JPS6231176A - Laminated semiconductor device - Google Patents

Laminated semiconductor device

Info

Publication number
JPS6231176A
JPS6231176A JP17145985A JP17145985A JPS6231176A JP S6231176 A JPS6231176 A JP S6231176A JP 17145985 A JP17145985 A JP 17145985A JP 17145985 A JP17145985 A JP 17145985A JP S6231176 A JPS6231176 A JP S6231176A
Authority
JP
Japan
Prior art keywords
layer
gate
polycrystalline silicon
hole
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17145985A
Other languages
Japanese (ja)
Inventor
Takahiko Oma
隆彦 大麻
Isao Nakamura
功 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17145985A priority Critical patent/JPS6231176A/en
Publication of JPS6231176A publication Critical patent/JPS6231176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7812Vertical DMOS transistors, i.e. VDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To realize high integrity of a device by providing an MOS-type active element of a vertical structure in a recrystallization layer. CONSTITUTION:A polycrystalline silicon layer, which is to be the second active layer, is deposited on a through hole 8 with a relatively large thickness and recrystallized. As P<+> or As<+> ions in the polycrystalline silicon in the through hole 8 are diffused into the substrate, ohmic contact between the polycrystalline silicon in the through hole 8 and the recrystallization layer 4 is ensured. After the element isolation by substrate checking or the like, a gate oxide film 9 is formed. After gate polycrystalline silicon for forming a gate electrode 6 is applied and patterned, double-ion implantation of B<+> and P<+> (or As) is performed to form a P-type layer 31 and an N<+> type layer 32. In this structure, a current flows vertically as shown by an arrow. It is to be noted that, in this structure, bidirectional characteristics is ensured and the gate can be used as a transfer gate without any problem.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、再結晶法によって形成された再結晶層を含む
2層以上の能動層を有する積層型半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a stacked semiconductor device having two or more active layers including a recrystallized layer formed by a recrystallization method.

〈従来の技術〉 従来よシ、2次元LSIの近い将来に予想される困難に
対処すべく、更には2次元では不可能な3物元構造を生
かした新たな多機能デバイスを目指して、立体的に能動
回路を集積した積層型半導体装置の研究開発が活発に行
なわれている。
<Conventional technology> In order to cope with the difficulties expected in the near future of 2D LSI, we have been developing 3D Research and development of stacked semiconductor devices that integrate active circuits is currently being actively conducted.

この積層型半導体装置を構成する場合、一般的にはまず
2次元デバイスを形成した活性層の上に絶縁層を堆積し
、更にその上に単結晶シリコン層を再結晶法等により形
成する。次にこの層内にデバイスを作り込むこともに上
下の素子間を接続する。これを繰シ返して多層からなる
積層型半導体装置を形成していた。そして積層型半導体
装置の上記の再結晶層に形成されるMOS構造素子は第
3図に示すように従来の2次元LSIの形成に用いられ
る横方向に電流の流れる横型構造の素子である。
When constructing this stacked semiconductor device, generally an insulating layer is first deposited on an active layer in which a two-dimensional device is formed, and then a single crystal silicon layer is further formed thereon by a recrystallization method or the like. Next, devices are fabricated within this layer and connections are made between the upper and lower elements. This process is repeated to form a stacked semiconductor device consisting of multiple layers. The MOS structure element formed in the above-mentioned recrystallized layer of the stacked semiconductor device is a lateral structure element in which a current flows in the lateral direction, which is used in the formation of a conventional two-dimensional LSI, as shown in FIG.

第3図において、11は一層目能動層、12は絶縁層、
13はドレインまたはソーヌ層、14は2層目基板、1
5はドレインまたはソース電極、16はゲートであシ、
ドレイン電極・ソース電極とも同一平面内で引き出され
、素子を流れる電流は図中矢印で示すように横方向に流
れている。
In FIG. 3, 11 is a first active layer, 12 is an insulating layer,
13 is a drain or Sone layer, 14 is a second layer substrate, 1
5 is a drain or source electrode, 16 is a gate,
Both the drain electrode and the source electrode are drawn out in the same plane, and the current flowing through the element flows in the horizontal direction as shown by the arrow in the figure.

〈発明が解決しようとする問題点〉 このように従来の積層型半導体装置にあっては各能動層
を積層することによシ、その集積度を上げることは可能
であるものの、各能動層内に作υ込まれる素子は横方向
に電流の流れる構造であるため、装置の縮小化に限度が
あシ、特に積層型半導体装置の利点を充分に生かせる素
子構造とは言い′難く、その改善が望まれていた。
<Problems to be solved by the invention> As described above, in conventional stacked semiconductor devices, although it is possible to increase the degree of integration by stacking each active layer, Since the elements fabricated in the semiconductor device have a structure in which current flows in the lateral direction, there is a limit to the miniaturization of the device.In particular, it is difficult to say that the device structure can take full advantage of the advantages of a stacked semiconductor device, and it is difficult to improve it. It was wanted.

本発明は上記の点にかんがみて創案されたものであり、
より高集積化を可能とする構造を備えた積層型半導体装
置を提供することを目的としている。
The present invention was created in view of the above points,
It is an object of the present invention to provide a stacked semiconductor device having a structure that enables higher integration.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明は再結晶層を有する
積層型半導体装置において、再結晶層に垂直構成のMO
3型能動素子を備えるように構成している。
Means for Solving the Problems> In order to achieve the above object, the present invention provides a stacked semiconductor device having a recrystallized layer, in which an MO is arranged perpendicularly to the recrystallized layer.
It is configured to include type 3 active elements.

〈作 用〉 上記のよう、な構成によシ、2層目以上の再結晶層に作
シ込まれるMO3型能動素子の電流は上下方向に流れる
ことになり、その結果、より高集積化の実現が可能とな
り、積層型半導体装置の特徴が効果的に引き出されるこ
とになる。
<Function> As described above, with the configuration, the current of the MO3 type active element implanted in the second and higher recrystallized layers flows in the vertical direction, and as a result, higher integration is possible. It becomes possible to realize this, and the features of the stacked semiconductor device can be effectively brought out.

〈実施例〉 以下、図面を参照して本発明の実施例を詳細に説明する
。第1図は本発明の一実施例装置における2層目以後の
能動層に作シ込まれるMOSI−ランジスタの構造を示
す断面図である。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the structure of a MOSI transistor that is implanted in the second and subsequent active layers in a device according to an embodiment of the present invention.

第1図において、1は1層目能動層、2は1層目能動層
1上に積層形成された絶縁層、4は絶縁6はゲート、7
はソース電極、8は1層目能動層lと2層目能動層との
接続配線(スルーホー)V )、9は絶縁膜である。
In FIG. 1, 1 is a first active layer, 2 is an insulating layer laminated on the first active layer 1, 4 is an insulator 6 is a gate, and 7 is an insulating layer laminated on the first active layer 1.
8 is a source electrode, 8 is a connection wiring (through hole) between the first active layer l and the second active layer (V), and 9 is an insulating film.

次に、上記のような構造の素子の作製方法をnチャネル
型素子を例にして説明するが、PとNを置き換えること
によfiPチャネル型MOS素子の作製についても同様
である。
Next, a method for manufacturing an element having the above structure will be described using an n-channel type element as an example, but the same applies to manufacturing a fiP channel type MOS element by replacing P and N.

まず、従来法を用いて、1層目能動層1に1層目のLS
Iを形成し、その後、層間結合を行なうためのスルーホ
ー/I/8を形成する。このスルーホール8の形成はポ
リシリコンを堆積し、平坦化後ヌルーホール部分8をn
+ポリシリコンにするようP+またはA5  のイオン
注入及び拡散を行なって形成する。次に2層目能動層と
なるポリシリコンを比較的厚く(1μm以上)堆積し、
レーザー・アニール等により再結晶化する。次にNタイ
プとなるようP+またはA8を打ち込み、拡散する。
First, using the conventional method, the first layer LS is applied to the first layer active layer 1.
After that, a through hole/I/8 for performing interlayer bonding is formed. To form this through hole 8, polysilicon is deposited, and after planarization, the null hole portion 8 is
P+ or A5 ions are implanted and diffused to form + polysilicon. Next, a relatively thick layer of polysilicon (more than 1 μm) is deposited to form the second active layer.
Recrystallize by laser annealing, etc. Next, drive P+ or A8 so that it becomes N type and spread it.

このとき再結晶層4とヌル−ホー/l/ 8中のポリシ
リコンとのコンタクトは、ポリシリコン中のP+または
A8が基板中に拡散するため、オーミック・コンタクト
が保証される。次に、基板エッチ等による素子分離を行
ったのち、ゲート酸化膜9を形成する。ゲート電極6の
形成のためのゲート・ポリシリコンを付着、パターニン
グしたのち、B+及びP (またはAs)を二重イオン
注入し、2層31及びNN32を第1図の如く形成する
。ソース・コンタクトは2層31と8層32の両方にわ
たってソース電位がとれるようコンタクトの穴あけを行
う。最後にAl蒸着、パターニングを待なってソース電
極7を形成し、更に保護膜をつけて、本発明に係るデバ
イスの作製を完成する。
At this time, ohmic contact between the recrystallized layer 4 and the polysilicon in the null-hole/l/8 is ensured because P+ or A8 in the polysilicon diffuses into the substrate. Next, after element isolation is performed by etching the substrate or the like, a gate oxide film 9 is formed. After depositing and patterning gate polysilicon for forming gate electrode 6, double ion implantation of B+ and P (or As) is performed to form two layers 31 and NN 32 as shown in FIG. A source contact hole is formed so that a source potential can be maintained across both the second layer 31 and the eighth layer 32. Finally, after Al vapor deposition and patterning, a source electrode 7 is formed, and a protective film is further applied to complete the fabrication of the device according to the present invention.

このように作製された素子構造においては、電流は第1
図中の矢印の如く上下方向に流れる。また、再結晶層4
の厚さを大きくすると、高耐圧化が図れるという利点が
ある反面、双方向性に問題があシ、トランスファーゲー
トで使用する場合には考慮が必要となる。
In the device structure fabricated in this way, the current flows in the first
It flows in the vertical direction as shown by the arrow in the figure. In addition, the recrystallization layer 4
Increasing the thickness has the advantage of increasing the breakdown voltage, but on the other hand, there is a problem with bidirectionality, which must be taken into consideration when used in a transfer gate.

第2図は電流が上下方向に流れるトランジヌタ構造の別
の例を示す素子構造断面図であシ、第1図と同一部分は
同一符号で示している。
FIG. 2 is a cross-sectional view of an element structure showing another example of a transistor structure in which current flows in the vertical direction, and the same parts as in FIG. 1 are indicated by the same reference numerals.

第2図において、1は1層目能動層、2は絶縁膜、41
はB+層、42はP層、43はB+層、5はドレインま
たはソース電極、6はゲート、−8は1層目と2層目の
接続配線用ヌル−ホールである。
In FIG. 2, 1 is the first active layer, 2 is an insulating film, and 41
is a B+ layer, 42 is a P layer, 43 is a B+ layer, 5 is a drain or source electrode, 6 is a gate, and -8 is a null hole for connection wiring between the first and second layers.

次に、この第2図に示した構造の素子の作製方法を説明
すると、上層能動層を再結晶化して形成するところまで
、第1図に示した素子の作製と同一方法で作製する。次
に再結晶層基板をB+とじたのち、マヌクなしでB+と
P+(またはA+、)の二重イオン注入を行ない、上部
から下部へ向けてn+層31,2層32及びn+層33
のB+P n+三層構造とする。次に再結晶層をテーパ
ーエスチングし、その側面にゲート酸化膜21をつけ、
このテーパーエツチング部分にポリシリコンでゲート6
を構成する。更に酸化膜22をつけたのち、コンタクト
・ホールの形成、Al蒸着・パターニングを行なってド
レインまたはソース電極5を形成し、最後に保護膜をつ
けてデバイスの作成を完了する。
Next, a method for manufacturing the device having the structure shown in FIG. 2 will be described. The device is manufactured by the same method as the device shown in FIG. 1, up to the point where the upper active layer is recrystallized and formed. Next, after closing the recrystallized layer substrate with B+, double ion implantation of B+ and P+ (or A+) is performed without manucing, and from the top to the bottom, the n+ layer 31, the second layer 32, and the n+ layer 33.
It has a B+P n+ three-layer structure. Next, the recrystallized layer is tapered etched, and a gate oxide film 21 is attached to the side surface of the recrystallized layer.
Gate 6 is made of polysilicon on this tapered etched part.
Configure. Further, after forming an oxide film 22, contact holes are formed, Al evaporation and patterning are performed to form a drain or source electrode 5, and finally a protective film is applied to complete the device fabrication.

この構造においては、電流は第2図中の矢印のように上
下方向に流れる。なお、この構造においては、双方向特
性が保証され、トラン簡スフアゲートとして使用しても
何ら問題は生じない。
In this structure, current flows in the vertical direction as indicated by the arrows in FIG. Note that this structure guarantees bidirectional characteristics, and no problem will occur even if it is used as a transfer gate.

〈発明の効果〉 以上のように本発明によれば、電流を上下方向に流す縦
型トランジスタを再結晶層内に形成した積層型半導体装
置が提供され、デバイスの縮小化が可能となシ、積層型
半導体装置の有する利点をより一層引き出すことが出来
、装置のよυ高集積化を実現することが出来る。
<Effects of the Invention> As described above, according to the present invention, there is provided a stacked semiconductor device in which a vertical transistor that allows current to flow in the vertical direction is formed in a recrystallized layer, and the device can be downsized. The advantages of the stacked semiconductor device can be further brought out, and the device can be highly integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置における2層目以後の能
動層に作り込まれるMOSトランジスタの構造を示す断
面図、第2図は他の実施例における素子構造断面を示す
図、第3図は従来の装置における横型構造素子を示す断
面図である。 1・・IM目能動層、  2・・絶縁膜、  31 ・
P層、 32・・一層、 4・・・再結晶層(n層また
はn層)、 6・・・ゲート、 7・・・ソース電極、
8・・・1層目能動層と2層自能動層との接続配線(7
,7レーホ −ル )、    9・・ 絶縁膜。
FIG. 1 is a cross-sectional view showing the structure of a MOS transistor built into the second and subsequent active layers in a device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a device structure in another embodiment, and FIG. The figure is a sectional view showing a horizontal structural element in a conventional device. 1. IM active layer, 2. Insulating film, 31.
P layer, 32... single layer, 4... recrystallized layer (n layer or n layer), 6... gate, 7... source electrode,
8... Connection wiring between the first active layer and the second automatic active layer (7
, 7 Rehole), 9... Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1、再結晶層を有する積層型半導体装置において、上記
再結晶層に垂直構成のMOS型能動素子を備えてなるこ
とを特徴とする積層型半導体装置。
1. A stacked semiconductor device having a recrystallized layer, characterized in that the recrystallized layer is provided with a vertically configured MOS active element.
JP17145985A 1985-08-02 1985-08-02 Laminated semiconductor device Pending JPS6231176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17145985A JPS6231176A (en) 1985-08-02 1985-08-02 Laminated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17145985A JPS6231176A (en) 1985-08-02 1985-08-02 Laminated semiconductor device

Publications (1)

Publication Number Publication Date
JPS6231176A true JPS6231176A (en) 1987-02-10

Family

ID=15923497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17145985A Pending JPS6231176A (en) 1985-08-02 1985-08-02 Laminated semiconductor device

Country Status (1)

Country Link
JP (1) JPS6231176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296281A (en) * 1987-05-28 1988-12-02 Fujitsu Ltd Semiconductor device
WO2002041403A3 (en) * 2000-11-14 2002-12-05 Infineon Technologies Ag Mos low-voltage vertical transistor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106688A (en) * 1976-03-05 1977-09-07 Nec Corp Field-effect transistor
JPS5617071A (en) * 1979-07-20 1981-02-18 Fujitsu Ltd Semiconductor device
JPS5893270A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS6012769A (en) * 1983-07-01 1985-01-23 Seiko Instr & Electronics Ltd Thin film transistor
JPS60124974A (en) * 1983-12-12 1985-07-04 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106688A (en) * 1976-03-05 1977-09-07 Nec Corp Field-effect transistor
JPS5617071A (en) * 1979-07-20 1981-02-18 Fujitsu Ltd Semiconductor device
JPS5893270A (en) * 1981-11-30 1983-06-02 Toshiba Corp Manufacture of semiconductor device
JPS6012769A (en) * 1983-07-01 1985-01-23 Seiko Instr & Electronics Ltd Thin film transistor
JPS60124974A (en) * 1983-12-12 1985-07-04 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296281A (en) * 1987-05-28 1988-12-02 Fujitsu Ltd Semiconductor device
WO2002041403A3 (en) * 2000-11-14 2002-12-05 Infineon Technologies Ag Mos low-voltage vertical transistor

Similar Documents

Publication Publication Date Title
JP2791260B2 (en) Method for manufacturing semiconductor device
JPH04348077A (en) Thin-film transistor
JP2510599B2 (en) Field effect transistor
JPS6231176A (en) Laminated semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPH04116846A (en) Semiconductor device and its manufacture
JPH0393276A (en) Semiconductor storage device and manufacture thereof
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS62112361A (en) Complementary semiconductor device
JPH04206732A (en) Thin film transistor
JP2838932B2 (en) Field effect type semiconductor device
JPH021942A (en) Semiconductor device and its manufacture
JPS5821861A (en) Semiconductor memory device
JPS62244163A (en) Semiconductor device
JPH03196672A (en) Cmos integrated circuit
JPH03101167A (en) Semiconductor device and manufacture thereof
JPS60234353A (en) Semiconductor device
JPH04127440A (en) Manufacture of semiconductor device
JPH01162358A (en) Formation of laminar-structure mis semiconductor device
JPH04221856A (en) Semiconductor device
JPH0621462A (en) Thin-film transistor
JPH0487339A (en) Semiconductor device and its manufacture
JPH03120728A (en) Manufacture of semiconductor device
JPS63246863A (en) Manufacture of complementary insulated-gate semiconductor device
JPH04251974A (en) Semiconductor device