]

【発明の実施の形態】以下、本発明のリチウム電池の実
施形態について説明する。図1は、本発明に係るリチウ
ム電池の構成例を示す断面図である。図1において、1
は正極、2は電解質層、3は負極、4は正極電槽、5は
負極電槽、6は封口樹脂である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the lithium battery of the present invention will be described. FIG. 1 is a sectional view showing a configuration example of the lithium battery according to the present invention. In FIG. 1, 1
Is a positive electrode, 2 is an electrolyte layer, 3 is a negative electrode, 4 is a positive electrode container, 5 is a negative electrode container, and 6 is a sealing resin.

【0029】正極1および負極3は主として活物質と酸
化物ガラスとで構成される。正極1および負極3に用い
る活物質としては、次のような遷移金属酸化物が挙げら
れる。例えばリチウムマンガン複合酸化物、二酸化マン
ガン、リチウムニッケル複合酸化物、リチウムコバルト
複合酸化物、リチウムニッケルコバルト複合酸化物、リ
チウムバナジウム複合酸化物、リチウムチタン複合酸化
物、酸化チタン、酸化ニオブ、酸化バナジウム、酸化タ
ングステンなどとそれらの誘導体が挙げられる。
The positive electrode 1 and the negative electrode 3 are mainly composed of an active material and an oxide glass. Examples of the active material used for the positive electrode 1 and the negative electrode 3 include the following transition metal oxides. For example, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide, Tungsten oxide and derivatives thereof are given.

【0030】上述の遷移金属酸化物のうち、特にLi
1+X Mn2-X 4 (0≦X≦0.2)、LiMn2-Y
eYO4 (Me=Ni、Cr、Cu、Zn;0<Y≦
0.6)、Li4 Ti5 12およびLi4 Mn5 12
りなる群は、充放電中の活物質の体積変化が小さい結晶
系がスピネル系の活物質であり、酸化物ガラスで結着し
た場合に良好なサイクル特性を示すものである。
Among the above transition metal oxides, in particular, Li
1 + X Mn 2-X O 4 (0 ≦ X ≦ 0.2), LiMn 2-Y M
eYO 4 (Me = Ni, Cr, Cu, Zn; 0 <Y ≦
0.6), the group consisting of Li 4 Ti 5 O 12 and Li 4 Mn 5 O 12 is a spinel-based active material in which the crystal of the active material having a small volume change during charge and discharge is formed by an oxide glass. It shows good cycle characteristics when worn.

【0031】ここで、正極活物質と負極活物質には明確
な区別はなく、2種類の遷移金属酸化物の充放電電位を
比較してより貴な電位を示すものを正極に、より卑な電
位を示すものを負極にそれぞれ用いて任意の電圧の電池
を構成することができる。正極活物質と負極活物質に遷
移金属酸化物を用いると、電池が過充電された場合にも
金属リチウムの析出が起こらず、電池の信頼性が向上す
る。
Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the charge and discharge potentials of two types of transition metal oxides are compared, and the one showing a more noble potential is used as the positive electrode, A battery having an arbitrary voltage can be formed by using a material having a potential as a negative electrode. When a transition metal oxide is used for the positive electrode active material and the negative electrode active material, deposition of metallic lithium does not occur even when the battery is overcharged, and the reliability of the battery is improved.

【0032】本発明にかかる酸化物ガラスとしては、リ
ン酸塩ガラスやホウ酸塩ガラス、ケイ酸塩ガラス、ホウ
ケイ酸塩ガラスを中心とした多成分系酸化物ガラスを挙
げることができる。また、アルカリ金属元素の添加は体
積抵抗を低減でき、特にリチウムを添加した場合にはリ
チウムイオン伝導性が期待されるので好ましい。
Examples of the oxide glass according to the present invention include phosphate glass, borate glass, silicate glass, and multi-component oxide glass mainly composed of borosilicate glass. Further, the addition of an alkali metal element is preferable because the volume resistance can be reduced, and particularly when lithium is added, lithium ion conductivity is expected.

【0033】酸化物ガラスの組成は特に限定しないが、
活物質粒子を結着するための熱処理は酸化物ガラスのガ
ラス転移点以上、活物質の合成温度以下で行われるた
め、この温度範囲において流動性を示す酸化物ガラスを
選定するのが好ましい。
Although the composition of the oxide glass is not particularly limited,
Since heat treatment for binding the active material particles is performed at a temperature equal to or higher than the glass transition point of the oxide glass and equal to or lower than the synthesis temperature of the active material, it is preferable to select an oxide glass exhibiting fluidity in this temperature range.

【0034】酸化物ガラスの添加量は、活物質と酸化物
ガラスの組み合わせによって種々最適値が異なると考え
られるが、概して30重量%以下が好ましい。30重量
%を超えると電極体積中に占める酸化物ガラスの体積が
大きくなり、かえって活物質の充填率を下げることとな
る。
The amount of the oxide glass to be added is considered to have various optimum values depending on the combination of the active material and the oxide glass, but is generally preferably 30% by weight or less. If the content exceeds 30% by weight, the volume of the oxide glass occupying the electrode volume becomes large, and the filling rate of the active material is rather lowered.

【0035】正極1は、正極活物質と酸化物ガラスに成
形助剤を加えて加圧成形して熱処理した多孔質体から成
り、負極3は、正極1中の正極活物質の充放電電位より
も卑な充放電電位を有する遷移金属酸化物を活物質とし
た多孔質体から成る。
The positive electrode 1 is made of a porous material obtained by adding a molding aid to a positive electrode active material and an oxide glass, press-molding and heat-treating the negative electrode, and the negative electrode 3 has a charge-discharge potential of the positive electrode active material in the positive electrode 1. And a porous body using a transition metal oxide having a low charge / discharge potential as an active material.

【0036】正極1および負極3を作製するには、
(1)活物質と酸化物ガラスを成形助剤を溶解させた水
もしくは溶剤に分散させてスラリーを調製し、このスラ
リーを基材フィルム上に塗布して乾燥した後、加圧成形
して裁断したものを熱処理する方法、あるいは(2)活
物質と酸化物ガラスの混合物を直接あるいは成形助剤を
加えて造粒して金型に投入し、プレス機で加圧成形した
後、熱処理する方法、(3)造粒した混合物をロールプ
レス機で加圧成形してシート状に加工した後、そのシー
トを裁断して熱処理する方法などが用いられる。
(2)、(3)の造粒は、(1)の方法で述べたスラリ
ーから造粒する湿式造粒であっても溶剤を用いない乾式
造粒であっても構わない。
To produce the positive electrode 1 and the negative electrode 3,
(1) A slurry is prepared by dispersing an active material and an oxide glass in water or a solvent in which a molding aid is dissolved, and this slurry is applied on a substrate film, dried, and then molded under pressure and cut. (2) a method in which a mixture of the active material and the oxide glass is granulated directly or with the addition of a molding aid, and then granulated and injected into a mold, followed by pressure molding with a press machine, followed by heat treatment. And (3) a method in which the granulated mixture is pressure-formed by a roll press machine, processed into a sheet shape, and then cut and heat-treated.
The granulation of (2) and (3) may be wet granulation that granulates from the slurry described in the method of (1) or dry granulation without using a solvent.

【0037】次に、これら正極1および/または負極3
に後含浸する酸化物導電剤には、例えばSnO2 やIn
2 3 、TiO2-X 、ZnO、Fe3 4 、ReO3
MoO2 、RuO2 、VO、WO2 など室温で大凡1×
10-4Ω・m以下の抵抗率を有する導電性酸化物を用い
ることができる。さらに好ましくは、安定した低抵抗率
を得るために、Sb2 3 がドープされたSnO2 とS
nO2 がドープされたIn2 3 が帯電防止や透明電極
用に量産されており、これらを用いることが品質、コス
トの面からも有利である。
Next, the positive electrode 1 and / or the negative electrode 3
For example, SnO 2 and In
2 O 3 , TiO 2 -X , ZnO, Fe 3 O 4 , ReO 3 ,
MoO 2 , RuO 2 , VO, WO 2 etc. at room temperature, about 1 ×
A conductive oxide having a resistivity of 10 −4 Ω · m or less can be used. More preferably, in order to obtain a stable low resistivity, SnO 2 doped with Sb 2 O 3 and S
In 2 O 3 doped with nO 2 is mass-produced for antistatic purposes and for transparent electrodes, and the use of these is advantageous in terms of quality and cost.

【0038】また、正極1および/または負極3に後含
浸する炭素材料には、例えばファーネスブラックやアセ
チレンブラック、サーマルブラックなどのカーボンブラ
ックと鱗片状や繊維状の天然黒鉛や人造黒鉛などを挙げ
ることができる。なかでも一次粒子の平均粒径が0.0
25〜0.07μmのファーネスブラック、アセチレン
ブラックが充填性が良好でカーボンブラックとして適し
ている。また、黒鉛には鱗片状の黒鉛をサブμmまで微
粉砕したものが充填性、導電性に優れ適当である。な
お、これらの炭素材料は予めシランカップリング剤など
で表面改質処理を施したものを用いることもできる。
Examples of the carbon material post-impregnated into the positive electrode 1 and / or the negative electrode 3 include carbon black such as furnace black, acetylene black, and thermal black, and scaly or fibrous natural graphite or artificial graphite. Can be. In particular, the average primary particle size is 0.0
Furnace black and acetylene black of 25 to 0.07 μm have good filling properties and are suitable as carbon black. Further, graphite obtained by finely pulverizing flaky graphite to sub-μm is suitable for its excellent filling property and conductivity. Note that these carbon materials that have been subjected to a surface modification treatment with a silane coupling agent or the like in advance can also be used.

【0039】後含浸の方法としては、例えば活物質の平
均粒径の10分の1以下の平均粒径を持つ酸化物導電剤
または炭素材料の微粒子を水もしくは有機溶剤に分散さ
せた懸濁液に熱処理して得られた正極1および/または
負極3の多孔質体を浸漬して含浸する方法や電解質2を
介して一括熱処理して一体化した発電要素を浸漬して含
浸する方法がある。また、含浸を加速するために、減圧
あるいは減圧加圧含浸することも可能である。なお、発
電要素に含浸した場合は、発電要素の周縁部に付着した
酸化物導電剤を除去するために、周縁部を研磨あるいは
切断することが必要である。
As a method of post-impregnation, for example, a suspension in which fine particles of an oxide conductive agent or a carbon material having an average particle diameter of one-tenth or less of the average particle diameter of the active material are dispersed in water or an organic solvent. There is a method in which the porous body of the positive electrode 1 and / or the negative electrode 3 obtained by heat treatment is immersed and impregnated, or a method in which the power generating element integrated by heat treatment in a lump through the electrolyte 2 is immersed and impregnated. Further, in order to accelerate the impregnation, it is also possible to perform the impregnation under reduced pressure or under reduced pressure. When the power generating element is impregnated, it is necessary to grind or cut the peripheral part in order to remove the oxide conductive agent attached to the peripheral part of the power generating element.

【0040】電解質層2に用いられる酸化物系無機固体
電解質には、例えばLi1.3 Al0.3 Ti1.7 (P
4 3 やLi3.6 Ge0.6 0.4 4 などの結晶質固
体電解質、30LiI−41Li2 O−29P2 5
40Li2 O−35B2 3 −25LiNbO3 、10
Li2 O−25B2 3 −15SiO2 −50ZnOな
どの非晶質固体電解質、あるいは結晶質固体電解質と非
晶質固体電解質の混合体もしくは焼成体を挙げることが
できる。
The oxide-based inorganic solid electrolyte used for the electrolyte layer 2 includes, for example, Li 1.3 Al 0.3 Ti 1.7 (P
Crystalline solid electrolytes such as O 4 ) 3 and Li 3.6 Ge 0.6 V 0.4 O 4 , 30LiI-41Li 2 O-29P 2 O 5 and 40Li 2 O-35B 2 O 3 -25LiNbO 3 , 10
Li 2 O-25B 2 O 3 -15SiO 2 amorphous solid electrolytes such as -50ZnO, or can be given mixture or fired crystalline solid electrolyte and an amorphous solid electrolyte.

【0041】電解質層2は、例えば上記製法(1)〜
(3)と同様にして酸化物系無機固体電解質である結晶
質固体電解質と非晶質固体電解質の混合体に成形助剤を
加えて成形体を作製し、熱処理することによって作製す
ることができる。
The electrolyte layer 2 is formed, for example, by the above-mentioned production methods (1) to (4).
In the same manner as in (3), a compact can be prepared by adding a molding aid to a mixture of a crystalline solid electrolyte and an amorphous solid electrolyte, which are oxide-based inorganic solid electrolytes, and then heat-treated. .

【0042】上述の正極1、負極3および電解質層2を
積層してなる発電要素を作製する方法としては、(イ)
個別に熱処理して多孔質体とした正極1と負極3を電解
質層2を介して積層する方法や、(ロ)熱処理後の正極
1と負極3を熱処理前の電解質層2を介して積層して熱
処理する方法や、(ハ)熱処理前の各層を積層して一括
して熱処理する方法などが考えられる。ただし、各層の
接触状態を考慮すると層間の接着が可能な(ロ)または
(ハ)の方法が好ましい。
The method for producing a power generating element by laminating the above-described positive electrode 1, negative electrode 3, and electrolyte layer 2 is as follows.
A method of laminating the positive electrode 1 and the negative electrode 3 which are individually heat-treated into a porous body through the electrolyte layer 2 or (b) laminating the positive electrode 1 and the negative electrode 3 after the heat treatment via the electrolyte layer 2 before the heat treatment. And (c) laminating the layers before the heat treatment and heat-treating them collectively. However, in consideration of the contact state of each layer, the method (b) or (c), in which adhesion between layers is possible, is preferable.

【0043】いずれにしても、ここで使用可能な成形助
剤としては、例えばポリテトラフルオロエチレン、ポリ
アクリル酸、カルボキシメチルセルロース、ポリフッ化
ビニリデン、ポリビニルアルコール、ジアセチルセルロ
ース、ヒドロキシプロピルセルロース、ポリブチラー
ル、ポリビニルクロライド、ポリビニルピロリドンなど
の1種もしくは2種以上の混合物が挙げられる。
In any case, examples of the molding aid usable here include polytetrafluoroethylene, polyacrylic acid, carboxymethyl cellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetyl cellulose, hydroxypropyl cellulose, polybutyral, polyvinyl One or a mixture of two or more of chloride, polyvinylpyrrolidone and the like can be mentioned.

【0044】基材フィルムとしては、例えばポリエチレ
ンテレフタレート、ポリプロピレン、ポリエチレン、ポ
リテトラフルオロエチレンなどの樹脂フィルム、アルミ
ニウム、ステンレス、銅などの金属箔などが使用可能で
ある。
As the base film, for example, resin films such as polyethylene terephthalate, polypropylene, polyethylene, and polytetrafluoroethylene, and metal foils such as aluminum, stainless steel, and copper can be used.

【0045】正極電槽4と負極電槽5に用いる金属製薄
板は、ステンレス、アルミニウム、ニッケル、銅、コバ
ール、42アロイ、チタンあるいはアルミニウム合金な
どの金属材料であればよい。また、封口樹脂6は前記金
属材料と接着性を有する接着性樹脂であればよく、封口
にはヒートシーラーや熱板などを用いることができる。
正極電槽4と負極電槽5の板厚は、電池のエネルギー密
度の観点から薄いものを用いるのが望ましいが、ピンホ
ールの有無や外装材としての強度の面から適当な厚みが
選択されるべきである。例えばアルミニウムの場合30
μm以上とすることが望ましい。一方、厚い方では、封
止方法による制約や封止部の接着強度やエネルギー密度
の観点から500μm以下とするのが好ましい。
The metal thin plate used for the positive electrode case 4 and the negative electrode case 5 may be a metal material such as stainless steel, aluminum, nickel, copper, Kovar, 42 alloy, titanium or an aluminum alloy. The sealing resin 6 may be any adhesive resin having an adhesive property to the metal material, and a heat sealer or a hot plate can be used for the sealing.
The thickness of the positive electrode container 4 and the negative electrode container 5 is desirably thin from the viewpoint of the energy density of the battery, but an appropriate thickness is selected in view of the presence or absence of pinholes and the strength as an exterior material. Should. For example, for aluminum 30
It is desirable that the thickness be not less than μm. On the other hand, when the thickness is large, the thickness is preferably 500 μm or less from the viewpoint of the restriction by the sealing method and the adhesive strength and energy density of the sealing portion.

【0046】正極電槽4および/または負極電槽5の極
群収納部を予め凹状に成形してもよく、この凹状の成形
方法には既存の従来技術を用いることができる。例えば
成形金型によるプレス加工が一般的である。形状は、極
群収納部から見て凹状であれば良く、深さや寸法は特に
限定されないが、極群の厚みと封口樹脂7の厚みを考慮
して極群と電槽が面で接触できる寸法、形状にすべきで
ある。また、成形方法によっては成形する際に凹状の極
群収納部が台形となったり、屈曲部に曲面を設けた方が
好都合な場合があり、成形方法に適した任意の設計とす
ることで何ら問題はない。
The electrode group accommodating portions of the positive electrode container 4 and / or the negative electrode container 5 may be formed in a concave shape in advance, and an existing conventional technique can be used for the concave forming method. For example, press working with a molding die is common. The shape is not particularly limited as long as it is concave as viewed from the electrode group storage portion, and the depth and the size are not particularly limited. , Should be shaped. Also, depending on the molding method, it may be more convenient to form a concave pole group storage portion in a trapezoidal shape during molding, or to provide a curved surface at the bent portion, and any design suitable for the molding method may be used. No problem.

【0047】封口樹脂6には、上記金属製電槽と接着性
を有する接着性樹脂を用いることができる。例えば変性
ポリエチレンや変性ポリプロピレンなどの熱熔着性の接
着性樹脂が取扱が簡便で適当である。
As the sealing resin 6, an adhesive resin having an adhesive property to the above-mentioned metal container can be used. For example, a heat-fusible adhesive resin such as a modified polyethylene or a modified polypropylene is easy to handle and suitable.

【0048】本発明のリチウム電池の形状は、カード
型、フィルム型、コイン型、円筒型および扁平型などの
四角や三角、円形など特に限定されるものではない。
The shape of the lithium battery of the present invention is not particularly limited, such as a square, triangular or circular shape such as a card type, a film type, a coin type, a cylindrical type and a flat type.

【0049】[0049]

【実施例】以下、本発明を実施例に基づいてさらに詳し
く説明する。
The present invention will be described below in more detail with reference to examples.

【0050】[実施例1]水酸化リチウムと二酸化マン
ガンをLiとMnのモル比が1:2となるように混合
し、この混合物を大気中、700℃で15時間加熱焼成
することによりリチウムマンガン複合酸化物(LiMn
2 4 )を調製し、これを正極活物質とした。
[Example 1] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of Li: Mn of 1: 2, and this mixture was heated and fired at 700 ° C. for 15 hours in the air to obtain lithium manganese. Complex oxide (LiMn
2 O 4 ) was prepared and used as a positive electrode active material.

【0051】次に、水酸化リチウムと二酸化チタンをL
iとTiのモル比が4:5となるように混合し、この混
合物を大気中、750℃で15時間加熱焼成することに
よりリチウムチタン複合酸化物(Li4 Ti5 12)を
調製して負極活物質とした。
Next, lithium hydroxide and titanium dioxide are
The mixture was mixed so that the molar ratio of i and Ti was 4: 5, and the mixture was heated and calcined at 750 ° C. for 15 hours in the air to prepare a lithium titanium composite oxide (Li 4 Ti 5 O 12 ). This was used as a negative electrode active material.

【0052】このLiMn2 4 とLi4 Ti5 12
それぞれと酸化物ガラス、ここでは50P2 5 −30
PbO−20ZnOとを重量比90:10で乾式混合し
混合粉とした。この混合粉100に対して成形助剤のポ
リビニルブチラールが重量比で10となるように加え、
さらにトルエンを加えてスラリーを調製した。このスラ
リーをポリエチレンテレフタレート(PET)フィルム
上に塗布した後に乾燥させてシート状に成形したものを
ロールプレスにより加圧圧縮成形して、正極、負極とも
厚み0.25mmのシートとした。それぞれのシートを
金型で打ち抜き20mm角のシート状の正極および負極
成形体を得た。
Each of the LiMn 2 O 4 and Li 4 Ti 5 O 12 and an oxide glass, here 50P 2 O 5 -30
PbO-20ZnO was dry mixed at a weight ratio of 90:10 to obtain a mixed powder. With respect to this mixed powder 100, polyvinyl butyral as a molding aid was added so as to be 10 in weight ratio,
Further, toluene was added to prepare a slurry. The slurry was applied on a polyethylene terephthalate (PET) film, dried, and formed into a sheet. The resulting sheet was press-compressed by a roll press to obtain a sheet having a thickness of 0.25 mm for both the positive electrode and the negative electrode. Each sheet was punched out with a mold to obtain a sheet-shaped positive electrode and negative electrode molded body of 20 mm square.

【0053】酸化物系無機固体電解質、ここでは10L
2 O−25B2 3 −15SiO2 −50ZnOと成
形助剤のポリビニルブチラールを重量比100:10で
混合し、さらにトルエンを加えてスラリーを調製し、P
ETフィルム上に同じく成形して裁断することで20m
m角、厚み0.1mmのシート状電解質成形体を作製し
た。
An oxide-based inorganic solid electrolyte, here 10 L
i 2 O-25B 2 O 3 -15SiO 2 -50ZnO a molding aid polyvinyl butyral weight ratio of 100 were mixed with 10, a slurry was prepared further by adding toluene, P
20m by molding and cutting on ET film
A sheet-like electrolyte molded body having an m square and a thickness of 0.1 mm was produced.

【0054】上記正極成形体と負極成形体を電解質成形
体を介して積層し、これを大気中、550℃で一括熱処
理して正極1と負極3の間に電解質層2を介した18m
m角、厚み0.55mmの発電要素を作製した。
The above-mentioned positive electrode molded body and negative electrode molded body were laminated via an electrolyte molded body, and this was heat-treated at 550 ° C. in air at a time, and 18 m between the positive electrode 1 and the negative electrode 3 with the electrolyte layer 2 interposed therebetween.
A power generating element having an m square and a thickness of 0.55 mm was produced.

【0055】導電性酸化物の後含浸は、次のようにして
行った。導電性酸化物には株式会社高純度化学製のSb
2 3 ドープSnO2 を用い、まずこれを純水に濃度が
5重量%となるように分散させSnO2 懸濁液を調製し
た。次に、この懸濁液に一括熱処理して作製した発電要
素を浸漬し、5分間放置してから取り出し、表面の液を
拭き取った後、120℃で10分間乾燥した。この浸漬
と乾燥の操作を5回繰り返し、さらに発電要素の周囲を
軽く研磨して不用部分のSnO2 を除去して発電要素と
した。
The post-impregnation of the conductive oxide was performed as follows. Sb manufactured by Kojundo Chemical Co., Ltd.
With 2 O 3 doped SnO 2, and this is first to prepare a SnO 2 suspension is dispersed so that the concentration in pure water is 5 wt%. Next, the power generating element produced by batch heat treatment was immersed in this suspension, left for 5 minutes, taken out, and the surface liquid was wiped off, followed by drying at 120 ° C. for 10 minutes. These immersion and drying operations were repeated five times, and the periphery of the power generating element was lightly polished to remove unnecessary portions of SnO 2 to obtain a power generating element.

【0056】正極電槽4と負極電槽5には厚み0.1m
mのアルミニウムを25mm角に裁断した金属薄板を用
いた。ただし、正極電槽4には予めプレス成形で極群収
納部を凹状に成形したものを用いた。負極電槽5には予
め幅5mmの窓枠状に裁断加工しておいた電槽と接着性
を有する封口樹脂6をヒートシールしておいたものを用
いた。
The positive electrode case 4 and the negative electrode case 5 have a thickness of 0.1 m.
m was cut into a 25 mm square metal sheet. However, the positive electrode case 4 used was one in which the electrode group housing portion was formed in a concave shape by press molding in advance. As the negative electrode case 5, a case in which a sealing case 6 having an adhesive property and a case previously cut into a window frame having a width of 5 mm were heat-sealed was used.

【0057】最後に、電池の組み立ては負極電槽5の中
央に上記発電要素を載置したのち正極電槽4を被せて正
極電槽4と負極電槽5をヒートシールして接着しリチウ
ム電池を作製した。
Finally, assembling the battery, the above-mentioned power generating element is placed in the center of the negative electrode container 5, and then the positive electrode container 4 is covered, and the positive electrode container 4 and the negative electrode container 5 are heat-sealed and adhered. Was prepared.

【0058】[実施例2]導電性酸化物に株式会社高純
度化学製のSnO2 ドープIn2 3 を用いたこと以外
は実施例1と同様にしてリチウム電池を組み立てた。
Example 2 A lithium battery was assembled in the same manner as in Example 1 except that SnO 2 -doped In 2 O 3 manufactured by Kojundo Chemical Co., Ltd. was used as the conductive oxide.

【0059】[実施例3]実施例1の導電性酸化物に代
えて炭素材料を用いたこと以外は、実施例1と同様にし
てリチウム電池を組み立てた。炭素材料の後含浸は、次
のようにして行った。炭素材料には日本アチソン株式会
社製の導電性インク(JEF−505)を用い、まずこ
れを専用溶剤で炭素材料の濃度が約5重量%となるよう
に希釈して炭素材料の懸濁液を調製した。次に、この懸
濁液に一括熱処理して作製した発電要素を浸漬し、5分
間放置してから取り出し、表面の液を拭き取った後、1
20℃で10分間乾燥した。この浸漬と乾燥の操作を5
回繰り返し、さらに発電要素の周囲を軽く研磨して不用
部分の炭素材料を除去して発電要素とした。
Example 3 A lithium battery was assembled in the same manner as in Example 1 except that a carbon material was used instead of the conductive oxide of Example 1. The post-impregnation of the carbon material was performed as follows. A conductive ink (JEF-505) manufactured by Acheson Japan Co., Ltd. is used as the carbon material. First, this is diluted with a dedicated solvent so that the concentration of the carbon material becomes about 5% by weight to prepare a suspension of the carbon material. Prepared. Next, the power generation element produced by batch heat treatment was immersed in this suspension, left for 5 minutes, taken out, and the surface liquid was wiped off.
Dry at 20 ° C. for 10 minutes. This dipping and drying operation is performed in 5
This was repeated several times, and the periphery of the power generating element was lightly polished to remove unnecessary carbon material, thereby obtaining a power generating element.

【0060】[実施例4]実施例3で作製した炭素材料
の懸濁液に微粉砕した鱗片状天然黒鉛をカーボンブラッ
クと黒鉛の重量比が4:1となるように添加して充分混
合して分散してカーボンブラックと黒鉛の混合懸濁液と
したこと以外は実施例1と同様にしてリチウム電池を組
み立てた。
Example 4 Finely ground flaky natural graphite was added to the suspension of carbon material prepared in Example 3 so that the weight ratio of carbon black to graphite was 4: 1 and mixed well. A lithium battery was assembled in the same manner as in Example 1 except that the mixture was dispersed to form a mixed suspension of carbon black and graphite.

【0061】[比較例1]酸化物導電体を後含浸する工
程を省いたこと以外は実施例1と同様にしてリチウム電
池を作製した。
Comparative Example 1 A lithium battery was manufactured in the same manner as in Example 1, except that the step of post-impregnation with an oxide conductor was omitted.

【0062】[比較例2]実施例1と同様にして正極、
負極とも厚み0.25mm、寸法20mm角のシート状
の正極および負極成形体を得た。これを大気中550℃
で熱処理し、ついでSb2 3 ドープSnO2 を実施例
1と同様にして後含浸してそれぞれ正極と負極を得た。
Comparative Example 2 A positive electrode was prepared in the same manner as in Example 1.
As the negative electrode, a sheet-shaped positive electrode and a negative electrode molded body having a thickness of 0.25 mm and a size of 20 mm square were obtained. 550 ° C in air
Then, Sb 2 O 3 -doped SnO 2 was post-impregnated in the same manner as in Example 1 to obtain a positive electrode and a negative electrode, respectively.

【0063】次に、電解液は、プロピレンカーボネート
と1,2―ジメトキシエタンが体積比で1:1の割合で
混合された非水溶媒に電解質として過塩素酸リチウム
(LiClO4 )をその濃度が1mol/lになるよう
に溶解させて調製した。
Next, the concentration of lithium perchlorate (LiClO 4 ) as an electrolyte in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a ratio of 1: 1 by volume was used as the electrolyte. It was prepared by dissolving to 1 mol / l.

【0064】上記正極を正極電槽に載置し、上記電解液
を含浸させた厚み100μmのポリプロピレン製不織布
からなるセパレータを前記正極上に載せ、上記負極なら
びに負極電槽を積層して正極電槽と負極電槽をヒートシ
ールして接着してリチウム電池を作製した。
The positive electrode was placed in a positive electrode case, a separator made of a 100-μm-thick polypropylene nonwoven fabric impregnated with the electrolytic solution was placed on the positive electrode, and the negative electrode and the negative electrode case were laminated. The negative electrode case was heat-sealed and bonded to produce a lithium battery.

【0065】[比較例3]実施例1と同様にして作製し
たLiMn2 4 、導電剤としてのアセチレンブラッ
ク、およびバインダーとしてのポリテトラフルオロエチ
レンを活物質、導電剤、およびバインダーの重量比が8
4:10:6になるように混合して混練した後、溶剤で
あるトルエンを加えて十分混練してロールプレスにより
厚み0.25mmの短冊状シートに成形した。このシー
トを金型で打ち抜き18mm角のシート状の正極を得
た。
[Comparative Example 3] LiMn 2 O 4 prepared in the same manner as in Example 1, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder were used in a weight ratio of an active material, a conductive agent, and a binder. 8
After mixing and kneading in a ratio of 4: 10: 6, toluene as a solvent was added, and the mixture was sufficiently kneaded and formed into a 0.25 mm-thick strip-shaped sheet by a roll press. This sheet was punched out with a die to obtain a sheet-shaped positive electrode having a size of 18 mm square.

【0066】次に、実施例1と同様にして作製したLi
4 Ti5 12、導電剤としてのアセチレンブラック、お
よびバインダーとしてのポリテトラフルオロエチレンを
活物質、導電剤、およびバインダーの重量比が80:1
2:8になるように混合して混練した後、溶剤であるト
ルエンを加えて十分混練してロールプレスにより厚み
0.25mmの短冊状シートに成形した。このシートを
金型で打ち抜き18mm角のシート状の負極を得た。上
記正極と負極を用いて導電性酸化物の後含浸を省いたこ
と以外は比較例2と同様にしてリチウム電池を作製た。
Next, the Li fabricated in the same manner as in Example 1 was used.
4 Ti 5 O 12 , acetylene black as a conductive agent, and polytetrafluoroethylene as a binder were mixed with an active material, a conductive agent, and a binder in a weight ratio of 80: 1.
After mixing and kneading at a ratio of 2: 8, toluene as a solvent was added and kneaded sufficiently, and formed into a strip-shaped sheet having a thickness of 0.25 mm by a roll press. This sheet was punched out with a mold to obtain a sheet-shaped negative electrode of 18 mm square. A lithium battery was produced in the same manner as in Comparative Example 2 except that the post-impregnation of the conductive oxide was omitted using the above positive electrode and negative electrode.

【0067】[比較例4]実施例3と同様にして正極、
負極とも厚み0.25mm、寸法20mm角のシート状
の正極および負極成形体を得た。これを大気中の550
℃で熱処理し、ついで炭素材料を実施例3と同様にして
後含浸してそれぞれ正極と負極を得た。
Comparative Example 4 A positive electrode was prepared in the same manner as in Example 3.
As the negative electrode, a sheet-shaped positive electrode and a negative electrode molded body having a thickness of 0.25 mm and a size of 20 mm square were obtained. 550 of this in the atmosphere
Then, the carbon material was post-impregnated in the same manner as in Example 3 to obtain a positive electrode and a negative electrode, respectively.

【0068】次に、電解液は、プロピレンカーボネート
と1, 2―ジメトキシエタンが体積比で1:1の割合で
混合された非水溶媒に電解質として過塩素酸リチウム
(LiClO4 )をその濃度が1mol/ lになるよう
に溶解させて調製した。
Next, the concentration of lithium perchlorate (LiClO 4 ) as an electrolyte in a non-aqueous solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 was used. It was prepared by dissolving to 1 mol / l.

【0069】上記正極を正極電槽に載置し、上記電解液
を含浸させた厚み100μmのポリプロピレン製不織布
からなるセパレータを前記正極上に載せ、上記負極なら
びに負極電槽を積層して正極電槽と負極電槽をヒートシ
ールして接着してリチウム電池を作製した。
The positive electrode was placed in a positive electrode case, a separator made of a 100 μm-thick polypropylene nonwoven fabric impregnated with the electrolytic solution was placed on the positive electrode, and the negative electrode and the negative electrode case were laminated. The negative electrode case was heat-sealed and bonded to produce a lithium battery.

【0070】(評価)上記実施例1〜4および比較例1
〜4で作製した電池の放電容量を測定し、放電容量と放
電平均電圧を求めた。なお、電池の放電容量は、充電終
止電圧を2.8V、電流値を0.2mAとして定電流充
電した後、1時間放置して同じく電流値0.2mAで
2.0Vまで定電流放電して求めた。放電平均電圧は、
放電容量の中間値での電圧とした。
(Evaluation) Examples 1 to 4 and Comparative Example 1
The discharge capacity of the batteries prepared in Nos. 1 to 4 was measured, and the discharge capacity and the average discharge voltage were determined. The discharge capacity of the battery was constant current charging at a charge end voltage of 2.8 V and a current value of 0.2 mA. After that, the battery was left for 1 hour and discharged at a constant current of 0.2 mA to 2.0 V at a constant current. I asked. The discharge average voltage is
The voltage was an intermediate value of the discharge capacity.

【0071】また、得られた放電容量、放電平均電圧か
ら体積エネルギー密度を算出したので、この結果も併せ
て表1にまとめて示す。なお、体積エネルギー密度の計
算には電槽を含まない電解質2あるいは電解液を含浸し
たセパレータを介して一体化された正極1および負極3
から成る発電要素のみの体積を分母に放電容量と放電平
均電圧の積を分子に用いて求めた。
The volume energy density was calculated from the obtained discharge capacity and average discharge voltage, and the results are also shown in Table 1. In calculating the volume energy density, the positive electrode 1 and the negative electrode 3 integrated via the electrolyte 2 containing no battery case or the separator impregnated with the electrolytic solution were used.
The product of the discharge capacity and the discharge average voltage was used as the numerator with the volume of only the power generation element consisting of

【0072】[0072]

【表1】 [Table 1]

【0073】表1から明らかなように、実施例1〜4の
電池は比較例の電池に比べて重量エネルギー密度が大き
くなっていることがわかる。
As is clear from Table 1, the batteries of Examples 1 to 4 have a higher weight energy density than the batteries of Comparative Examples.

【0074】具体的に実施例1〜4と比較例1の放電容
量と放電平均電圧を比較すると実施例1、2では酸化物
導電剤が含浸され、実施例3、4では炭素材料を含浸し
ているために、大きな放電容量を示したが、酸化物導電
剤や炭素材料を含浸していない比較例1の電池は全く放
電することができず、放電容量は0mAhとなった。ま
た、実施例の電池は電極の厚みが200μm以上と厚い
にもかかわらず充放電が可能となった。このことから酸
化物導電剤や炭素材料の後含浸が電池の充放電特性を大
きく改善していることがわかる。
Specifically, when the discharge capacities and the discharge average voltages of Examples 1 to 4 and Comparative Example 1 were compared, Examples 1 and 2 were impregnated with an oxide conductive agent, and Examples 3 and 4 were impregnated with a carbon material. Therefore, the battery of Comparative Example 1, which was not impregnated with the oxide conductive agent or the carbon material, could not be discharged at all, and the discharge capacity was 0 mAh. In addition, the batteries of the examples were able to charge and discharge despite the electrode thickness being as thick as 200 μm or more. This indicates that the post-impregnation of the oxide conductive agent and the carbon material greatly improved the charge / discharge characteristics of the battery.

【0075】実施例1〜4と比較例2、3、4を比較す
ると、比較例3は電極内にアセチレンブラックとポリテ
トラフルオロエチレンを含有しているため、活物質の占
める体積が減少し、活物質の利用率が高いにもかかわら
ず電池容量が減少した。これに対して実施例の電池はポ
リテトラフルオロエチレンよりも密度の高い酸化物ガラ
スを5重量%しか含まないため、電極内で活物質が占め
る体積が大きくなり、結果として電池が高容量となった
と考えられる。
When Examples 1 to 4 are compared with Comparative Examples 2, 3 and 4, Comparative Example 3 contains acetylene black and polytetrafluoroethylene in the electrode, so that the volume occupied by the active material is reduced. Battery capacity decreased despite high utilization of active material. On the other hand, since the battery of the example contains only 5% by weight of the oxide glass having a higher density than polytetrafluoroethylene, the volume occupied by the active material in the electrode increases, and as a result, the battery has a high capacity. It is considered that

【0076】比較例2の電池は実施例1と同じ電極を用
いているため、実施例1と同様の結果となった。
Since the battery of Comparative Example 2 uses the same electrode as that of Example 1, the result was the same as that of Example 1.

【0077】また、比較例4の電池は実施例3と同じ電
極を用いているため、実施例3と同様の結果となった。
Since the battery of Comparative Example 4 uses the same electrodes as in Example 3, the same results as in Example 3 were obtained.

【0078】次に、実施例1〜4および比較例2、3、
4の電池を使って高温(60℃)サイクル試験を行っ
た。サイクル試験は放電容量測定と同じ充放電電流値と
電圧範囲で50サイクルまで行った。表2に放電容量測
定で得られた放電容量を初期放電容量として50サイク
ル目の放電容量と合せて示す。
Next, Examples 1-4 and Comparative Examples 2, 3,
A high temperature (60 ° C.) cycle test was performed using the battery No. 4. The cycle test was performed up to 50 cycles in the same charge / discharge current value and voltage range as the discharge capacity measurement. Table 2 shows the discharge capacity obtained by the discharge capacity measurement as the initial discharge capacity together with the discharge capacity at the 50th cycle.

【0079】[0079]

【表2】 [Table 2]

【0080】表2の結果から、電解質に酸化物系無機固
体電解質を用いた実施例のリチウム電池はほとんど容量
低下がなく安定しているのに対し、有機電解液を用いた
電池は放電容量が約2分の1まで低下した。
From the results in Table 2, it can be seen that the lithium battery of the embodiment using the oxide-based inorganic solid electrolyte as the electrolyte is stable with almost no capacity reduction, whereas the battery using the organic electrolyte has a discharge capacity of It decreased to about half.

【0081】サイクル試験が終了した電池の外観を目視
で確認したところ、有機電解液を用いた比較例の電池で
は、電池の膨れが確認された。これに対して実施例の電
池でには外観上の変化はなかった。
When the external appearance of the battery after the cycle test was visually confirmed, the battery of the comparative example using the organic electrolytic solution was found to have swollen. In contrast, there was no change in the appearance of the batteries of the examples.

【0082】これらのことから、比較例の電池は活物質
と電解液がガス発生を伴う何らかの反応をして電池の内
圧が上昇して電池が膨れたものと考えられる。
From these facts, it is considered that the battery of the comparative example swelled due to the internal pressure of the battery increasing due to some reaction between the active material and the electrolytic solution accompanied by gas generation.

【0083】以上のことから電解質に酸化物系無機固体
電解質を用いた本発明の電池では、エネルギー密度が高
く、さらに安全性、信頼性に優れていることが分かっ
た。
From the above, it was found that the battery of the present invention using an oxide-based inorganic solid electrolyte as the electrolyte had a high energy density and was excellent in safety and reliability.

【0084】本実施例では正極活物質、負極活物質とも
それぞれ一種類の例しか開示しなかったが、電解質に酸
化物系無機固体電解質を用い、さらに電極に酸化物導電
剤もしくは炭素材料を後含浸すれば、他の活物質を用い
てもエネルギー密度、安全性ならびに信頼性の向上に同
様の効果が得られることは明白である。
Although only one type of positive electrode active material and one type of negative electrode active material are disclosed in this embodiment, an oxide-based inorganic solid electrolyte is used as an electrolyte, and an oxide conductive agent or a carbon material is used as an electrode. It is clear that the impregnation can provide the same effect on energy density, safety and reliability even if other active materials are used.

【0085】[0085]

【発明の効果】以上のように、本発明に係るリチウム電
池によれば、正極と負極の少なくとも一方に導電剤とし
て導電性酸化物または炭素材料を含有することから、エ
ネルギー密度が高く、安全性、信頼性に優れたリチウム
電池を提供できる。
As described above, according to the lithium battery of the present invention, since at least one of the positive electrode and the negative electrode contains a conductive oxide or a carbon material as a conductive agent, the energy density is high and the safety is high. Thus, a highly reliable lithium battery can be provided.

【0086】また、一般的に酸化物の充放電電圧は炭素
材料の充放電電圧よりも貴な電位を示すことから、活物
質、特に負極活物質に遷移金属酸化物を用いると、原理
的にリチウムの析出反応が起こらず、電池の信頼性およ
び安全性が向上する。
In general, the charge and discharge voltage of an oxide shows a more noble potential than the charge and discharge voltage of a carbon material. No lithium precipitation reaction occurs, and the reliability and safety of the battery are improved.

【0087】また、本発明に係るリチウム電池の製造方
法によれば、活物質を酸化物ガラスで結着した後に正極
と負極の少なくとも一方に導電剤として導電性酸化物ま
たは炭素材料を含浸させることから、エネルギー密度が
高く、安全性、信頼性に優れたリチウム電池を提供でき
る。
According to the method of manufacturing a lithium battery according to the present invention, at least one of the positive electrode and the negative electrode is impregnated with a conductive oxide or a carbon material as a conductive agent after binding the active material with the oxide glass. Therefore, a lithium battery having high energy density, excellent safety and reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るリチウム電池を示す断面図であ
る。
FIG. 1 is a sectional view showing a lithium battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…電解質層、3…負極、4…正極電槽、5
負極電槽…、6…封口樹脂
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Electrolyte layer, 3 ... Negative electrode, 4 ... Positive electrode container, 5
Negative battery case…, 6… Sealing resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北原 暢之 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H003 AA10 BA02 BA07 BB04 BB05 BB11 BB14 BB15 BD03 5H014 AA02 BB05 BB08 BB11 EE07 EE10 HH01 5H024 AA02 BB10 BB11 CC03 EE03 EE06 FF21 FF23 HH01 5H029 AJ12 AK03 AL03 AM11 AM12 BJ02 BJ03 BJ04 CJ06 CJ15 CJ23 DJ08 EJ04 EJ05 EJ06 HJ02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Kitahara 3-5 Koikadai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Kyocera Corporation (72) Inventor Toru Hara 3-chome Koikadai, Soraku-cho, Kyoto Prefecture 5 Kyocera Corporation Central Research Laboratory (72) Inventor Makoto Osaki 3-chome, Soka-cho, Soraku-gun, Kyoto Prefecture 5-5-2 Kyocera Corporation Central Research Laboratory (72) Inventor Ei Higuchi Seika-cho, Soraku-gun, Kyoto Prefecture 3-chome 5-term Kyocera Corporation Central Research Laboratory F-term (reference) BJ02 BJ03 BJ04 CJ06 CJ15 CJ23 DJ08 EJ04 EJ05 EJ06 HJ02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 活物質を酸化物ガラスで結着して成る正
極と負極との間に酸化物系無機固体電解質を介在させて
成るリチウム電池において、前記正極と負極の少なくと
も一方に導電剤として導電性酸化物を含有していること
を特徴とするリチウム電池。
1. A lithium battery in which an oxide-based inorganic solid electrolyte is interposed between a positive electrode formed by binding an active material with an oxide glass and a negative electrode, wherein at least one of the positive electrode and the negative electrode is used as a conductive agent. A lithium battery containing a conductive oxide.
【請求項2】 前記導電性酸化物がSnO2 および/ま
たはIn2 3 であることを特徴とする請求項1に記載
のリチウム電池。
2. The lithium battery according to claim 1, wherein the conductive oxide is SnO 2 and / or In 2 O 3 .
【請求項3】 前記SnO2 から成る導電性酸化物にS
2 3 がドープされていることを特徴とする請求項2
に記載のリチウム電池。
3. The conductive oxide comprising SnO 2 contains S
3. The method according to claim 2, wherein b 2 O 3 is doped.
The lithium battery according to 1.
【請求項4】 前記In2 3 から成る導電性酸化物に
SnO2 がドープされていることを特徴とする請求項2
に記載のリチウム電池。
4. The method of claim 2, characterized in that the SnO 2 is doped in the conductive oxide made of the In 2 O 3
The lithium battery according to 1.
【請求項5】 活物質を酸化物ガラスで結着して成る正
極と負極との間に酸化物系無機固体電解質を介在させて
成るリチウム電池の製造方法において、前記活物質を酸
化物ガラスで結着した後に前記正極と負極の少なくとも
一方に導電剤として導電性酸化物を含浸させることを特
徴とするリチウム電池の製造方法。
5. A method for producing a lithium battery, comprising an oxide-based inorganic solid electrolyte interposed between a positive electrode and a negative electrode, wherein the active material is bound with oxide glass, wherein the active material is made of oxide glass. A method for manufacturing a lithium battery, comprising: impregnating at least one of the positive electrode and the negative electrode with a conductive oxide as a conductive agent after binding.
【請求項6】 活物質を酸化物ガラスで結着して成る正
極と負極との間に酸化物系無機固体電解質を介在させて
成るリチウム電池において、前記正極と負極の少なくと
も一方に導電剤として炭素材料を含有していることを特
徴とするリチウム電池。
6. A lithium battery in which an oxide-based inorganic solid electrolyte is interposed between a positive electrode and a negative electrode obtained by binding an active material with an oxide glass, wherein at least one of the positive electrode and the negative electrode serves as a conductive agent. A lithium battery containing a carbon material.
【請求項7】 前記炭素材料がカーボンブラックである
ことを特徴とする請求項6に記載のリチウム電池。
7. The lithium battery according to claim 6, wherein the carbon material is carbon black.
【請求項8】 前記炭素材料がカーボンブラックと黒鉛
の混合物であることを特徴とする請求項7に記載のリチ
ウム電池。
8. The lithium battery according to claim 7, wherein the carbon material is a mixture of carbon black and graphite.
【請求項9】 前記正極と負極の活物質がLi1+X Mn
2-X 4 (0≦X≦0.2)、LiMn2-Y MeYO4
(Me=Ni、Cr、Cu、Zn,0<Y≦0.6)、
Li4 Ti5 12およびLi4 Mn5 12よりなる群か
ら選択される少なくとも1種類から成ることを特徴とす
る請求項1または請求項6に記載のリチウム電池。
9. The active material of the positive electrode and the negative electrode is Li 1 + X Mn.
2-X O 4 (0 ≦ X ≦ 0.2), LiMn 2-Y MeYO 4
(Me = Ni, Cr, Cu, Zn, 0 <Y ≦ 0.6),
Li 4 Ti 5 O 12 and Li 4 Mn 5 lithium battery according to claim 1 or claim 6, characterized in that it consists of at least one of the O 12 group consisting of is selected.
【請求項10】 活物質を酸化物ガラスで結着して成る
正極と負極との間に酸化物系無機固体電解質を介在させ
て成るリチウム電池の製造方法において、前記活物質を
酸化物ガラスで結着した後に前記正極と負極の少なくと
も一方に導電剤として炭素材料を含浸させることを特徴
とするリチウム電池の製造方法。
10. A method for manufacturing a lithium battery in which an oxide-based inorganic solid electrolyte is interposed between a positive electrode and a negative electrode obtained by binding an active material with oxide glass, wherein the active material is formed of oxide glass. A method for manufacturing a lithium battery, comprising: impregnating at least one of the positive electrode and the negative electrode with a carbon material as a conductive agent after binding.
JP24403999A 1999-08-30 1999-08-30 Lithium battery and method of manufacturing therefor Pending JP2001068116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24403999A JP2001068116A (en) 1999-08-30 1999-08-30 Lithium battery and method of manufacturing therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24403999A JP2001068116A (en) 1999-08-30 1999-08-30 Lithium battery and method of manufacturing therefor

Publications (1)

Publication Number Publication Date
JP2001068116A true JP2001068116A (en) 2001-03-16

Family

ID=17112814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24403999A Pending JP2001068116A (en) 1999-08-30 1999-08-30 Lithium battery and method of manufacturing therefor

Country Status (1)

Country Link
JP (1) JP2001068116A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124011A (en) * 2006-10-19 2008-05-29 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte sheet, and its manufacturing method
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
JP2010086736A (en) * 2008-09-30 2010-04-15 Panasonic Corp Nonaqueous electrolyte battery
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2018198494A1 (en) * 2017-04-28 2018-11-01 株式会社 オハラ All-solid-state battery
CN112514105A (en) * 2018-08-08 2021-03-16 罗伯特·博世有限公司 Method for manufacturing solid-state battery positive electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
JP2008124011A (en) * 2006-10-19 2008-05-29 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte sheet, and its manufacturing method
JP2010086736A (en) * 2008-09-30 2010-04-15 Panasonic Corp Nonaqueous electrolyte battery
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JPWO2017104405A1 (en) * 2015-12-16 2018-09-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US10693190B2 (en) 2015-12-16 2020-06-23 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2018198494A1 (en) * 2017-04-28 2018-11-01 株式会社 オハラ All-solid-state battery
CN112514105A (en) * 2018-08-08 2021-03-16 罗伯特·博世有限公司 Method for manufacturing solid-state battery positive electrode

Similar Documents

Publication Publication Date Title
JP4845244B2 (en) Lithium battery
EP1347524B1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JP2001185141A (en) Lithium battery
JP2001126758A (en) Lithium battery
JPH117942A (en) Total solid lithium battery
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP2001102056A (en) Lithium cell
JP2000331684A (en) Laminated solid secondary battery
JP2000195499A (en) Lithium battery
JP2001068149A (en) All solid lithium secondary battery
JP2000340255A (en) Lithium battery
JP2001126740A (en) Lithium cell
JP2000251938A (en) Manufacture of all solid lithium battery
JPH10188977A (en) Lithium secondary battery
JP2001068116A (en) Lithium battery and method of manufacturing therefor
JP2000285910A (en) Lithium battery
WO2020122284A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JP2000311708A (en) Manufacture of battery formed entirely of solid lithium
JP2000277119A (en) Lithium battery
JP2010219056A (en) Lithium battery
JP2001250554A (en) Non aqueous electrolyte secondary cell having heat resistance
JP2001093535A (en) Solid electrolyte cell
JPH01197964A (en) Secondary battery
CN114824248B (en) Negative electrode material for secondary battery, negative electrode, and secondary battery