JPS6084878A - Semiconductor device having negative resistance characteristic and manufacture thereof - Google Patents

Semiconductor device having negative resistance characteristic and manufacture thereof

Info

Publication number
JPS6084878A
JPS6084878A JP19237083A JP19237083A JPS6084878A JP S6084878 A JPS6084878 A JP S6084878A JP 19237083 A JP19237083 A JP 19237083A JP 19237083 A JP19237083 A JP 19237083A JP S6084878 A JPS6084878 A JP S6084878A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
conductivity type
negative resistance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19237083A
Other languages
Japanese (ja)
Inventor
Nobuo Owada
伸郎 大和田
Masanori Odaka
小高 雅則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19237083A priority Critical patent/JPS6084878A/en
Publication of JPS6084878A publication Critical patent/JPS6084878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Abstract

PURPOSE:To enable to suppress the peripheral current component and to obtain the stabler negative resistance characteristic by a method wherein a remarkable difference in the concentration or a concentration gradient is formed to the impurity profile in an epitaxially grown Si semiconductor layer in a Schottky barrier diode. CONSTITUTION:After a thin insulation film 8 is formed on the surface of the epitaxial layer 4, an N<+> type high concentration semiconductor layer 6 is formed by implantation of N type impurity ions in the surface of the epitaxial layer via insulation film. It is possible to form the semiconductor layer 6 at the same time with a collector contact region or an emitter region. After this semiconductor layer is formed, a contact hole 9 of a smaller area than that of the surface of this semiconductor layer is bored in the thin insulation film covering its surface. Thereafter, an electrode material layer 9 for Schottky barrier diode is provided so as to come to junction with this semiconductor layer through this contact hole.

Description

【発明の詳細な説明】 [技術分野] この発明は、′″負性抵抗特性を示す半導体装置および
その製造方法に関し、特にLSI(集積回路)の中に組
込む上で有効な技術に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a semiconductor device exhibiting negative resistance characteristics and a method for manufacturing the same, and particularly relates to a technique that is effective when incorporated into an LSI (integrated circuit). .

[背景技術] 負性抵抗特性を示す半導体装置としては、PNl) N
ダイオード(特公昭33−7573号公報)やPINダ
イオ−1り(特公昭28−6077号公報)などが知ら
れている。PNPNダイオードは P−N−P−Nの4
層で形成され、PINダイオードはP型およびN型半導
体層の間に1層(不純物濃度が十分に低い半導体層)を
はさんで形成されている。このような構造を有するため
、この種の素子はバイポーラLSIの製造プロセスにな
じまず、LSI回vh中に組込むことが難しいという問
題を本発明者は発見した。
[Background Art] As a semiconductor device exhibiting negative resistance characteristics, PNl)N
Diodes (Japanese Patent Publication No. 33-7573) and PIN diodes (Japanese Patent Publication No. 28-6077) are known. PNPN diode is P-N-P-N 4
The PIN diode is formed by sandwiching one layer (semiconductor layer with sufficiently low impurity concentration) between P-type and N-type semiconductor layers. The present inventor discovered a problem that, because of this structure, this type of element is not compatible with the bipolar LSI manufacturing process and is difficult to incorporate into the LSI circuit vh.

[発明の1コ的コ 本発明の目的は、集積化する上で有効であり、特にバイ
ポーラLSIに容易に組込むことのできる負性抵抗特性
をもつ半導体装置を提供することにある。
[One aspect of the invention] An object of the present invention is to provide a semiconductor device having negative resistance characteristics that is effective for integration, and in particular can be easily incorporated into a bipolar LSI.

本発明の別の目的は、前記目的の半導体装置の製造方法
を提供することにある。
Another object of the present invention is to provide a method for manufacturing a semiconductor device having the above object.

本発明の前記ならびにその他の目的と新規な特徴は、こ
の明細書の記述および添(=J図面から明らかになるで
あろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] ここで開示される発明のうち代表的なものの概要を簡単
に説明すれば、下記の通りである。
[Summary of the Invention] A brief overview of typical inventions disclosed herein is as follows.

すなわち、半導体基板に形成された低い不純物濃度を有
する低濃度半導体層の上に、この低濃度半導体層と同じ
導電型で高い不純物濃度を有する高濃度半導体層を形成
し、この高濃度半導体層の上にこれと接合する電極材料
層を設け、この電極材料層と前記高濃度半導体層との接
合面直下の半導体プロファイルに著しい濃度差を形成し
負性抵抗特性をもたせるようにして、その集積化を容易
にするものである。
That is, a high concentration semiconductor layer having the same conductivity type as the low concentration semiconductor layer and a high impurity concentration is formed on a low concentration semiconductor layer having a low impurity concentration formed on a semiconductor substrate, and An electrode material layer is provided on top of the electrode material layer to be bonded thereto, and a significant concentration difference is formed in the semiconductor profile directly under the bonding surface between the electrode material layer and the high concentration semiconductor layer to provide negative resistance characteristics, thereby integrating the electrode material layer. It facilitates

[実施例] 第1図はこの発明による半導体装置の一実施例を示す断
面構造図である。
[Embodiment] FIG. 1 is a cross-sectional structural diagram showing an embodiment of a semiconductor device according to the present invention.

図において、1はP型のシリコン半導体基板で、その−
面にN+型の埋込み層2とチャンポルス1ヘツパとなる
P+型の半導体領域3が形成されている。半導体基板1
上の埋込み層2の上には、N型のエピタキシャル成長シ
リコン半導体層4が形成されている。この半導体M4は
、たとえばlΩ印以下の低い不純物濃度を有するN−型
半導体層(低濃度半導体層)5と高い不純物濃度を有す
るN1型半導体層(高濃度半導体層)6から成り、その
不純物プロファイルに著しい濃度差あるいは濃度勾配を
有している。低濃度半導体層5は半導体層4の下層を形
成し、高濃度半導体層6は上層を形成する。このような
エピタキシャル成長シリコン半導体層4の周囲には、他
の活性領域から電気的に分離するための5i02による
素子分離用絶縁膜7が形成されている。半導体層4は、
この絶縁膜7によってその周辺部が覆われると共に、こ
の絶縁膜7に比べて極めて薄い5i02からなる薄い絶
縁膜8によってその上面すなわち第2の半導体層6の表
面が覆われる。この薄い絶縁s8には高濃度半導体層6
の表面部の面積より小さいコンタクト六9が開口されて
おり、このコンタク1へ穴9を介して高濃度半導体層6
の表面に接合するようにショッl〜キバリアダイオード
用の電極材料層10が設けられている。
In the figure, 1 is a P-type silicon semiconductor substrate;
An N+ type buried layer 2 and a P+ type semiconductor region 3 serving as a Champorus 1 header are formed on the surface. Semiconductor substrate 1
An N-type epitaxially grown silicon semiconductor layer 4 is formed on the upper buried layer 2 . The semiconductor M4 is composed of an N-type semiconductor layer (low concentration semiconductor layer) 5 having a low impurity concentration of, for example, the lΩ mark or less, and an N1 type semiconductor layer (high concentration semiconductor layer) 6 having a high impurity concentration, and its impurity profile has a significant concentration difference or concentration gradient. The low concentration semiconductor layer 5 forms the lower layer of the semiconductor layer 4, and the high concentration semiconductor layer 6 forms the upper layer. An element isolation insulating film 7 made of 5i02 is formed around the epitaxially grown silicon semiconductor layer 4 to electrically isolate it from other active regions. The semiconductor layer 4 is
This insulating film 7 covers its periphery, and its upper surface, that is, the surface of the second semiconductor layer 6, is covered by a thin insulating film 8 made of 5i02, which is much thinner than this insulating film 7. This thin insulation s8 has a high concentration semiconductor layer 6
A contact 69 smaller in area than the surface of
An electrode material layer 10 for Schott to Kibaria diodes is provided so as to be bonded to the surface of the Schottler-Kivalier diode.

以上のような構成の説明から明らかなように、電極材料
層lOと高濃度半導体層6との接合によりショットキ障
壁が形成され、したがって、そのデバイスは基本的には
ショッ1−キバリアダイオード(S B D)として機
能する。しかし、上記構成においては、その電流−電圧
特性は、第2図の曲線(a)のような負性抵抗特性を示
す。なお0曲線(b)はSBDの正常特性を示している
As is clear from the above description of the structure, a Schottky barrier is formed by the junction between the electrode material layer IO and the high concentration semiconductor layer 6, and therefore, the device is basically a Schottky barrier diode (S BD). However, in the above configuration, the current-voltage characteristic exhibits a negative resistance characteristic as shown by the curve (a) in FIG. Note that the 0 curve (b) shows the normal characteristics of SBD.

第1図の構成において第2図の曲線(b)に示すような
負性抵抗特性が現われるのは、低濃度半導体層5と高濃
度半導体層6とによりエビタキシャル成長シリコン半導
体層4の不純物濃度プロファイルに著しい不純物濃度差
が形成されていることによる。これは、本発明者によっ
てなされた次のような実験結果によって明らかにされた
ものである。すなわち、第1図において、高濃度半導体
層6はイオン打込みにより高い不純物濃度が与えられる
が、■このようなイオン打込みを行なわなかったもの、
つまり半導体層4が低濃度半導体層5のみで形成されて
いる場合には負性抵抗特性を示さないこと、■低濃度半
導体層5と高濃度半導体層6の不純物濃度差が小さい場
合には負性抵抗特性を示さないこと、■イオン打込みの
ドーズ量が多いものについてのみ負性抵抗特性が現われ
ること、■負性抵抗特性の電流−電圧特性とイオン打込
み4のドーズ量との間に相関があること、が実験により
確められた。この場合、高濃度半導体層6の濃度は約1
×1017〜2×10111/cイ、低濃度半導体層5
の濃度は5X10’/cJ前後がGelましい。なお、
■の結果はイオン打込みのドーズ量によって負性抵抗特
性を制御することができるということを意味している。
In the configuration of FIG. 1, the negative resistance characteristic shown in curve (b) of FIG. 2 appears because the impurity concentration of the epitaxially grown silicon semiconductor layer 4 is This is because there is a significant difference in impurity concentration in the profile. This was clarified by the following experimental results conducted by the inventor. That is, in FIG. 1, the high concentration semiconductor layer 6 is given a high impurity concentration by ion implantation;
In other words, if the semiconductor layer 4 is formed only of the low concentration semiconductor layer 5, it does not exhibit negative resistance characteristics; ■ Negative resistance characteristics appear only when the dose of ion implantation is large; ■ There is no correlation between the current-voltage characteristics of negative resistance characteristics and the dose of ion implantation 4. This has been confirmed through experiments. In this case, the concentration of the highly doped semiconductor layer 6 is approximately 1
×1017~2×10111/c i, low concentration semiconductor layer 5
The concentration of Gel is preferably around 5×10′/cJ. In addition,
The result (2) means that the negative resistance characteristics can be controlled by the dose of ion implantation.

また、この発明者は、負性抵抗特性の発生がSBD接合
の周辺形状に強く依存し、SBD接合の周辺形状を決定
するプロセスパラメータであるコンタクトエッチ時間が
短い場合に負性抵抗特性が発生し、長い場合には発生し
ないという実験結果をも得た。これは、コンタクトエッ
チ時間に応じて、SBD接合面中心部を流れる電流成分
にSBD接合面周辺部からの周辺電流成分が付加されて
正常特性を示すようになると考えられる。すなわち、S
 B D接合面の中心部を流れる電流成分は第2図の曲
線(a)に示すような負性抵抗特性を示し、SBD接合
面周辺部からの周辺電流成分がこれにイ1加されること
によって、第2図の曲線(b)に示すようなSBDとし
ては正常特性を与えるようになるものと考えられる。し
たがって、第1図に示すように、コンタクト穴9によっ
てSBD接合面の周辺電流成分を抑制するようにすれば
、より安定な負性抵抗特性を示す半導体装置が得られる
The inventor also found that the occurrence of negative resistance characteristics strongly depends on the peripheral shape of the SBD junction, and that negative resistance characteristics occur when the contact etch time, which is a process parameter that determines the peripheral shape of the SBD junction, is short. We also obtained an experimental result that it does not occur when the time is long. This is thought to be because, depending on the contact etch time, a peripheral current component from the periphery of the SBD junction surface is added to a current component flowing through the center of the SBD junction surface, resulting in normal characteristics. That is, S
The current component flowing through the center of the B-D junction surface exhibits a negative resistance characteristic as shown in curve (a) in Figure 2, and the peripheral current component from the periphery of the SBD junction surface is added to this. Therefore, it is thought that the SBD will have normal characteristics as shown in curve (b) of FIG. 2. Therefore, as shown in FIG. 1, if the peripheral current component of the SBD junction surface is suppressed by the contact hole 9, a semiconductor device exhibiting more stable negative resistance characteristics can be obtained.

以上のような半導体装置はLSI製造プロセスにおける
ショットキバリアダイオードの製造工程と同様の工程で
製造することができる。
The semiconductor device as described above can be manufactured in a process similar to that of a Schottky barrier diode in an LSI manufacturing process.

すなわち、P型のシリコン半導体基板1の一面にN+型
埋込みM2とチャンネルストッパとなるP+型半導体領
域3を形成し、その上にN−型のエピタキシャル層4を
成長させる。成長させたエピタキシャル層4の表面を二
次酸化して5i02膜を形成し、その上にSi3N4膜
を堆積させる。
That is, an N+ type buried M2 and a P+ type semiconductor region 3 serving as a channel stopper are formed on one surface of a P type silicon semiconductor substrate 1, and an N− type epitaxial layer 4 is grown thereon. The surface of the grown epitaxial layer 4 is subjected to secondary oxidation to form a 5i02 film, and a Si3N4 film is deposited thereon.

このSi3N4膜をマスクとしてアイソレーション酸化
を行ない素子分離用絶縁膜7を形成した後、Si3N4
膜を除去する。以上の工程は、従来公知のバイポーラL
SIの製造プロセスと全く同様である。二次酸化による
5i02膜はSi3N4膜と共に除去しても良いが、薄
い絶縁膜8とし残すこともできる。除去した場合には、
たとえばベース領域の表面S i O2膜の形成と共に
薄い絶縁膜8を別に作ることができる。このようにして
エピタキシャル層4の表面に薄い絶縁膜8を形成した後
、その薄い絶縁膜8を介してN型不純物イオンをエピタ
キシャル[4の表面に打込み、N1型の高濃度半導体層
6を形成する。エピタキシャル層4の下部はN−型の低
濃度半導体層5として成長した時のままの低い不純物濃
度である。N+型の高濃度半導体層6の形成は、コレク
タコンタクト領域あるいはエミッタ領域の形成と同時に
行なうことが可能である。高濃度半導体層6を形成した
後は、その表面を覆う薄い絶縁膜8に、高濃度半導体層
6の表面の面積より小さい面積のコンタクト穴9を開口
する。なお、コンタク1〜穴9の開口は他の活性領域の
コンタク1〜穴の開口と同時に行なうことができる。コ
ンタクト穴9が形成された後は、このコンタクト穴9を
通して高濃度半導体層6に接合するようにショットキバ
リアダイオード用の電極材料層9を設けて、第1図の構
造を得る。最後に保護膜等を被覆して素子を完成する。
After performing isolation oxidation using this Si3N4 film as a mask to form an insulating film 7 for element isolation, the Si3N4
Remove membrane. The above steps are performed using conventionally known bipolar L
The manufacturing process is exactly the same as the SI manufacturing process. The 5i02 film formed by secondary oxidation may be removed together with the Si3N4 film, but it may also be left as a thin insulating film 8. If removed,
For example, the thin insulating film 8 can be formed separately along with the formation of the S i O2 film on the surface of the base region. After forming a thin insulating film 8 on the surface of the epitaxial layer 4 in this way, N-type impurity ions are implanted into the surface of the epitaxial layer 4 through the thin insulating film 8 to form an N1-type high concentration semiconductor layer 6. do. The lower part of the epitaxial layer 4 has the same low impurity concentration as when it was grown as the N- type low concentration semiconductor layer 5. The N+ type high concentration semiconductor layer 6 can be formed simultaneously with the formation of the collector contact region or the emitter region. After forming the high concentration semiconductor layer 6, a contact hole 9 having an area smaller than the surface area of the high concentration semiconductor layer 6 is opened in the thin insulating film 8 covering the surface thereof. Note that the opening of contacts 1 to hole 9 can be performed simultaneously with the opening of contacts 1 to hole 9 in other active regions. After the contact hole 9 is formed, an electrode material layer 9 for a Schottky barrier diode is provided so as to be connected to the high concentration semiconductor layer 6 through the contact hole 9, thereby obtaining the structure shown in FIG. Finally, the device is completed by covering with a protective film or the like.

[効果] ■ショットキバリアダイオードにおけるエピタキシャル
成長シリコン半導体層内の不純物プロファイルに著しい
濃度差あるいは濃度勾配を形成して負性抵抗特性を与え
るようにしたので、LSIレベルで形成することが可能
な負性抵抗特性をもつ半導体装置を提供することができ
る。
[Effects] ■ A significant concentration difference or concentration gradient is created in the impurity profile in the epitaxially grown silicon semiconductor layer of the Schottky barrier diode to provide negative resistance characteristics, so negative resistance can be formed at the LSI level. A semiconductor device having these characteristics can be provided.

■ショク1〜キバリアダイオードと同様のプロセスで製
造することができるので、特にバイポーラLSIにおい
ては新たにプロセスを付加することなくこの発明による
半導体装置を製造することができる。
(1) Since it can be manufactured using the same process as the Kibaria diode, the semiconductor device according to the present invention can be manufactured without adding a new process, especially in bipolar LSI.

■エピタキシャル成長シリコン半導体層の上部を形成す
る高濃度半導体層の表面に薄い絶縁膜を形成し、この薄
い絶縁膜に対し、第2の半導体層の表面積より小さいコ
ンタン1〜六を開口し、その間1」を通して電極材料層
を高濃度半導体層に接合するようにしたので1周辺電流
酸分を抑制することができ、より安定な負性抵抗特性を
得ることができる。
■A thin insulating film is formed on the surface of the highly concentrated semiconductor layer that forms the upper part of the epitaxially grown silicon semiconductor layer, and contact holes 1 to 6, which are smaller than the surface area of the second semiconductor layer, are opened in this thin insulating film. Since the electrode material layer is bonded to the high-concentration semiconductor layer through the electrode material layer, it is possible to suppress the amount of peripheral current, and more stable negative resistance characteristics can be obtained.

以上この発明者によってなされた発明を実施例に基づき
具体的に説明したが、この発明は上記実施例に限定され
るものではなく、その要旨を逸脱しない範囲で種々変更
可能であることはいうまでもない。
The invention made by this inventor has been specifically explained above based on Examples, but it goes without saying that this invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor.

[利用分野] この発明は、バイポーラ型の集積回路等に広く利用する
ことができる。
[Field of Application] The present invention can be widely used in bipolar integrated circuits and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による半導体装置の一実施例を示す断
面溝造園、 第2図はこの発明による半導体装置の電流−電圧特性を
示す図である。 1・・・半導体基板、2・・・埋込み層、3・・・チャ
ンネルストッパ(P+型半導体領域)、5・・・低濃度
半導体層、6・・・高濃度半導体層、7・・・素子分離
用絶縁+i、g・・・薄い絶縁膜、9・・・コンタク1
−六、10・・・電極材料層、(a)・・・負性抵抗特
性、(b)・・・SBDとしての正常特性。 1、− /l
FIG. 1 is a cross-sectional groove diagram showing an embodiment of a semiconductor device according to the present invention, and FIG. 2 is a diagram showing current-voltage characteristics of the semiconductor device according to the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Buried layer, 3... Channel stopper (P+ type semiconductor region), 5... Low concentration semiconductor layer, 6... High concentration semiconductor layer, 7... Element Isolation insulation +i, g...thin insulating film, 9...contact 1
-6, 10... Electrode material layer, (a)... Negative resistance characteristics, (b)... Normal characteristics as SBD. 1, - /l

Claims (1)

【特許請求の範囲】 11.半導体母体−面の低濃度の半導体層と、この低濃
度の半導体層の表面部分に同じ導電型の高い不純物濃度
を有する高濃度半導体層があり、この高濃度半導体層の
上にその高濃度半導体層と接合する電極材料層が存在す
ることを特徴とする負性抵抗特性をもつ半導体装置。 2、前記半導体母体は、第1導電型の半導体基板と、前
記半導体基体中の一面に第1導電型とは逆導電型の埋込
み層があり、前記埋込み層の上にエピタキシャル成長さ
れる、第1導電型とは逆の第2導電型の低濃度半導体層
とからなる特許請求の範囲第1項に記載の負性抵抗特性
をもつ半導体装置。 3、前記高濃度半導体層と前記電極材料層との間に、高
濃度半導体層の表面積より小さいコンタクト穴を有する
絶縁膜を備え、前記電極材料層がこのコンタクト穴を介
して前記高濃度半導体層と接合する特許請求の範囲第1
項に記載の負性抵抗特性をもつ半導体装置。 4、−面に逆導電型の埋込み層を形成した第1導電型の
半導体基板の上に、この埋込み層と同じ導電型で低い不
純物濃度を有する低濃度半導体層をエピタキシャル成長
させ、この低濃度半導体層の表面に絶縁膜を形成した後
、この絶縁膜を通して低濃度半導体層表面にそれと同じ
導電型の不純物イオンを打込むことにより、前記低濃度
半導体層の表面部分に高い不純物濃度を有する高濃度半
導体層を形成し、この高濃度半導体層表面の前記絶縁膜
の少なくとも一部を除去した後、前記高濃度半導体層の
上にそれと接合する電極材料層を形成することを特徴と
する負性抵抗特性をもつ半導体装置の製造方法。 5、前記絶縁膜を高濃度半導体層の表面より小さいコン
タク1−穴の部分のみ除去し、このコンタク1−穴を介
して前記高濃度半導体層と接合するように前記電極材料
層を形成する特許請求の範囲第4項に記載の負性抵抗特
性をもつ半導体装置の製造方法。
[Claims] 11. There is a low-concentration semiconductor layer on the surface of the semiconductor matrix, and a high-concentration semiconductor layer with a high impurity concentration of the same conductivity type on the surface of this low-concentration semiconductor layer. A semiconductor device having negative resistance characteristics, characterized by the presence of an electrode material layer that is in contact with the other layers. 2. The semiconductor base includes a semiconductor substrate of a first conductivity type, and a buried layer of a conductivity type opposite to the first conductivity type on one surface of the semiconductor base, and a first conductivity type that is epitaxially grown on the buried layer. A semiconductor device having negative resistance characteristics according to claim 1, comprising a low concentration semiconductor layer of a second conductivity type opposite to the conductivity type. 3. An insulating film having a contact hole smaller than the surface area of the high concentration semiconductor layer is provided between the high concentration semiconductor layer and the electrode material layer, and the electrode material layer connects to the high concentration semiconductor layer through the contact hole. Claim 1 joined with
A semiconductor device having negative resistance characteristics as described in . 4. A low concentration semiconductor layer having the same conductivity type as the buried layer and a low impurity concentration is epitaxially grown on the semiconductor substrate of the first conductivity type in which a buried layer of the opposite conductivity type is formed on the − plane. After forming an insulating film on the surface of the layer, impurity ions of the same conductivity type as that of the low-concentration semiconductor layer are implanted into the surface of the low-concentration semiconductor layer through this insulating film. A negative resistance characterized by forming a semiconductor layer, removing at least a part of the insulating film on the surface of the high concentration semiconductor layer, and then forming an electrode material layer on the high concentration semiconductor layer to be connected thereto. A method for manufacturing semiconductor devices with special characteristics. 5. A patent in which the insulating film is removed only at a contact hole 1 which is smaller than the surface of the high concentration semiconductor layer, and the electrode material layer is formed so as to be connected to the high concentration semiconductor layer through the contact hole 1. A method for manufacturing a semiconductor device having negative resistance characteristics according to claim 4.
JP19237083A 1983-10-17 1983-10-17 Semiconductor device having negative resistance characteristic and manufacture thereof Pending JPS6084878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19237083A JPS6084878A (en) 1983-10-17 1983-10-17 Semiconductor device having negative resistance characteristic and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19237083A JPS6084878A (en) 1983-10-17 1983-10-17 Semiconductor device having negative resistance characteristic and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6084878A true JPS6084878A (en) 1985-05-14

Family

ID=16290151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19237083A Pending JPS6084878A (en) 1983-10-17 1983-10-17 Semiconductor device having negative resistance characteristic and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6084878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666932A1 (en) * 1990-09-18 1992-03-20 Mitsubishi Electric Corp SEMICONDUCTOR DEVICE HAVING HIGH CLAMPING VOLTAGE AND LOW RESISTANCE AND METHOD FOR MANUFACTURING SAME
WO2001003204A1 (en) * 1999-07-03 2001-01-11 Robert Bosch Gmbh Diode comprising a metal semiconductor contact and a method for the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666932A1 (en) * 1990-09-18 1992-03-20 Mitsubishi Electric Corp SEMICONDUCTOR DEVICE HAVING HIGH CLAMPING VOLTAGE AND LOW RESISTANCE AND METHOD FOR MANUFACTURING SAME
WO2001003204A1 (en) * 1999-07-03 2001-01-11 Robert Bosch Gmbh Diode comprising a metal semiconductor contact and a method for the production thereof
US6727525B1 (en) 1999-07-03 2004-04-27 Robert Bosch Gmbh Diode comprising a metal semiconductor contact and a method for the production thereof

Similar Documents

Publication Publication Date Title
JPH05145076A (en) Vertical type current semiconductor device utilizing wafer-bonding and manufacture thereof
US4005469A (en) P-type-epitaxial-base transistor with base-collector Schottky diode clamp
JPS6159852A (en) Manufacture of semiconductor device
US4199860A (en) Method of integrating semiconductor components
JPS63157475A (en) Semiconductor device and manufacture thereof
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JPS63136660A (en) Semiconductor device and manufacture thereof
JP3128818B2 (en) Semiconductor integrated circuit
JPS60177672A (en) Hetero junction bi-polar semiconductor device
JPS641933B2 (en)
JPS61288467A (en) Semiconductor device and manufacture thereof
JPS6022358A (en) Semiconductor integrated circuit device
JPS59165435A (en) Manufacture of semiconductor device
JPS5879735A (en) Semiconductor integrated circuit
JPS6266672A (en) Semiconductor device
JPH0474478A (en) Diode
JPH01187868A (en) Semiconductor device
JPS6347965A (en) Semiconductor integrated circuit
JPH05175327A (en) Semiconductor device and manufacture thereof
JPS63249370A (en) Semiconductor device and its manufacture
JPH0217673A (en) Semiconductor device and manufacture thereof
JPS6065566A (en) Semiconductor device
JPH04137733A (en) Bipolar transistor and manufacture thereof
JPS6376374A (en) Manufacture of semiconductor device