JPH03196672A - Cmos integrated circuit - Google Patents

Cmos integrated circuit

Info

Publication number
JPH03196672A
JPH03196672A JP1339612A JP33961289A JPH03196672A JP H03196672 A JPH03196672 A JP H03196672A JP 1339612 A JP1339612 A JP 1339612A JP 33961289 A JP33961289 A JP 33961289A JP H03196672 A JPH03196672 A JP H03196672A
Authority
JP
Japan
Prior art keywords
channel mosfet
oxide film
gate electrode
drain
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339612A
Other languages
Japanese (ja)
Inventor
Katsuhiro Osono
大園 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1339612A priority Critical patent/JPH03196672A/en
Publication of JPH03196672A publication Critical patent/JPH03196672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance an integration density and an operating speed and to prevent a malfunction by a latch-up phenomenon by a method wherein a P- channel MOSFET is laminated on an N-channel MOSFET three-dimensionally and a gate electrode is owned jointly by the N-channel MOSFET and the P- channel MOSFET. CONSTITUTION:A field oxide film 2 is formed on a P-type silicon substrate 1; a gate oxide film 4 is formed; a gate electrode 5 is formed; N<+> type source and drain 6 are formed in a self-aligned manner with the gate electrode 5; an N-channel MOSFET is formed. Then, an oxide film 8 is changed by a heat treatment; it is made to reflow and is flattened; it is etched back until the polysilicon electrode 5 is exposed; a gate oxide film 4 is formed by a thermal oxidation operation; an N-type semiconductor layer 9 is grown on it; P<+> type source and drain 7 are formed; the N-type semiconductor layer 9 at a connection part between the source and drains and interconnections of the N-channel MOSFET is removed; a P-channel MOSFET is formed. Thereby, an integration density and an operating speed are enhanced, and it is possible to prevent a malfunction by a latch-up phenomenon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCMOS集積回路に関し、特に3次元デバイス
と称する2層構造のCMOS集積回路に間するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CMOS integrated circuit, and particularly to a two-layer CMOS integrated circuit called a three-dimensional device.

〔従来の技術〕[Conventional technology]

従来技術によるNウェル方式のCMOS集積回路につい
て、第3図(a)の平面図と、そのAB断面図である第
3図(b)とを参照して説明する。
An N-well type CMOS integrated circuit according to the prior art will be described with reference to the plan view of FIG. 3(a) and FIG. 3(b), which is an AB sectional view thereof.

P型シリコン基板1の表面にLOCO3法による絶縁分
離用のフィールド酸化膜2が形成され、Nウェル3、ゲ
ート酸化膜4、ポリシリコンからなるゲート電極5が形
成されている。
A field oxide film 2 for insulation isolation is formed on the surface of a P-type silicon substrate 1 by the LOCO3 method, and an N well 3, a gate oxide film 4, and a gate electrode 5 made of polysilicon are formed.

P型シリコン基板1の上にはNチャネルMOSFET用
のN+型ソース−ドレイン6が、NウェルにはPチャネ
ルMO3FET用のP1型ソース−ドレイン7が形成さ
れている。
An N+ type source-drain 6 for an N-channel MOSFET is formed on a P-type silicon substrate 1, and a P1-type source-drain 7 for a P-channel MO3FET is formed in the N well.

全面に堆積されたPSG膜8の開口に埋め込まれたタン
グステン11を通してアルミニウム配線12が形成され
、それぞれのゲート電極5aと5bとが接続されてイン
バータ、NAND、NORとなる基本回路を構成してい
る。
Aluminum wiring 12 is formed through tungsten 11 embedded in the opening of the PSG film 8 deposited on the entire surface, and the respective gate electrodes 5a and 5b are connected to form a basic circuit that becomes an inverter, NAND, and NOR. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術によるCMOS集積回路においては、Nチャネ
ルMO8FETとPチャネルMO3FETとを同一平面
内に形成しているため、チップ面積が大きくなり、集積
度を上げるのが難しい。
In a conventional CMOS integrated circuit, an N-channel MO8FET and a P-channel MO3FET are formed in the same plane, which increases the chip area and makes it difficult to increase the degree of integration.

またゲート電極の配線を第3図(a)のように直線で引
き伸ばすと、NチャネルMO8FETのゲート抵抗が大
きくなり、動作速度が遅くなる。
Furthermore, if the gate electrode wiring is stretched in a straight line as shown in FIG. 3(a), the gate resistance of the N-channel MO8FET increases and the operation speed becomes slower.

さらに平面配置のCMO3集積回路では、PNPN構造
が避けられないので、ラッチアップ現象による誤動作が
生じる恐れがある。
Furthermore, since a PNPN structure is unavoidable in a planar CMO3 integrated circuit, malfunctions may occur due to a latch-up phenomenon.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のCMO3集積回路は、半導体基板表面に形成さ
れた第1のMOSFETの上に堆積された、島状または
環状の半導体層に第1のMOSFETとゲート電極を共
有する第2のMOSFETが形成され、第1のMOSF
ETのソース−トレインと配線との接続部には前記半導
体層が堆積されていないものである。
In the CMO3 integrated circuit of the present invention, a second MOSFET sharing a gate electrode with the first MOSFET is formed in an island-shaped or ring-shaped semiconductor layer deposited on a first MOSFET formed on the surface of a semiconductor substrate. and the first MOSF
The semiconductor layer is not deposited at the connection portion between the source-train of the ET and the wiring.

〔実施例〕〔Example〕

本発明の第1の実施例について、第1図(a)の平面図
、そのA−B断面図である第1図(b)とC−D断面図
である第1図(c)とを参照して説明する。
Regarding the first embodiment of the present invention, the plan view of FIG. 1(a), FIG. 1(b) which is a cross-sectional view of FIG. 1(a), and FIG. 1(c) which is a cross-sectional view of FIG. Refer to and explain.

はじめに不純物濃度I X 1015cm−’のP型シ
リコン基板1に、LOCO3法により厚さ0.6〜0.
8μmのフィールド酸化膜2を形成してから、厚さ10
〜30nmのゲート酸化膜4を形成し、厚さ0.4μm
のゲート電極5を形成する。
First, a P-type silicon substrate 1 with an impurity concentration I x 1015 cm-' is coated with a thickness of 0.6 to 0.0 cm by the LOCO3 method.
After forming a field oxide film 2 of 8 μm, a thickness of 10 μm is formed.
Form a gate oxide film 4 of ~30 nm and a thickness of 0.4 μm
A gate electrode 5 is formed.

つぎに砒素イオンを加速エネルギー70ke■、注入量
(ドース)1×1015〜1×1016cm −2注入
してゲート電f!5とセルファラインとなったN′型ソ
ース−ドレイン6を形成してNチャネルMO3FETが
完成する。
Next, arsenic ions are implanted at an acceleration energy of 70 ke■ and an implantation amount (dose) of 1 x 1015 to 1 x 1016 cm-2, and the gate voltage is f! 5 and an N' type source-drain 6 which becomes a self-line, and an N-channel MO3FET is completed.

つぎにシリカフィルムなどの有機シリコン化合物を塗布
し、熱処理によって酸化膜(S i 02 )8に変化
させてリフロー平坦化する。
Next, an organic silicon compound such as a silica film is coated, and it is changed into an oxide film (S i 02 ) 8 by heat treatment, and then flattened by reflow.

この場合5i02の厚さは、ゲート電極5の外側で0.
8μm以上が必要である。
In this case, the thickness of 5i02 outside the gate electrode 5 is 0.
A thickness of 8 μm or more is required.

つぎにRIE法によりポリシリコン電極5が露出するま
でエッチバックしてがら、熱酸化により表面に厚さIO
〜30nmのゲート酸化膜4を形成する。
Next, while etching back until the polysilicon electrode 5 is exposed using the RIE method, a thickness of IO is formed on the surface by thermal oxidation.
A gate oxide film 4 of ~30 nm is formed.

この上にMBE (分子線エピタキシャル)法により、
厚さ0.5μm、不純物濃度1×1O15〜I X 1
0”cm−’のN型半導体層9を成長させる。
On top of this, by MBE (molecular beam epitaxial) method,
Thickness 0.5μm, impurity concentration 1×1O15~IX1
An N-type semiconductor layer 9 of 0"cm-' is grown.

つぎに硼素イオンを加速エネルギー20〜50keV、
注入it(ドース)IX1015〜lXl0”cm−2
注入して、P+型ソース−ドレイン7を形成し、Nチャ
ネルMO3FETのソース−ドレインと配線との接続部
13のN型半導体層9をエツチング除去することにより
PチャネルMO3FETが完成する。
Next, the boron ions are accelerated at an energy of 20 to 50 keV.
Injection it (dose) IX1015~lXl0”cm-2
The P+ type source-drain 7 is formed by implantation, and the N-type semiconductor layer 9 at the connection portion 13 between the source-drain of the N-channel MO3FET and the wiring is removed by etching, thereby completing the P-channel MO3FET.

最後にPSG膜10を形成してから、タングステン11
を埋め込んでアルミニウム配線12を形成する。
Finally, after forming the PSG film 10, the tungsten film 11 is
The aluminum wiring 12 is formed by embedding.

ここでN型半導体層9は、CVD法によりポリシリコン
を堆積してから、レーザーアニールにより単結晶化する
ことにより形成することもできる。
Here, the N-type semiconductor layer 9 can also be formed by depositing polysilicon by a CVD method and then converting it into a single crystal by laser annealing.

また不要のN型半導体層9をエツチング除去する替りに
、LOCO8法により熱酸化して絶縁性の5in2に変
える方法もある。
Furthermore, instead of removing the unnecessary N-type semiconductor layer 9 by etching, there is also a method of thermally oxidizing it using the LOCO8 method and changing it to an insulating 5in2 layer.

つぎに本発明の第2の実施例について、第2図(a>の
平面図、そのA−B断面図である第2図(b)5とC−
DI7r面図である第2図(c)とを参照して説明する
Next, regarding the second embodiment of the present invention, FIG. 2(a) is a plan view, and FIG.
This will be explained with reference to FIG. 2(c) which is a DI7r plane view.

この実施例ではゲート電極5が環状になっており、Nチ
ャネルMO8FETのソースまたはドレインの配線との
接続部13でN型半導体層9に開口が形成されている。
In this embodiment, the gate electrode 5 has an annular shape, and an opening is formed in the N-type semiconductor layer 9 at a connecting portion 13 to the source or drain wiring of the N-channel MO8FET.

ゲート電極5が環状なので、それぞれのMOSFETの
ソース−トレイン間リーク電流を低減する効果がある。
Since the gate electrode 5 is annular, it has the effect of reducing source-train leakage current of each MOSFET.

〔発明の効果〕〔Effect of the invention〕

本発明によるCMO3集積回路においては、Nチャネル
MOS F ETの上にPチャネルMO8FETを立体
的に積層しているため、チップ面積を縮小して集積度を
上げることができた。
In the CMO3 integrated circuit according to the present invention, since the P-channel MO8FET is three-dimensionally stacked on the N-channel MOSFET, the chip area can be reduced and the degree of integration can be increased.

またNチャネルMO8FETとPチャネルMO3FET
とでゲート電極を共有しているので、ゲ−ト抵抗が小さ
くなり、動作速度が向上した。
Also, N-channel MO8FET and P-channel MO3FET
Since the gate electrode is shared by both, the gate resistance is reduced and the operating speed is improved.

さらに立体配置のCMO8集積回路では、PNPN構造
がなくなり、ラッチアップ現象を解消することができた
Furthermore, the 3D CMO8 integrated circuit eliminates the PNPN structure, making it possible to eliminate the latch-up phenomenon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の第1の実施例を示す平面図、第
1図(b)はそのA−B断面図、第1図(c)はそのC
−D断面図、第2図(a)は本発明の第2の実施例を示
す平面図、第2図(b)はそのA−B断面図、第2図(
c)はそのC−D断面図、第3図(a>は従来技術を示
す平面図、第3図(b)はそのA−B断面図である61
・・・P型シリコン基板、2・・・フィールド酸化膜、
3・・・Nウェル、4・・・ゲート酸化膜、5.5a5
b・・・ゲート電極、6・・・N+型ソース−ドレイン
、7・・・P”型ソース−ドレイン、8・・・酸化膜、
9・・・N型半導体層、10・・・PSG膜、11・・
・タングステン、12・・・アルミニウム配線、13・
・・接続部。
FIG. 1(a) is a plan view showing the first embodiment of the present invention, FIG. 1(b) is a sectional view taken along line A-B, and FIG. 1(c) is a cross-sectional view taken along line C.
2(a) is a plan view showing the second embodiment of the present invention, FIG. 2(b) is a sectional view taken along line A-B, and FIG.
c) is a sectional view taken along the line CD, FIG. 3(a) is a plan view showing the prior art, and FIG.
...P-type silicon substrate, 2...field oxide film,
3... N well, 4... Gate oxide film, 5.5a5
b... Gate electrode, 6... N+ type source-drain, 7... P'' type source-drain, 8... Oxide film,
9... N-type semiconductor layer, 10... PSG film, 11...
・Tungsten, 12... Aluminum wiring, 13.
・Connection part.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板表面に形成された第2導電型のソ
ース−ドレインからなる第1のMOSFETの上に堆積
された、島状または環状の半導体層に第1のMOSFE
Tとゲート電極を共有する第2のMOSFETが形成さ
れ、第1のMOSFETのソース−ドレインと配線との
接続部には前記半導体層が堆積されていないことを特徴
とするCMOS集積回路。
A first MOSFET is formed on an island-shaped or annular semiconductor layer deposited on a first MOSFET consisting of a source-drain of a second conductivity type formed on the surface of a first conductivity type semiconductor substrate.
A CMOS integrated circuit characterized in that a second MOSFET sharing a gate electrode with T is formed, and the semiconductor layer is not deposited at a connection portion between the source-drain of the first MOSFET and a wiring.
JP1339612A 1989-12-26 1989-12-26 Cmos integrated circuit Pending JPH03196672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339612A JPH03196672A (en) 1989-12-26 1989-12-26 Cmos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339612A JPH03196672A (en) 1989-12-26 1989-12-26 Cmos integrated circuit

Publications (1)

Publication Number Publication Date
JPH03196672A true JPH03196672A (en) 1991-08-28

Family

ID=18329140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339612A Pending JPH03196672A (en) 1989-12-26 1989-12-26 Cmos integrated circuit

Country Status (1)

Country Link
JP (1) JPH03196672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109287A (en) * 2004-10-08 2006-04-20 Alps Electric Co Ltd Surface acoustic wave element and manufacturing method thereof
JP2009105407A (en) * 2007-10-24 2009-05-14 Chun-Chu Yang Coaxial transistor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109287A (en) * 2004-10-08 2006-04-20 Alps Electric Co Ltd Surface acoustic wave element and manufacturing method thereof
JP2009105407A (en) * 2007-10-24 2009-05-14 Chun-Chu Yang Coaxial transistor structure

Similar Documents

Publication Publication Date Title
JP2921468B2 (en) Semiconductor memory device
KR960000713B1 (en) Semiconductor device
JPH01123458A (en) Means of coupling complementary bipolar and complementary mos and its manufacture
JPS63102264A (en) Thin film semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
JPH0831542B2 (en) Method for manufacturing BiCMOS field effect transistor
JPH03196672A (en) Cmos integrated circuit
JPH08316335A (en) Semiconductor device and fabrication thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS6038856A (en) Manufacture of semiconductor device
JPH04162771A (en) Mos semiconductor device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JPH01253265A (en) Semiconductor device
JPH02237159A (en) Semiconductor device
JPH0481336B2 (en)
JPH03256356A (en) Semiconductor device
JPH065754B2 (en) Semiconductor device
JPH0637281A (en) Semiconductor memory device and manufacture thereof
JPH01164062A (en) Manufacture of semiconductor device
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPS6318662A (en) Integrated circuit device
JPS63102355A (en) Complementary field effect transistor device
JPH04196440A (en) Semiconductor device
JPH0243348B2 (en)