JPS6243060A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS6243060A
JPS6243060A JP18369085A JP18369085A JPS6243060A JP S6243060 A JPS6243060 A JP S6243060A JP 18369085 A JP18369085 A JP 18369085A JP 18369085 A JP18369085 A JP 18369085A JP S6243060 A JPS6243060 A JP S6243060A
Authority
JP
Japan
Prior art keywords
silver oxide
electrode
sheet
silver
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18369085A
Other languages
Japanese (ja)
Inventor
Koji Kuwana
宏二 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP18369085A priority Critical patent/JPS6243060A/en
Publication of JPS6243060A publication Critical patent/JPS6243060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent potential drop in high rate discharge by fitting a current collector made of an alkali resistant metal on the surface of a sheet-like silver oxide electrode of a bipolar electrode in electrolyte circulation type lithium-silver oxide battery. CONSTITUTION:An electrode of electrolyte circulation type lithium-silver oxide battery which is used by supplying and circulating electrolyte at starting has a bipolar construction formed by bonding together a silver oxide sheet 6 serving as positive electrode and a lithium plate 7 serving as negative electrode to a conductive substrate 8. The positive electrode 6 is formed in such a way that a mixture of silver peroxide powder and Teflon binder is kneaded and formed in a sheet, and its surface is covered with a current collector 9 comprising nickel net, then the net is welded to the substrate 8 at a spot-welding point 10. Thereby, electric resistance is reduced and electrons are uniformly supplied to the whole reaction surface to increase discharge performance.

Description

【発明の詳細な説明】 産業上の利用分計 本発明は、始動の際に1AM液を1!池に供給、循環さ
せて使用する電解液wm式のリチウム・酸化銀電池やア
ルミニウム・酸化銀電池等の酸化銀mmに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Industrial Usage Meter The present invention dispenses 1 AM liquid at 1! This relates to silver oxide mm, such as lithium/silver oxide batteries and aluminum/silver oxide batteries, which use an electrolyte that is supplied and circulated in a wm type electrolyte.

従来技術とその間V点 電解液va環式のリチウム・酸化銀電池やアルミニウム
・酸化銀電池の正極と負極は通常電導性基板を間にはさ
みこんで一体化した、いわゆるバイポーラ構造となって
おり、このバイピーラ1!極をセパレータと共に交互に
所要枚数積層して電池が構成されている。従来よりこの
種の電池の正極として使用される酸化銀電極の製法とし
ては次の2つの方式が代表的なものである。
Conventional technology and the V-point electrolyte VA The positive and negative electrodes of cyclic lithium-silver oxide batteries and aluminum-silver oxide batteries have a so-called bipolar structure in which a conductive substrate is usually sandwiched between them. This Bypira 1! A battery is constructed by alternately stacking a required number of electrodes and separators. Conventionally, the following two methods have been typical for producing silver oxide electrodes used as positive electrodes in batteries of this type.

■化成法・・・・・・銀のネットあるいはエクスパンド
ネット等の基板に銀粉末をプレス、焼結したものをアル
カリ電解液中で充放電して酸化銀電極とする方式。
■Chemical formation method: A method in which silver powder is pressed and sintered onto a substrate such as a silver net or expanded net, and then charged and discharged in an alkaline electrolyte to form a silver oxide electrode.

■シート式・・・・・・過酸化銀(Age)や醇化銀(
Ag2O)の粉末あるいは両者の混合粉末にテフロンを
結着剤として添加して混柁、成型して多孔性でシート状
の酸化銀電極を得る方式。
■Sheet type...Silver peroxide (Age) or silver liquefaction (
A method in which Teflon is added as a binder to powder of Ag2O) or a mixed powder of both, and the mixture is mixed and molded to obtain a porous, sheet-like silver oxide electrode.

■のシート式は■の化成式に比べて手間がかからず、コ
ストが安い利点がある。第1図はシート式製法で形成し
た酸化銀電極を用いタリチウム・酸化銀電池の従来のバ
イポーラ電極の平面図であり、第2図は第1図のA−A
′部の断面図である。
The sheet type (■) requires less effort and has the advantage of being lower in cost than the chemical formula (■). Fig. 1 is a plan view of a conventional bipolar electrode for a tallithium/silver oxide battery using a silver oxide electrode formed by a sheet-type manufacturing method, and Fig. 2 is a plan view of a conventional bipolar electrode for a thallium/silver oxide battery.
FIG.

バイポーラt&5は、酸化銀シート1、リチウム板2が
電導性基板3を介して一体化された構造となっているが
、リチウム板2と電導性基板6は圧着されているため両
者間の電導性は良いのに対し、酸化銀シート1自体は電
気抵抗が高くしかも電導性基板3に載置されているだけ
なので、酸化銀シート1と電導性基板3との間の接触抵
抗も高い。従って電導性を付与する為に酸化鈴シート1
に多数の貫通小孔を設は導電性樹脂4を流し込む必要が
あった。
Bipolar T&5 has a structure in which a silver oxide sheet 1 and a lithium plate 2 are integrated via a conductive substrate 3, but since the lithium plate 2 and the conductive substrate 6 are crimped together, there is no conductivity between them. However, since the silver oxide sheet 1 itself has high electrical resistance and is only placed on the conductive substrate 3, the contact resistance between the silver oxide sheet 1 and the conductive substrate 3 is also high. Therefore, in order to impart electrical conductivity, tin oxide sheet 1
It was necessary to create a large number of small through-holes and pour the conductive resin 4 thereinto.

従って下記(1)式、(9式で示される酸化銀電極の放
電反応に関与する電子(e−)は、電導性基板3から導
電性樹脂4を経て反応表面に供給されることになる。
Therefore, the electrons (e-) involved in the discharge reaction of the silver oxide electrode shown by the following formulas (1) and (9) are supplied from the conductive substrate 3 to the conductive resin 4 to the reaction surface.

2A90 + H2O+ 2e−→Ag2O+ 2OH
−(1)AP2O + H2O+ 2e−→2 A9+
 2OH−−(2)しかし、上記従来の酸化銀電極には
、高率放電時における初期の電位低下が極めて大きいと
いう欠点があった。これは!!電導性樹脂に起因するも
ので、本来この種の市販の電導性樹脂は固着性が弱く、
比抵抗値が金属の100倍程度あり、また接着力もない
ので電導性基板5との接触も不安定になり易く、結果と
して電気抵抗が大きくなる。
2A90 + H2O+ 2e-→Ag2O+ 2OH
-(1) AP2O + H2O+ 2e-→2 A9+
2OH--(2) However, the above-mentioned conventional silver oxide electrode had a drawback in that the initial potential drop during high rate discharge was extremely large. this is! ! This is due to the conductive resin, and this type of commercially available conductive resin originally has weak adhesion.
Since the specific resistance value is about 100 times that of metal and there is no adhesive strength, the contact with the conductive substrate 5 tends to be unstable, resulting in a large electrical resistance.

即ち前記(2式の反応によって生成する良電導性のA9
層が電極の反応表面から電導性樹脂4の濁縁に沿って電
導性基板3に貫通到達するまで見掛上、電池の出力は抑
制されるのである。
That is, the highly conductive A9 produced by the reaction of the above formula (2)
The output of the battery is apparently suppressed until the layer penetrates from the reaction surface of the electrode to the conductive substrate 3 along the opaque edge of the conductive resin 4.

発明の目的 本発明は上記欠点を解消するもので、放電初期の電位低
下が小さく、安定な電位を示す酸化銀電極を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks, and aims to provide a silver oxide electrode that exhibits a stable potential with a small drop in potential at the initial stage of discharge.

発明のm成 本発明は、過酸化録(A90)粉末あるいは酸化銀(4
2O)粉末あるいはこれら両者の混合粉末に結着剤とし
てテフロンを添加したma活物質を混p1成形したシー
ト状の酸化i1寛枠を正極として用いる酸化銀電池にお
いて、該酸化銀電極の反応表面に耐アルカリ性金属で形
成された集電体を付設した酸化銀電池である。
Formulation of the invention The present invention utilizes peroxide (A90) powder or silver oxide (A90) powder or silver oxide (A90) powder.
2O) In a silver oxide battery using a sheet-shaped oxidized I1 frame formed by mixing powder or a mixed powder of both with Teflon added as a binder and molding the MA active material as a positive electrode, the reaction surface of the silver oxide electrode is This is a silver oxide battery equipped with a current collector made of an alkali-resistant metal.

実施例 本発明の一実施例を図面に基づき詳述する。Example An embodiment of the present invention will be described in detail based on the drawings.

第6図は本発明に用いる酸化銀電極を備えた電解液循環
式リチウム・酸化銀電池のバイポーラ電極の平面図であ
り、第4図は第5図のB−B’部の断面契である。
FIG. 6 is a plan view of a bipolar electrode of a circulating electrolyte lithium/silver oxide battery equipped with a silver oxide electrode used in the present invention, and FIG. 4 is a cross-sectional view taken along the line B-B' in FIG. .

6は酸化銀シート、7はリチウム板、8は電導性基板で
あり、6,7.8は従来例(第1図)と同様の一体化構
造となっている。9はニッケル、銀等の耐アルカリ性金
1のネットあるいはエクスパンドネットで形成された集
電体であり、酸化銀シート6に載置または埋込まれると
ともに、該基板8とスポット溶接部10によって固定さ
れ、電気的接続がなされCいる。また、該ネット9の網
目の大きさ、線径等は電池が高率放電用とか低率放電用
とかの用途に応じて任意に選択しうる。
6 is a silver oxide sheet, 7 is a lithium plate, 8 is a conductive substrate, and 6, 7.8 have an integrated structure similar to the conventional example (FIG. 1). Reference numeral 9 denotes a current collector formed of a net or expanded net of alkali-resistant gold 1 such as nickel or silver, which is placed or embedded in the silver oxide sheet 6 and fixed to the substrate 8 by spot welding parts 10. , an electrical connection is made. Further, the mesh size, wire diameter, etc. of the net 9 can be arbitrarily selected depending on the use of the battery, such as high rate discharge or low rate discharge.

このような構造においては、前記(1)、(2)式の反
応において必要とされる電子(e−)は、電導性基板8
からスポット溶接部101ネツトまたはエクスパンドネ
ット9を経て、酸化銀シート6の反応表面に供給される
が、従来例より電気抵抗は小さくまたそのバラツキも小
さいので電子(6−)は反応表面全体に均一に供給され
ることになる。
In such a structure, the electrons (e-) required in the reactions of formulas (1) and (2) are transferred to the conductive substrate 8.
From there, the electrons (6-) are supplied to the reaction surface of the silver oxide sheet 6 through the spot welding net 101 net or the expanded net 9, but since the electrical resistance is lower than in the conventional example and its variation is also small, the electrons (6-) are uniform over the entire reaction surface. will be supplied to

第5図は本発明電池と従来電池の高率放電時における初
期の酸化銀電極電位の関係図である。なお、放電電流は
1A/。艶である。第5図から明らかな如く、本発明電
池は放電初期の電位低下が小さい。
FIG. 5 is a diagram showing the relationship between the initial silver oxide electrode potential during high rate discharge of the battery of the present invention and the conventional battery. Note that the discharge current is 1A/. It is glossy. As is clear from FIG. 5, the battery of the present invention has a small potential drop at the initial stage of discharge.

発明の効果 本発明は特許請求の範囲に記載した通りの構造であるた
め、高率放電時における酸化銀電極の電位低下を防止す
ることができ、その工業的価値は大である。
Effects of the Invention Since the present invention has the structure as described in the claims, it is possible to prevent the potential drop of the silver oxide electrode during high rate discharge, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイポーラ電極の平面図、第2図は第1
図のA−A’部の断面図、第3図は本発明に用いるバイ
ホ゛−ラを極の平面図、第4図は第5図のB−B’部の
断面図、第5図は本発明電池と従来電池の放電時間と酸
化銀電極電位との関係図である。
Figure 1 is a plan view of a conventional bipolar electrode, and Figure 2 is a top view of a conventional bipolar electrode.
3 is a polar plan view of the biwheeler used in the present invention, FIG. 4 is a sectional view taken along BB' in FIG. 5, and FIG. FIG. 3 is a diagram showing the relationship between discharge time and silver oxide electrode potential of an inventive battery and a conventional battery.

Claims (1)

【特許請求の範囲】[Claims] 過酸化銀(AgO)粉末あるいは酸化銀(Ag_2O)
粉末あるいはこれら両者の混合粉末に結着剤としてテフ
ロンを添加した電極活物質を混練、成形したシート状の
酸化銀電極を正極として用いる酸化銀電池において、該
酸化銀電極の反応表面に耐アルカリ性金属で形成された
集電体を付設したことを特徴とする酸化銀電池。
Silver peroxide (AgO) powder or silver oxide (Ag_2O)
In a silver oxide battery that uses a sheet-shaped silver oxide electrode as a positive electrode, which is made by kneading and molding an electrode active material consisting of a powder or a mixed powder of the two and adding Teflon as a binder, an alkali-resistant metal is coated on the reaction surface of the silver oxide electrode. A silver oxide battery characterized by being equipped with a current collector formed of.
JP18369085A 1985-08-20 1985-08-20 Silver oxide battery Pending JPS6243060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18369085A JPS6243060A (en) 1985-08-20 1985-08-20 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18369085A JPS6243060A (en) 1985-08-20 1985-08-20 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPS6243060A true JPS6243060A (en) 1987-02-25

Family

ID=16140228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18369085A Pending JPS6243060A (en) 1985-08-20 1985-08-20 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS6243060A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343822A (en) * 1976-10-01 1978-04-20 Hitachi Ltd No voltage tap changer
JPS55100661A (en) * 1979-01-25 1980-07-31 Hitachi Maxell Ltd Electrode
JPS58133768A (en) * 1982-02-03 1983-08-09 Yuasa Battery Co Ltd Manufacture of layer-built silver-peroxide battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343822A (en) * 1976-10-01 1978-04-20 Hitachi Ltd No voltage tap changer
JPS55100661A (en) * 1979-01-25 1980-07-31 Hitachi Maxell Ltd Electrode
JPS58133768A (en) * 1982-02-03 1983-08-09 Yuasa Battery Co Ltd Manufacture of layer-built silver-peroxide battery

Similar Documents

Publication Publication Date Title
JPS607075A (en) Bipolar metal air battery
US3749608A (en) Primary electrochemical energy cell
JPS6243060A (en) Silver oxide battery
JPS59228353A (en) Flat type battery
JPS6243061A (en) Silver oxide battery
JPH11354130A (en) Manufacture of air battery positive electrode
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPS6351064A (en) Solid electrolyte secondary battery and production method
JPS59127376A (en) Solid electrolyte battery
JPH01137066U (en)
JP3546008B2 (en) Photorechargeable battery that can be charged by photolysis of water, electrode thereof, and method of manufacturing the electrode
JPS5848354A (en) Solid electrolyte battery
JPS58154171A (en) Lead-acid battery
JPH0831447A (en) High-voltage thin type sealed lead-acid battery and electrode forming method
JPS61263047A (en) Nickel electrode for alkaline battery
JPS6081765A (en) Manufacturing method for paste type cadmium negative electrode plate
JP2000048813A (en) Positive electrode plate for lead-acid battery
JPS59151768A (en) Plastic electrode of zinc-bromine battery
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPS5998454A (en) Silver oxide battery
JP2662775B2 (en) Battery
JPS59114767A (en) Manufacture of hydrogen electrode
JPS6145565A (en) Storage battery