JPS5879735A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5879735A
JPS5879735A JP17803481A JP17803481A JPS5879735A JP S5879735 A JPS5879735 A JP S5879735A JP 17803481 A JP17803481 A JP 17803481A JP 17803481 A JP17803481 A JP 17803481A JP S5879735 A JPS5879735 A JP S5879735A
Authority
JP
Japan
Prior art keywords
layer
collector
substrate
integrated circuit
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17803481A
Other languages
Japanese (ja)
Inventor
Shinichi Miyazaki
宮崎 紳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17803481A priority Critical patent/JPS5879735A/en
Publication of JPS5879735A publication Critical patent/JPS5879735A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • H01L21/7621Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region the recessed region having a shape other than rectangular, e.g. rounded or oblique shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors

Abstract

PURPOSE:To increase the dielectric strength between a substrate and a collector thereby to obtain an integrated circuit element with a high dielectric strength, by providing a low-density N<-> layer between a channel stopper and a collector buried layer. CONSTITUTION:Before a buried layer 10 is formed in a P type silicon substrate 8, an N type impurity layer 9 is formed with a density 1-2 figures smaller than that of a channel stopper. Then, an N type impurity buried layer 10 is formed which is higher in density but smaller in diffusion depth than the layer 9. Thereafter, an N type impurity-doped epitaxial layer 11 is grown, and the silicon on the surface of a portion on which a field oxide film is to be formed is etched. P type impurities are diffused to form a channel stopper 12 and subjected to a high-pressure oxidation to form a thick oxide film 13. Thereafter, a base, emitter and collector are formed. Thus, the dielectric strength between the collector and the substrate is determined by the impurity densities of the layer 9 and the substrate 8 thereby the dielectric strength becomes higher than that of the conventional element.

Description

【発明の詳細な説明】 本発明は半導体集積回路の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a semiconductor integrated circuit.

半導体集積回路においては、各能動素子間の電気的絶縁
をとる為、素子間分離の技術が用いられている。素子間
分離の方法として、大別してPN接合による方法と、酸
化膜などによる誘電体分離の方法の2通りがある。
In semiconductor integrated circuits, element isolation technology is used to provide electrical insulation between active elements. There are two main methods of isolation between elements: a method using a PN junction and a method using dielectric isolation using an oxide film or the like.

ところで、いずれの方法で素子間分離を行なうにしろ、
集積回路に於いて考慮しなければならないのが、集積回
路の基板とコレクタ間との耐圧(以後、VC−711と
いう)である。集積回路を使用する場合、コレクタ側を
最高電位、即ち電源電圧十Vccに等しくとり、基板側
を最低電位−Vlm又はOに等しくとる。従って、集積
回路のコレクター基板間の耐圧VC−1は、最高電位と
最低電位の差l Vcc l + l Vu l又はV
CCより余裕をもつ大きさが必要である。また、集積回
路の出力電力を向上させる為には、電流よりむしろ電源
電圧を増加させる方が容易である。この意味からもs 
vc−aはできる限り大きいことが望ましい。しかし、
従来の誘電体分離による集積回路の製造方法では、以下
に示すように、大きな耐圧を得ることは困難である。
By the way, whichever method is used to isolate elements,
What must be considered in integrated circuits is the withstand voltage (hereinafter referred to as VC-711) between the substrate and collector of the integrated circuit. When using an integrated circuit, the collector side is set equal to the highest potential, ie, the power supply voltage 10 Vcc, and the substrate side is set equal to the lowest potential -Vlm or O. Therefore, the breakdown voltage VC-1 between the collector substrates of an integrated circuit is the difference between the highest potential and the lowest potential l Vcc l + l Vu l or V
A size with more margin than CC is required. Furthermore, in order to improve the output power of an integrated circuit, it is easier to increase the power supply voltage rather than the current. In this sense, s
It is desirable that vc-a be as large as possible. but,
In the conventional method of manufacturing an integrated circuit using dielectric separation, it is difficult to obtain a large withstand voltage as described below.

従来の半導体集積回路について帛1図を用いて説明する
。これは酸化膜分離法を用いた集積回路の一例であり、
分離用フィールド醗化I!1、コレクタ電極2、コレク
タ・エピタキシャル層3、チャネル・ストッパー用P型
不純物層4.P型基板5、N型不純物の埋込層6および
基板側電極7を有する。
A conventional semiconductor integrated circuit will be explained using FIG. This is an example of an integrated circuit using the oxide film separation method.
Separation field fermentation I! 1. Collector electrode 2, collector epitaxial layer 3, P-type impurity layer for channel stopper 4. It has a P-type substrate 5, an N-type impurity buried layer 6, and a substrate-side electrode 7.

各々の層の不純物濃度は、P型基板5が最も低濃度で、
次いでエピタキシャル層3、チャネルストッパ層4の順
であり、埋込層6が最高濃度となるようにされている。
The impurity concentration of each layer is the lowest in the P-type substrate 5,
Next, the epitaxial layer 3 and the channel stopper layer 4 are formed in this order, with the buried layer 6 having the highest concentration.

PN接合の耐圧は、接合を形成する対立する導電型の領
域の不純物濃度、特にその低濃度側の不純物濃度及び接
合の形状で決定される為、コレクタ・基板間の耐圧VC
−1は、埋込層6とP型基板5とではなく埋込層6とP
型基板より高濃度のチャネル・ストッパ4とで主として
決定されてしまう。チャネル・ストッパ濃度はチャネル
防止の為、10”3−”程度の濃度を維持する必要があ
り、従って、コレクタ・基板間の耐圧VC−Sは10〜
15Vの比較的低い耐圧しかとれない。その結果、使用
する電源電圧も制限され、集積回路の出力電力も制限を
うける。
The breakdown voltage of a PN junction is determined by the impurity concentration of the regions of opposing conductivity types that form the junction, especially the impurity concentration on the lower concentration side, and the shape of the junction, so the breakdown voltage between the collector and the substrate VC
-1 is not the buried layer 6 and the P type substrate 5, but the buried layer 6 and the P type substrate 5.
This is mainly determined by the channel stopper 4 having a higher concentration than the mold substrate. The channel stopper concentration needs to be maintained at about 10"3-" to prevent the channel, and therefore the withstand voltage VC-S between the collector and the substrate is 10~
It can only withstand a relatively low voltage of 15V. As a result, the power supply voltage that can be used is also limited, and the output power of the integrated circuit is also limited.

本発明は、従来の欠点を改着し、コレクタ・基板間の耐
圧VC−8を向上させることができる集積回路を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated circuit that can correct the conventional drawbacks and improve the withstand voltage VC-8 between the collector and the substrate.

以下に図面を用いてその一実施例を詳細に説明する。One embodiment will be described in detail below with reference to the drawings.

まず、@2図(a) においてP型シリコン基板8に埋
込層を形成する前に、あらかじめ、チャネル・ストッパ
の濃度より1〜2ケタ小さい濃度でN型不純物層9を形
成する。その後、高濃度であるが拡散深さは、N型不純
物層9より浅い、N型不純物の埋込層1oを形成する(
同図b)。しがる後N型をドープしたエピタキシャル層
11を成長させ、フィールド酸化膜を形成すべき部位の
表面のシリコンをエツチングする(同図e)。チャネル
ストッパ12としてP型不純物を1〜2 X 10j6
備 の濃度で拡散し、900〜950℃程度の温度で高
圧酸化を行ない、厚い酸化y!13を形成する(同図d
)。しかる後1通常のベース、エミッタ、コレクタ形成
工程及び電極工程によって、集積回路を完成する。
First, in Figure 2 (a), before forming a buried layer in a P-type silicon substrate 8, an N-type impurity layer 9 is formed in advance at a concentration one to two orders of magnitude lower than that of the channel stopper. Thereafter, a buried layer 1o of N-type impurity is formed, which has a high concentration but a shallower diffusion depth than the N-type impurity layer 9.
Figure b). After that, an N-type doped epitaxial layer 11 is grown, and the silicon on the surface of the area where the field oxide film is to be formed is etched (see e in the figure). 1 to 2 P-type impurities as channel stopper 12 x 10j6
It is diffused at a concentration of 1,000 yen, and high-pressure oxidation is performed at a temperature of about 900 to 950°C to form a thick oxidized y! 13 (see figure d)
). Thereafter, the integrated circuit is completed through the usual base, emitter, and collector forming steps and electrode steps.

この実施例によれば、コレクタ・基板間の耐圧は、低濃
度のN型不純物層9とPW基板8の不純物濃度とで決定
されるから、従来に比べ、約10倍以上の耐圧VC−a
が得られる。
According to this embodiment, the breakdown voltage between the collector and the substrate is determined by the low concentration N-type impurity layer 9 and the impurity concentration of the PW substrate 8, so the breakdown voltage VC-a is about 10 times or more compared to the conventional one.
is obtained.

以下にその更に詳しい実施例を第3図を用いてその工程
順に説明する。P型基板14表面に絶縁膜15を成長さ
せ、選択的に開口16を設け、Nm不純物ヲ1 x 1
014〜1 x、 1011scar−3程fjl拡散
スる(&)。ウェハー表面に更に絶縁膜17を成長させ
開口16内にそれより小さな開口部18を選択的に設け
た後、高濃度のN型不純物を拡散して埋込層19を形成
する(b)。該ウェハー表面の絶縁膜を全面除失した後
、N型不純物をドープした81H。
A more detailed embodiment will be explained below in the order of its steps with reference to FIG. An insulating film 15 is grown on the surface of the P-type substrate 14, an opening 16 is selectively formed, and Nm impurities are added 1 x 1.
014~1x, 1011scar-3 fjl diffusion (&). After further growing an insulating film 17 on the wafer surface and selectively providing smaller openings 18 within the openings 16, a buried layer 19 is formed by diffusing N-type impurities at a high concentration (b). After completely removing the insulating film on the wafer surface, 81H was doped with N-type impurities.

岬でシリコン単結晶層19を成長させ%酸化に対してマ
スクとなる窒化膜20及び増化膜層21を成長させる(
C)。しかるのち、フィールド酸化膜を一形成すべき部
位のシリコンを選択的にエツチングし、P型不純物を2
 X 1016car−3程度の濃度で拡散し、チャネ
ル・ストッパー22を形成する(d)。
A silicon single crystal layer 19 is grown at the cape, and a nitride film 20 and an enhanced film layer 21 are grown to serve as a mask against oxidation (
C). After that, the silicon in the area where the field oxide film is to be formed is selectively etched, and the P-type impurity is removed by etching.
It diffuses at a concentration of about X 1016 car-3 to form the channel stopper 22 (d).

骸ウェハーを900〜950℃で高圧酸化を行ない、1
.5μm程度のフィールド酸化膜23を形成した後、コ
レクタ・フンタクトとなるべき部分24を選択的に開口
し、埋込層に達するようにN型不純物の高濃度拡散を行
なう(・)。更に、ベースを開口し、イオン注入などで
P型不純物を注入してペース25を形成した後、酸化膜
などの絶縁層を成長させ、エミッタ26、ベース・コン
タクト27及びコレクタ・コンタクト28を関口する(
f)。該ウェハー表面上にヒ素を高濃度にドープした多
結晶シリコン層を成長させ、エミッタ及びコレクタコン
タクト部のみを憶して、選択的にエツチングL、たL 
1000℃程度で拡散し、工tツタ291コレクタ・コ
ンタクト3oを形成する(g)。更にボロンなどのP型
不純物を9001:程度で、短時間拡散してペース・コ
ンタクト31を形成する(h)。
The skeleton wafer is subjected to high pressure oxidation at 900 to 950°C, and 1
.. After forming a field oxide film 23 of about 5 .mu.m, a portion 24 which is to become a collector substrate is selectively opened, and N-type impurities are diffused at a high concentration so as to reach the buried layer (.). Furthermore, after opening the base and injecting P-type impurities by ion implantation or the like to form a paste 25, an insulating layer such as an oxide film is grown to form an emitter 26, a base contact 27, and a collector contact 28. (
f). A polycrystalline silicon layer doped with a high concentration of arsenic is grown on the wafer surface, and selectively etched L and L, leaving only the emitter and collector contacts.
It is diffused at about 1000° C. to form the collector contact 3o of the ivy 291 (g). Furthermore, a P-type impurity such as boron is diffused for a short period of time to form a pace contact 31 (h).

皺ウェハーにアル之ニウムなどの金属を積層し、工主ツ
タ、ペース・コンタクト、コレクタ・コンタクトを残し
て選択的にエツチングし、電極32を形成すれば、集積
回路の製造工程は完了する(1)。
The integrated circuit manufacturing process is completed by laminating a metal such as aluminum on a wrinkled wafer and selectively etching it leaving the main vine, pace contact, and collector contact to form the electrode 32 (1). ).

以上の工程によって作成された半導体集積回路は、チャ
ンネルストッパー22とコレクタ埋込層19との間に、
低濃度のN″′層16が設けられているため、高耐圧の
集積回路素子を得ることができる。
In the semiconductor integrated circuit produced by the above steps, between the channel stopper 22 and the collector buried layer 19,
Since the low concentration N'' layer 16 is provided, an integrated circuit element with high breakdown voltage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸化膜分離を用いた集積回路の断面図で
ある。 1−フィールド酸化膜、2−コレクタ引出電極、3−コ
レクタ・エピタキシャル層、4−チャネルストッパ層、
5−P型基板、6−埋込層、7−基板側電極。 第2図(a)〜(d)は夫々本発明の一実施例の集積回
路の主要工程における断面図である。 8−P型基板、9−低濃度のN型不純物領域、1O−j
ll込層、11−N型エピタキシャル層、12−チャネ
ル・ストッパ領域、13−フィールド酸化膜。 第3図(a)〜(1)は本発明の一実施例による集積回
路の製造工程を詳細に示す断面図である。 14−P型基板、15−絶縁膜、16−開口部、17−
絶縁膜、18−関口部、19−埋込層、2〇−酸化膜、
21−窒化膜、22−チャネル・ストッパ領域、23−
フィールド酸化膜、24゜28.30−コレクタ番コン
タクト、25−ペース、26.29−エミツタ・コンタ
クト、27゜31−ベース・コンタクト、32−引出し
電極。 (C) ) 第2図 (C) (e)      fyJ領
FIG. 1 is a cross-sectional view of an integrated circuit using conventional oxide isolation. 1-field oxide film, 2-collector extraction electrode, 3-collector epitaxial layer, 4-channel stopper layer,
5-P type substrate, 6-buried layer, 7-substrate side electrode. FIGS. 2(a) to 2(d) are sectional views showing main steps of an integrated circuit according to an embodiment of the present invention. 8-P type substrate, 9-Low concentration N type impurity region, 1O-j
11-N type epitaxial layer, 12-channel stopper region, 13-field oxide film. FIGS. 3(a) to 3(1) are cross-sectional views showing in detail the manufacturing process of an integrated circuit according to an embodiment of the present invention. 14-P type substrate, 15-insulating film, 16-opening, 17-
Insulating film, 18-Sekiguchi part, 19-buried layer, 20-oxide film,
21-Nitride film, 22-Channel stopper region, 23-
Field oxide film, 24°28.30-Collector number contact, 25-Pace, 26.29-Emitter contact, 27°31-Base contact, 32-Leader electrode. (C) ) Figure 2 (C) (e) fyJ territory

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上に異なる導電型の半導体層が複
数の領域に分離されて形成され、この分離された領域間
の前記半導体基板表面にはチャンネル防止層が形成され
、前記分離された領域内には前記異なる導電型の埋込層
を前記チャンネル防止層に接触することなく形成してい
ることを特徴とする半導体集積回路。
Semiconductor layers of different conductivity types are formed on a semiconductor substrate of one conductivity type, separated into a plurality of regions, a channel prevention layer is formed on the surface of the semiconductor substrate between the separated regions, and a channel prevention layer is formed on the surface of the semiconductor substrate between the separated regions, and A semiconductor integrated circuit characterized in that the buried layer of the different conductivity type is formed inside the channel prevention layer without contacting the channel prevention layer.
JP17803481A 1981-11-06 1981-11-06 Semiconductor integrated circuit Pending JPS5879735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17803481A JPS5879735A (en) 1981-11-06 1981-11-06 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17803481A JPS5879735A (en) 1981-11-06 1981-11-06 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS5879735A true JPS5879735A (en) 1983-05-13

Family

ID=16041424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17803481A Pending JPS5879735A (en) 1981-11-06 1981-11-06 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5879735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213155A (en) * 1983-05-17 1984-12-03 Mitsubishi Electric Corp Semiconductor integrated circuit device
WO2000079584A1 (en) 1999-06-23 2000-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Semiconductor and manufacturing method for semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213155A (en) * 1983-05-17 1984-12-03 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPH0348662B2 (en) * 1983-05-17 1991-07-25 Mitsubishi Electric Corp
WO2000079584A1 (en) 1999-06-23 2000-12-28 Telefonaktiebolaget Lm Ericsson (Publ) Semiconductor and manufacturing method for semiconductor
EP1188185A1 (en) * 1999-06-23 2002-03-20 Infineon Technologies AG Semiconductor and manufacturing method for semiconductor

Similar Documents

Publication Publication Date Title
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JPH0548936B2 (en)
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS6159852A (en) Manufacture of semiconductor device
JPH025432A (en) Semiconductor device and its manufacture
US4566174A (en) Semiconductor device and method for manufacturing the same
JPS5879735A (en) Semiconductor integrated circuit
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JPS5818784B2 (en) Hand-crafted construction work
JPS6094737A (en) Manufacture of semiconductor device
JPH0239091B2 (en)
JPH0387059A (en) Semiconductor integrated circuit
JPS6158981B2 (en)
JP3128818B2 (en) Semiconductor integrated circuit
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPS62120040A (en) Manufacture of semiconductor device
JPS641933B2 (en)
JP3070284B2 (en) Method of making circuit element for integrated circuit device
JPH0855999A (en) Semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPS63131540A (en) Manufacture of semiconductor device
JPH02135755A (en) Dielectric isolated substrate and manufacture thereof
JPH0574791A (en) Semiconductor device