JPS5893270A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5893270A
JPS5893270A JP19217881A JP19217881A JPS5893270A JP S5893270 A JPS5893270 A JP S5893270A JP 19217881 A JP19217881 A JP 19217881A JP 19217881 A JP19217881 A JP 19217881A JP S5893270 A JPS5893270 A JP S5893270A
Authority
JP
Japan
Prior art keywords
film
connecting member
semiconductor
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19217881A
Other languages
Japanese (ja)
Other versions
JPH0346977B2 (en
Inventor
Iwao Tokawa
東川 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19217881A priority Critical patent/JPS5893270A/en
Publication of JPS5893270A publication Critical patent/JPS5893270A/en
Publication of JPH0346977B2 publication Critical patent/JPH0346977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Abstract

PURPOSE:To obtain a smiecondutor device of high density by selectively forming connecting members on the desired element regions of a substrate, burying the peripheries with isolated insulating films, forming semiconductor films which are contacted with the members, and forming the desired elements thereat. CONSTITUTION:Connecting members 141, 142 which are formed of polycrystalline Si having a size smaller than desired diffused regions 121, 122 of elements are formed on the regions 121, 122 of a semiconductor substrate 11 formed with the diffused regions 121, 122. Then, the portion between the members is buried with an SiO2 film 151, the overall surface is formed to be flat, polycrystalline Si films 181, 182 which are respectively contacted with the members 141, 142 while extending at the periphery of the film 151, and the portion between the films 181 and 182 is buried with an SiO2 film 152. Subsequently, a semidoncudtor film is covered on the overall surface while contacting with films 181, 182, and desired element regiona are formed thereat.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に係り、より詳しくは
、多層に半導体素子を積層する半導体装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device in which semiconductor elements are stacked in multiple layers.

〔発明の技術的背景〕[Technical background of the invention]

近時、半導体装置の高密度、高集積、高機能化を実現す
る方法として、半導体素子を同一基板上に積層すること
により、達成しようとする試みが成されている。この場
合、積層される半導体素子間の充分な分離を行なう為に
は1分離絶縁膜は厚い方が望ましく、そのため、微細な
開口部を介して積層された素子相互の接続を行なう加工
技術が重要な問題となる。
Recently, attempts have been made to achieve high density, high integration, and high functionality of semiconductor devices by stacking semiconductor elements on the same substrate. In this case, it is desirable that the isolation insulating film be thicker in order to provide sufficient isolation between the stacked semiconductor elements, and therefore processing technology that connects the stacked elements through minute openings is important. This becomes a problem.

〔背景技術の問題点〕[Problems with background technology]

高集積化を達成する目的で充分に小さな開1」部を寸法
種度良く形成する為にはレノストノやターンの形成が困
難であるのみならず、加工種間のよいドライエツチング
法を施こすと、断面の切りたった形状となる。その結果
、スパッタ法あるいはCV l)法などにより被層した
接続導体材料は、開口部側面部に対する破着が均一に行
なわれないため、オーバーハングあるいは急I・麦な垂
直に近い形状を生じたり、役切れと呼ばれる(Jl、 
象が生じたりする。そのため、この方法においては、開
口部の微細化および畝線配線の形成が固唾である。また
素子を形成した半導体基板表向の凹凸は、このLに端層
される半導体8qの(衣細加工に著しい困難さを与iる
。すなわち。
In order to form sufficiently small openings with good dimensional accuracy for the purpose of achieving high integration, it is not only difficult to form holes and turns, but it is also necessary to use a dry etching method with good processing accuracy. , the cross section has a cut shape. As a result, the connecting conductor material layered by the sputtering method or CV l) method does not adhere uniformly to the side surface of the opening, resulting in overhang or a sharp, nearly vertical shape. , is called a role-breaker (Jl,
Elephants may appear. Therefore, in this method, miniaturization of the opening and formation of ridge wiring are critical. In addition, the unevenness on the surface of the semiconductor substrate on which the element is formed makes it extremely difficult to process the semiconductor 8q to be end-layered on this L.

表向の凹凸は、fIf層する膜の均一性、平坦性を損い
、例えばレジストパターンの解像性を悪くする。さらに
この凹凸は、半導体集子を晴1■して行くに従がって大
きくなり1本来目的とする旨集積化、高密度fヒが加工
の困難さから達成されない。この表面の凹凸は、開口部
の形成により生じ、その加工技術にはよらない。すなわ
ち従来法においてはこの高低差は必ず生じるものである
The surface irregularities impair the uniformity and flatness of the fIf layer, and deteriorate the resolution of the resist pattern, for example. Furthermore, these irregularities become larger as the semiconductor chip is removed, making it impossible to achieve the original goal of high integration and high density due to processing difficulties. This surface unevenness is caused by the formation of the openings and is not dependent on the processing technique. In other words, in the conventional method, this difference in height always occurs.

〔発明の目的〕[Purpose of the invention]

本発明は以、Lの点に鑑みなされたもので、その目的と
するところは、$11−される半専体素子1flI互間
の接続部を改良して従来法の問題点をすべて解決し、高
密度かつ高果梼で篩機能を実現し高い歩留りを有する半
導体装置の製造方法を提供することにある。
The present invention has been made in view of point L, and its purpose is to solve all the problems of the conventional method by improving the connection between the semi-dedicated elements 1flI. Another object of the present invention is to provide a method for manufacturing a semiconductor device that achieves a sieving function with high density and high efficiency and has a high yield.

〔錯明の概要〕[Overview of illusion]

本発明においては、素子領域が形成された半臂体基板り
に分離絶縁:、;膜を設けるに先だって、接続を行なう
所望の素子輪環に接続部材を選択的に残置させ1次いで
上記接続部f才で覆われていない爾域に分離絶縁膜を設
け、この分離絶縁膜上に半導体素子形成を行なう半導体
膜を上記接続部材にコンタクトさせて形成する。さらに
本発明の目的は、半導体膜をmrmして・母ターニング
した後、その基板表面を高低差の少ない平坦面とする加
工を施すことにより、より完全に達成される。これは半
導体膜をパターニングした後、全面に絶縁膜を被着し、
その上にスピンコード法により表面が略平坦になるよう
に有機物膜を塗布し、これらの有機物膜と絶縁膜を両者
のエツチング速度が等しいエツチング条件で均一エツチ
ングすることにより実現できる。
In the present invention, prior to providing a separating and insulating film on a half-arm substrate on which an element region is formed, a connecting member is selectively left on a desired element ring to be connected. An isolation insulating film is provided in the area that is not covered by the film, and a semiconductor film on which a semiconductor element is to be formed is formed on this isolation insulating film in contact with the connecting member. Furthermore, the object of the present invention can be more completely achieved by subjecting the semiconductor film to mrm and master turning, and then processing the substrate surface into a flat surface with little difference in height. After patterning the semiconductor film, an insulating film is applied to the entire surface.
This can be achieved by applying an organic film thereon using a spin code method so that the surface is approximately flat, and uniformly etching the organic film and the insulating film under etching conditions where the etching rates of both are equal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分離絶縁膜の形成に先だって接合部材
が残置され次いで分離絶縁膜を設ける為、微細開口を形
成する技術的困難さが解消される。っまり一微細開口を
形成する為のレジス) ノRターンに比べて、微細残し
ノやターンを形成する為のレゾストノやターン形成の方
が容易であり、また微細開口部に接続部材を充当する困
難さが解決される、さらに微細開口を形成して導体配線
で1下を接続する方法を採らず1選択的に残置させた接
続部材に直接コンタクトさせて半導体膜をfi1層し、
またその後も表面を平坦化する処理を施すことにより、
素子の積層に伴う凹凸を小さくでき、従ってレノス) 
i4ターンの解像性も置く維持できる結果、微、41 
A?ターンで高密度1品集積度の半導体装置が得られる
According to the present invention, the bonding member is left in place prior to forming the isolation insulating film, and then the isolation insulating film is provided, so that the technical difficulty of forming fine openings is solved. Compared to R-turn, it is easier to form resist holes and turns to form fine remaining holes and turns. The difficulty is solved by forming a fi1 layer of the semiconductor film by directly contacting the connecting member selectively left, without using the method of forming a fine opening and connecting the lower part with a conductor wiring.
Furthermore, by applying a treatment to flatten the surface,
The unevenness caused by stacking elements can be reduced, thus making it possible to reduce the unevenness caused by stacking elements.
As a result of being able to maintain the resolution of i4 turn, it is fine, 41
A? A semiconductor device with high density and one-piece integration can be obtained by turning.

〔発明の実施例〕[Embodiments of the invention]

第1図(a1〜(k)は本発明の一実施例の製造工程を
示す図である。まず、所望の素子形成が行われた単結晶
シリコン基板1ノ上に所望域に開口したレジストノやタ
ーン13を形成するlal。12(1it、  、 x
;t、  )は素子領域の拡散層を示している。レジス
トには例えば東京応化(株)製0FPR−800ポジレ
ジストを用い、クロルベンゼンで表面を処理して、この
レジストパターン13を、次のリフトオフプロセスに適
する逆テーノ量形状に整形されたツヤターンとする。次
いで全面に接続部材となるポリシリコン膜14を約1μ
mの厚さにスノfツタ諏着するfb)。そして、希有機
アルカリ水溶液にてレジストノぐターン13の側壁部の
薄いポリシリコン膜14を除去し、次いで、有機溶剤を
用いるリフトオフ法によりレノストパターン13を除去
すると同時にレジスト上のポリシリコン膜を除去し、選
択的にポリシリコン膜14.,14.を残置させる(c
l。
FIGS. 1(a1 to 1k) are diagrams showing the manufacturing process of an embodiment of the present invention. First, on a single-crystal silicon substrate 1 on which desired elements have been formed, resist holes are opened in desired areas. lal.12 (1it, , x
;t, ) indicate the diffusion layer in the element region. For example, 0FPR-800 positive resist manufactured by Tokyo Ohka Co., Ltd. is used as the resist, and the surface is treated with chlorobenzene to make this resist pattern 13 into a glossy turn shaped into an inverse Teno amount shape suitable for the next lift-off process. . Next, a polysilicon film 14 that will serve as a connecting member is coated on the entire surface with a thickness of about 1 μm.
fb) where the snow f ivy attaches to the thickness of m. Then, the thin polysilicon film 14 on the side wall of the resist nog turn 13 is removed using a dilute organic alkaline aqueous solution, and then the Renost pattern 13 is removed by a lift-off method using an organic solvent, and at the same time the polysilicon film on the resist is removed. Then, selectively the polysilicon film 14. ,14. (c
l.

次に全面にスノ千ツタ法により分離絶縁膜としてシリコ
ン酸化膜151を約1μmの厚さに積層する(di。次
に平坦部で約1μmの1事さになるように有機物膜とし
てポリ^−ブチルメタクリレートを塗布し、次いで21
0℃で熱処理してポリメタクリル酸無水物膜16に変性
させるlet。
Next, a silicon oxide film 151 is laminated to a thickness of about 1 μm as an isolation insulating film on the entire surface using the Suno-sentsuta method (di).Next, a polyamide film is deposited as an organic film so that the thickness of the silicon oxide film 151 is about 1 μm on the flat part. Apply butyl methacrylate and then 21
Let the polymethacrylic anhydride film 16 be modified by heat treatment at 0°C.

さらに積層してポジ型ホトレジス)OFPR−800(
東京応化製)を設はエツチング処理の不用な領域をレジ
ストパターン17により覆い、CF4ガスとH2ガスの
混合ガスを用いるリアクティブイオンエツチング処理を
施′toこの時、ポリメタクリル酸無水物膜161とシ
リコン峻化膜151はほぼ等しい速度でエツチングされ
Further laminated with positive photoresist) OFPR-800 (
(manufactured by Tokyo Ohka Chemical Co., Ltd.), the areas not requiring etching are covered with a resist pattern 17, and a reactive ion etching process is performed using a mixed gas of CF4 gas and H2 gas.At this time, the polymethacrylic anhydride film 161 and The silicon thickening film 151 is etched at approximately the same speed.

ポリシリコン膜14が露出した状態を寿る(f)。The polysilicon film 14 remains exposed (f).

そしてレジストを除去して晶低差がなく、ポリシリコン
膜14の周囲を酸化膜15、で埋めた平坦面を得る(g
)。次に全面にポリシリコンをCVD法により約700
OAの厚さに形成し、次いでレジストパターンを形成し
て、リアクティブイオンエツチング法により素子領域に
必要な部分にのみポリシリコン膜1B(181,1&、
)を残す(hl。これによりポリシリコン膜18はその
必要な領域が接続部材たるポリシリコン膜14を介して
下地の拡散層12とコンタクトすることになる。次に全
面に分離絶縁膜としてシリコン酸(ヒ膜152を被着し
、さらにスピンコード法によりノボラック樹脂とポリメ
チルメタクリレートの混合物のエチルセロソルブアセテ
ート溶液を塗布してシリコン酸1ヒj換と同等のドライ
エツチング速度を有する有機物膜19の形成を行ない、
これをCF4.ガスと0.ガスの混合ガスによるプラズ
マ状゛態にさらして表面を硬「ヒさせたのち、ポジ型フ
ォトレジストにより、十分に広い為に有機物膜が薄くな
っている領域を覆うレジスト・母ターン20を形成する
(jl。そして全面をCF4とH3を用いるリアクティ
ブイオンエツチング法により有機物膜19とシリコン酸
化膜15.に対して等しいエツチング速度でポリシリコ
ン膜18の而が露出Tる状態まで加工して、高低差なく
多結晶シリコン1良18の周囲を酸1ヒ膜15.で埋め
た平坦面を得るfkl。この後さらに表面1−を薄く除
去したのち、ポリシリコン膜18領域をレーザーアニー
リング処理して結晶1ヒを行い、素子形成が可能な領域
を得てここに所望の素子を形成する。
Then, the resist is removed to obtain a flat surface with no crystal height difference and the periphery of the polysilicon film 14 is filled with an oxide film 15 (g
). Next, apply polysilicon to the entire surface using the CVD method to a thickness of approximately 700 mm.
A polysilicon film 1B (181,1&,
) is left (hl. As a result, the necessary region of the polysilicon film 18 comes into contact with the underlying diffusion layer 12 via the polysilicon film 14 serving as a connecting member.Next, a silicon oxide film is formed on the entire surface as an isolation insulating film. (A film 152 is deposited, and an ethyl cellosolve acetate solution of a mixture of novolac resin and polymethyl methacrylate is applied by a spin-coating method to form an organic film 19 having a dry etching rate equivalent to 1 h of silicon acid. do the
This is CF4. gas and 0. After hardening the surface by exposing it to a plasma state using a gas mixture, a resist/mother turn 20 is formed using a positive photoresist to cover a sufficiently wide area where the organic film is thin. (jl. Then, the entire surface is processed by reactive ion etching using CF4 and H3 at the same etching rate for the organic film 19 and the silicon oxide film 15 until the polysilicon film 18 is exposed. A flat surface is obtained by filling the periphery of the polycrystalline silicon 1 and 18 with an arsenic film 15. After this, the surface 1- is further thinly removed, and the polysilicon film 18 is subjected to laser annealing treatment to form a crystalline silicon film 18. A region where an element can be formed is obtained by performing 1 step, and a desired element is formed there.

本実施例によれば、半導体素子を積1−シたときに緻細
開口を形成して拳青層された素子間を接続する加工の困
難さから解放され、半導体素子の積j―が容易になる。
According to this embodiment, when semiconductor elements are stacked, the difficulty of forming fine openings to connect the stacked elements is eliminated, and the stacking of semiconductor elements is facilitated. become.

ちなみに、基板上にポリシリコンを用いたMOS F 
ETを集積する構造(二ついて比較するため、従来工程
によるものと本実施例の工程によるものをそれぞれ第2
図と第3図に示す。これらのVにおいて、21.31が
単結晶シリコン基板、22.32は素子領域の拡散層、
x s (、? sl、、 2g、  )、ss (s
s、。
By the way, MOS F using polysilicon on the substrate
A structure for integrating ET (in order to compare two structures, one based on the conventional process and one based on the process of this example are shown in the second structure).
As shown in Fig. and Fig. 3. In these V, 21.31 is the single crystal silicon substrate, 22.32 is the diffusion layer in the element region,
x s (,? sl,, 2g, ), ss (s
s.

33、)は分離絶縁膜としてのシリコン瞬化膜、24、
J4はポリシリコン膜によるMOSFETをそれぞれ示
している。第2図の従来工程によるものでは、MO8F
’BT 24と裁板上の拡散層22との接続を酸化膜2
3に形成したコンタクトホールを介して導体膜配線25
により行っている。これに対し、本実施例の工程による
′第3図では、M08FFfT 34の端子領域は酸化
膜33に埋込まれた形のポリシリコン膜35によって基
板上の拡散層32とコンタクトしている。両者を比較す
ると、第2図では各層での表向の凹凸が大きく、レジス
) i+ターン影成の解像性が悪く、またドライエツチ
ングプロセスで微細加工を行うと配′flA25の役切
れなどを生じ易い。
33,) is a silicon instantaneous film as an isolation insulating film, 24,
J4 indicates a MOSFET made of a polysilicon film. In the conventional process shown in Figure 2, MO8F
'The connection between the BT 24 and the diffusion layer 22 on the cutting board is made using the oxide film 2.
The conductive film wiring 25 is connected through the contact hole formed in 3.
This is done by In contrast, in the process of this embodiment shown in FIG. 3, the terminal region of the M08FFfT 34 is in contact with the diffusion layer 32 on the substrate through the polysilicon film 35 embedded in the oxide film 33. Comparing the two, in Fig. 2, the surface irregularities in each layer are large, the resolution of the resist (i+) turn shadow is poor, and when microfabrication is performed using the dry etching process, problems such as discontinuance of the pattern flA25 occur. Easy to occur.

これに対し第3図では表面の平坦性に優れており、レジ
ストパターンの形成が容易であり、この上に更に素子を
積層する場合にも有利である。
On the other hand, in FIG. 3, the surface has excellent flatness, and a resist pattern can be easily formed, which is also advantageous when further elements are laminated thereon.

また峨細コンタクトホールの加工工程を必要としないか
ら債1−される素子間の接続も確実に行われることかわ
かる。
In addition, since there is no need for the process of forming a narrow contact hole, it can be seen that the connection between the connected elements can be made reliably.

本発明は上記実施例に限定されるものではなく、例えば
、分離絶縁膜を平坦に埋込むために用いる有機物膜は、
スピンコード法により平滑な而が形成される性質と被加
工絶縁膜とほぼ等しいエツチング速度を有する性質を共
有する材料であるならば本発明、を実施するになんら障
害はない。この場合、被加工絶縁膜より大なるエツチン
グ速度を有する有機物と、被加工絶縁膜より小なるエツ
チング速度を有する有機物との混合物を調整して用いて
も良い。例えば、ポリスチレン、ポリアクリロニトリル
、Iリビニルカルパゾールなどの中から選ばれた材料と
、ポリメチルメタクリレート、ポリメチルメタクリレー
ト、ポリスルフォン、ポリイソブチンなどから選ばれた
材料の組み合せが考えられる。さらに、有機物膜として
は、エツチング速;Wを分離絶縁膜材料のエツチング速
rvL同等に調整したホトレジストを用い、所望領域へ
露光を施こすことにより所望領域の膜厚を調整し、スピ
ンコード法により設けられた膜形状以上にエツチング後
の基板形状が望む形状となるようはかることもよい。ま
た積層する半導体膜はエピタキシャル成長法で形成して
もよく、そのとき、事前にコンタクト部の接続部材であ
るポリシリコン膜を例えばパレスレーザー照射を行なう
等の手段により結晶性を改善してもよい。あるいは。
The present invention is not limited to the above embodiments. For example, the organic film used for flatly embedding the isolation insulating film may be
There is no problem in carrying out the present invention as long as the material shares the properties of being able to form a smooth surface by the spin cord method and of having approximately the same etching rate as the insulating film to be processed. In this case, a mixture of an organic substance having an etching rate higher than that of the insulating film to be processed and an organic substance having an etching rate lower than that of the insulating film to be processed may be adjusted and used. For example, a combination of a material selected from polystyrene, polyacrylonitrile, I-rivinylcarpazole, etc., and a material selected from polymethyl methacrylate, polymethyl methacrylate, polysulfone, polyisobutyne, etc. can be considered. Furthermore, as the organic film, a photoresist whose etching rate (W) was adjusted to be equal to the etching rate rvL of the isolation insulating film material was used, and the film thickness in the desired area was adjusted by exposing the desired area to light, and then a spin code method was used. The shape of the substrate after etching may be designed to be more desired than the shape of the film provided. Further, the semiconductor films to be laminated may be formed by an epitaxial growth method, and in this case, the crystallinity of the polysilicon film, which is a connecting member of the contact portion, may be improved in advance by, for example, irradiating with a pulse laser. or.

コンタクト部のポリシリコン膜が露出した第1図(gl
の状態で)母ルスレーザー等によりこれの結晶性を改善
し、さらに積層してポリシリコン膜を設け/4ターン状
に残置したのち、これを・母ルスレーザー等により処理
して結晶性の改善を行なってもよい。また、接続部材と
して選択的に残置する材料は、シリコンに限定されるも
のではなく、高融点金属、シリコン合金あるいはシリサ
イドであってもよい。高融点金属をコンタクト部に残置
し、それと接してポリシリコンを・:::: 設けて集子形成を行なう場合等においては、両者の接続
部界面をシリサイド「ヒしてもよい。
Figure 1 shows the exposed polysilicon film in the contact area (gl
After that, the crystallinity of this is improved using a base laser, etc., and a polysilicon film is further laminated and left in a 4-turn shape, and then this is treated with a base laser, etc. to improve the crystallinity. may be done. Further, the material selectively left as the connecting member is not limited to silicon, but may be a high melting point metal, a silicon alloy, or a silicide. When a high melting point metal is left in the contact portion and polysilicon is provided in contact with it to form a cluster, the interface between the two may be silicided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(klは本発明の一実施例の製造工程を
示す図、第2図は従来工程によりポリシリコンMO8F
ETを基板上に集積した構造を示T図、第3図は第2図
に対応する構造を本実施例の工程により実現した構造を
示す図である。 11・・・単結晶シリコン基板、121.12゜・・・
拡散層、13・・・レジストノ母ターン、14・・・ポ
リシリコン膜(接続部材)、ISl、15.・・・シリ
コン酸化膜(分離絶縁膜)、16・・・ポリメタクリル
酸無水物膜、17・・・レジストノ母ターン。 1B、、1B、・・・ぼりシリコン膜1,19・・・有
機物1iL x o−・・レジストノやターン。 出願人代理人  弁理士 鈴 江 武 彦第1 図 3 14+         142
Figure 1 (al~(kl) is a diagram showing the manufacturing process of one embodiment of the present invention, Figure 2 is a diagram showing the manufacturing process of polysilicon MO8F by the conventional process.
FIG. 3 is a diagram showing a structure in which ETs are integrated on a substrate, and FIG. 3 is a diagram showing a structure corresponding to FIG. 2 realized by the steps of this embodiment. 11... Single crystal silicon substrate, 121.12°...
Diffusion layer, 13... Resist mother turn, 14... Polysilicon film (connection member), ISl, 15. . . . Silicon oxide film (isolation insulating film), 16 . . . Polymethacrylic anhydride film, 17 . . . Resist mother turn. 1B,,1B,...Silicon film 1, 19...Organic substance 1iL x o-...Resist no or turn. Applicant's agent Patent attorney Takehiko Suzue No. 1 Figure 3 14+ 142

Claims (3)

【特許請求の範囲】[Claims] (1)素子側域が形成された半導体基板上に絶縁膜を介
して半導体素子を積層する半導体装置の製造方法におい
て、半導体基板の所望の素子副域上に接続部材を選択的
に残置させた後、この接続部材の周囲を分離絶縁膜で埋
めて、この分離絶縁膜上に上記接続部材とコンタクトす
る半導体膜を形成し、この半導体膜に所望の素子を形成
するよう)二したことを特徴とする半導体装置の製造方
法。
(1) In a method for manufacturing a semiconductor device in which semiconductor elements are laminated via an insulating film on a semiconductor substrate on which an element side region is formed, a connecting member is selectively left on a desired element sub-region of the semiconductor substrate. After that, the periphery of this connecting member is filled with an isolation insulating film, a semiconductor film is formed on this isolation insulating film to be in contact with the above-mentioned connecting member, and a desired element is formed on this semiconductor film. A method for manufacturing a semiconductor device.
(2)前記接続部材を選択的に残置させる工程は、その
接続部材な被着する前にレジストパターンを形成してお
き、その後全面に接続部材膜を被着してレジストパター
ンを除去することにより不要な部分の接続部材膜をリフ
トオフするものである特許請求の範囲゛第1項記載の半
導体装置の製造方法。
(2) The step of selectively leaving the connecting member is performed by forming a resist pattern before applying the connecting member, and then applying a connecting member film to the entire surface and removing the resist pattern. The method of manufacturing a semiconductor device according to claim 1, wherein unnecessary portions of the connecting member film are lifted off.
(3)前記接続部材の周囲を分離絶縁膜で埋める工程は
、全面に分離絶縁膜を被着してその1にスピンコード法
により表面が平坦になるよエツチング条件で選択的に残
置させた接続部材が露出するまで均一エツチングするも
のである特許請求の範囲$11記載の半導体装置の製造
方法。
(3) The process of filling the periphery of the connection member with an isolation insulating film is a process in which an isolation insulating film is coated on the entire surface, and the connection is selectively left on the first part using a spin code method under etching conditions so that the surface becomes flat. The method of manufacturing a semiconductor device according to claim 11, wherein uniform etching is performed until the member is exposed.
JP19217881A 1981-11-30 1981-11-30 Manufacture of semiconductor device Granted JPS5893270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19217881A JPS5893270A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19217881A JPS5893270A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5893270A true JPS5893270A (en) 1983-06-02
JPH0346977B2 JPH0346977B2 (en) 1991-07-17

Family

ID=16286971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19217881A Granted JPS5893270A (en) 1981-11-30 1981-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5893270A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189264A (en) * 1984-03-08 1985-09-26 Agency Of Ind Science & Technol Semiconductor device and manufacture thereof
JPS6231176A (en) * 1985-08-02 1987-02-10 Sharp Corp Laminated semiconductor device
JPS62145774A (en) * 1985-12-20 1987-06-29 Agency Of Ind Science & Technol Semiconductor device
JPS6477951A (en) * 1987-09-19 1989-03-23 Fujitsu Ltd Semiconductor substrate and manufacture thereof
JP2004104134A (en) * 2003-09-12 2004-04-02 Nec Kagoshima Ltd Pattern-forming method and thin-film transistor manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249772A (en) * 1975-10-18 1977-04-21 Hitachi Ltd Process for production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249772A (en) * 1975-10-18 1977-04-21 Hitachi Ltd Process for production of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189264A (en) * 1984-03-08 1985-09-26 Agency Of Ind Science & Technol Semiconductor device and manufacture thereof
JPS6231176A (en) * 1985-08-02 1987-02-10 Sharp Corp Laminated semiconductor device
JPS62145774A (en) * 1985-12-20 1987-06-29 Agency Of Ind Science & Technol Semiconductor device
JPS6477951A (en) * 1987-09-19 1989-03-23 Fujitsu Ltd Semiconductor substrate and manufacture thereof
JP2004104134A (en) * 2003-09-12 2004-04-02 Nec Kagoshima Ltd Pattern-forming method and thin-film transistor manufacturing method

Also Published As

Publication number Publication date
JPH0346977B2 (en) 1991-07-17

Similar Documents

Publication Publication Date Title
JPH01290236A (en) Method of levelling wide trench
JPS5893270A (en) Manufacture of semiconductor device
JPH03139846A (en) Manufacture of heterojunction bipolar transistor
JPH0428231A (en) Manufacture of semiconductor device
JP2554339B2 (en) Semiconductor device and manufacturing method thereof
JP2982356B2 (en) Method for manufacturing semiconductor device
JPH0220043A (en) Manufacture of semiconductor device
JPS61296722A (en) Manufacture of semiconductor device
JPH0590220A (en) Manufacture of semiconductor device
JPH06124944A (en) Semiconductor device
JPS61256727A (en) Dry etching method
JPH0222844A (en) Semiconductor integrated circuit
JPS6010642A (en) Manufacture of semiconductor device
JPS63117428A (en) Manufacture of semiconductor device
JPH04267329A (en) Manufacture of semiconductor device
JPH01205439A (en) Element isolation
JPH0521430A (en) Manufacture of semiconductor device
JPH04356944A (en) Semiconductor device and its manufacture
JPS62234333A (en) Formation of mask for processing fine groove
JPS63257249A (en) Manufacture of semiconductor device
JPH01187862A (en) Manufacture of semiconductor device
JPH021125A (en) Manufacture of semiconductor device
JPH01251642A (en) Manufacture of semiconductor device
JPH0496225A (en) Manufacture of semiconductor device
JPS6161431A (en) Manufacture of semiconductor device