JPS5818784B2 - Hand-crafted construction work - Google Patents

Hand-crafted construction work

Info

Publication number
JPS5818784B2
JPS5818784B2 JP47084460A JP8446072A JPS5818784B2 JP S5818784 B2 JPS5818784 B2 JP S5818784B2 JP 47084460 A JP47084460 A JP 47084460A JP 8446072 A JP8446072 A JP 8446072A JP S5818784 B2 JPS5818784 B2 JP S5818784B2
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
type
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP47084460A
Other languages
Japanese (ja)
Other versions
JPS4940860A (en
Inventor
生嶋康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP47084460A priority Critical patent/JPS5818784B2/en
Publication of JPS4940860A publication Critical patent/JPS4940860A/ja
Publication of JPS5818784B2 publication Critical patent/JPS5818784B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は浅いP−N接合(シャロウ ジャンクション)
型の半導体素子の電極配線構造に関するものである。
[Detailed description of the invention] The present invention is a shallow PN junction (shallow junction).
The present invention relates to an electrode wiring structure of a type of semiconductor element.

従来、この種シャロウジャンクション型の半導体素子に
おいて電極配線を行う場合、コンタクト孔での横方向へ
のエツチングを阻止するために、二酸化珪素膜中に不純
物を添加して、エッチ速度に著しい差を持たせ、かつ、
電極付着の際には、接合部と電極との間に多結晶シリコ
ンを介在させ、これによって、接合部と電極との距離を
広げる方法がとられている。
Conventionally, when wiring electrodes in this type of shallow junction type semiconductor device, impurities are added to the silicon dioxide film to prevent lateral etching in the contact hole, resulting in a significant difference in etch rate. Se, Katsu,
When attaching an electrode, a method is used in which polycrystalline silicon is interposed between the joint and the electrode, thereby increasing the distance between the joint and the electrode.

これらの工程のうち、後者では、浅く拡散して形成した
高不純物濃度領域の表面を除いた半導体基板の表面を酸
化珪素層等の絶縁体で覆い、高不純物濃度領域の表面と
酸化珪素層の表面とに高濃度不純物と同一導電型の高濃
度不純物を含んだ多結晶シリコンを堆積する。
In the latter of these steps, the surface of the semiconductor substrate, excluding the surface of the high impurity concentration region formed by shallow diffusion, is covered with an insulator such as a silicon oxide layer, and the surface of the high impurity concentration region and the silicon oxide layer are covered. Polycrystalline silicon containing a high concentration impurity of the same conductivity type as the high concentration impurity is deposited on the surface.

次に、絶縁体の上部の高不純物濃度の多結晶シリコン層
を除去し、続いて、高不純物濃度の多結晶シリコンの表
面と、絶縁体の表面に電極金属を被着し、最後に電極金
属を所望の形に蝕刻して、半導体素子を形成している。
Next, the polycrystalline silicon layer with high impurity concentration on top of the insulator is removed, followed by depositing electrode metal on the surface of the polycrystalline silicon with high impurity concentration and the surface of the insulator, and finally the electrode metal is etched into a desired shape to form a semiconductor element.

しかしながら、従来のシャロウジャンクション型の半導
体素子への電極金属の配線方法においては、高不純物濃
度の多結晶シリコン層が高濃度不純物領域の上面にしか
残っていないため、多結晶シリコンと絶縁体との間で大
きな段差ができ、配線金属がこの段部で断線をおこしや
すい。
However, in the conventional method for wiring electrode metal to a shallow junction type semiconductor element, the polycrystalline silicon layer with high impurity concentration remains only on the upper surface of the high concentration impurity region, so that the polycrystalline silicon layer and the insulator are There is a large step between the two, and the wiring metal is likely to break at this step.

従って、この発明の目的は段差が小さく、配線金属の断
線がおこりにくい、信頼性の高い半導体装置を精度よく
提供することにある。
Therefore, an object of the present invention is to accurately provide a highly reliable semiconductor device that has small steps and is less prone to disconnection of metal wiring.

この発明によれば、高い抵抗率を持つ半導体層、例えば
多結晶シリコン層の表面を選択的に酸化して、酸化珪素
層に変化させ、この酸化珪素層をマスクとして露出した
高抵抗率の多結晶シリコン領域に高濃度不純物を侵入さ
せて高抵抗率の多結晶シリコン領域を高不純物濃度の多
結晶シリコン層を形成することにより、最初に付着した
高抵抗率の多結晶シリコン層を全く除去しないので、段
差め小さいシャロウジャンクション型半導体素子への金
属配線が容易にできる。
According to this invention, the surface of a semiconductor layer having high resistivity, such as a polycrystalline silicon layer, is selectively oxidized to change it into a silicon oxide layer, and the exposed high resistivity polycrystalline silicon layer is used as a mask. By infiltrating high-concentration impurities into the crystalline silicon region and forming a high-resistivity polycrystalline silicon region into a highly impurity-concentrated polycrystalline silicon layer, the initially deposited high-resistivity polycrystalline silicon layer is not removed at all. Therefore, metal wiring to a shallow junction type semiconductor element with a small step difference can be easily made.

尚、以下の実施例では絶縁体及び単結晶半導体基板上の
半導体層は多結晶シリコン層として説明するが、単結晶
半導体基板上の半導体層は単結晶シリコン層でもよいこ
とは言うまでもない。
In the following embodiments, the semiconductor layer on the insulator and single crystal semiconductor substrate will be described as a polycrystalline silicon layer, but it goes without saying that the semiconductor layer on the single crystal semiconductor substrate may be a single crystal silicon layer.

次に、この発明の実施例につき図を用いて説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図A−Eを参照すると、本発明の第1の実施例を得
るための製造工程は、まず第1図Aに示すごとく、P型
シリコン単結晶層1の平坦な一生表面に、二酸化珪素膜
2を熱酸化成長し、これに選択的に開孔3が設けられる
Referring to FIGS. 1A to 1E, the manufacturing process for obtaining the first embodiment of the present invention is as shown in FIG. A silicon film 2 is grown by thermal oxidation, and openings 3 are selectively provided therein.

次に、第1図Bに示すごとく、二酸化珪素膜2の上面お
よび開孔3の上面に、高抵抗率の多結晶シリコン層4を
シラン(SiH4)の熱分解を用いて堆積する。
Next, as shown in FIG. 1B, a high resistivity polycrystalline silicon layer 4 is deposited on the upper surface of the silicon dioxide film 2 and the upper surface of the opening 3 using thermal decomposition of silane (SiH4).

多結晶シリコン層の抵抗率は104ないし10105Q
−で、厚さが0.5ないし1.0ミクロンである。
The resistivity of the polycrystalline silicon layer is 104 to 10105Q
- and has a thickness of 0.5 to 1.0 microns.

次に第1図Cに示すごとく、多結晶シリコン層4の上部
表面を酸化により酸化珪素層5に変化させる。
Next, as shown in FIG. 1C, the upper surface of polycrystalline silicon layer 4 is transformed into silicon oxide layer 5 by oxidation.

次に、第1図りに示すごとく、酸化珪素層5の上面をフ
ォトレジスト6で覆い、開孔3の上部に堆積した多結晶
シリコン層の上部のフォトレジストと酸化珪素層を除去
し、開孔8を設ける。
Next, as shown in the first diagram, the upper surface of the silicon oxide layer 5 is covered with a photoresist 6, the photoresist and the silicon oxide layer on the upper part of the polycrystalline silicon layer deposited on the upper part of the opening 3 are removed, and the upper surface of the silicon oxide layer 5 is removed. 8 will be provided.

続いて、酸化珪素層5とフォトレジスト6をマスクとし
て、N型不純物である燐または砒素の高濃度イオン7を
打ち込み、開孔8直下の多結晶シリコン層をN型高不純
物濃度の多結晶シリコン領域9に変える。
Next, using the silicon oxide layer 5 and the photoresist 6 as a mask, ions 7 of high concentration of phosphorus or arsenic, which are N-type impurities, are implanted to transform the polycrystalline silicon layer directly under the opening 8 into polycrystalline silicon with a high concentration of N-type impurities. Change to area 9.

このイオン打ち込みは、たとえば31P+イオンを5X
] 016am−2,150KeVで打ち込む。
In this ion implantation, for example, 31P+ ions are
] 016 am-2, implanted at 150 KeV.

次に1000℃で10分ないし20分上記N型高濃度不
純物をP型巣結晶領域1へ拡散し、N型の高濃度不純物
領域10を形成する。
Next, the N-type high concentration impurity is diffused into the P-type nested crystal region 1 at 1000° C. for 10 to 20 minutes to form an N-type high concentration impurity region 10.

このN型高濃度不純物領域10の接合深さは0.1ない
し0.3μとなる。
The junction depth of this N-type high concentration impurity region 10 is 0.1 to 0.3 μ.

最後に第1図Eに示すごとく、フォトレジスト6を除去
し、酸化珪素層5の上面と、高不純物濃度多結晶シリコ
ン領域9の上面にアルミニウムなどの金属を被着し、所
望の形にエツチングして接合深さの浅い高濃度不純物領
域10に対する金属電極配線11が得られる。
Finally, as shown in FIG. 1E, the photoresist 6 is removed, and a metal such as aluminum is deposited on the top surface of the silicon oxide layer 5 and the top surface of the highly impurity concentration polycrystalline silicon region 9, and then etched into a desired shape. As a result, a metal electrode wiring 11 for the high concentration impurity region 10 with a shallow junction depth is obtained.

次に第2図を参照すると、この発明の第2の実施例を得
るための製造工程は、まず第2図に示すごとく、P型シ
リコン単結晶層21の平坦な一生表面に二酸化珪素膜2
2を熱酸化成長し、これに選択的に開孔23を設け、こ
の開孔を通して、N型不純物である燐または砒素を含ん
だ不純物濃度が1020個cIrL−3程度で、拡散深
さが0.1ないし0.3μの高濃度N型不純物領域24
を形成する。
Next, referring to FIG. 2, the manufacturing process for obtaining the second embodiment of the present invention is as shown in FIG.
2 is grown by thermal oxidation, and an opening 23 is selectively formed in this, and through this opening, an impurity concentration of 1020 particles containing phosphorus or arsenic, which is an N-type impurity, is about cIrL-3 and a diffusion depth of 0. .1 to 0.3μ high concentration N type impurity region 24
form.

次に第1の実施例の第1図Bと第1図Cと第1図りと第
1図Eで詳述したのと同じ順序で、同じ方法で、第1図
Eに示したシャロウジャンクションを有する半導体素子
への金属配線が第2の実施例でも得られる。
Next, in the same order and in the same manner as detailed in FIGS. 1B, 1C, 1D and 1E of the first embodiment, the shallow junction shown in FIG. 1E is constructed. A metal wiring to a semiconductor element having the same structure can also be obtained in the second embodiment.

第3図はシャロウジャンクションを有する半導体素子へ
の金属電極形成および配線の従来の方法である。
FIG. 3 shows a conventional method for forming metal electrodes and wiring in a semiconductor element having a shallow junction.

この構造では、多結晶シリコン層32と二酸化珪素層3
1の間に大きな段差ができている。
In this structure, a polycrystalline silicon layer 32 and a silicon dioxide layer 3
There is a large gap between 1.

したがって電極金属33を形成および配線すると多結晶
シリコン層32と二酸化珪素層31の近傍の電極金属部
分34,35は断線をおこしやすい。
Therefore, when the electrode metal 33 is formed and wired, the electrode metal portions 34 and 35 near the polycrystalline silicon layer 32 and the silicon dioxide layer 31 are likely to be disconnected.

本発明の実施例の金属配線方法によれば、酸化珪素層5
と多結晶シリコン層9の境界では段差が 。
According to the metal wiring method of the embodiment of the present invention, the silicon oxide layer 5
There is a step at the boundary between the polycrystalline silicon layer 9 and the polycrystalline silicon layer 9.

ないので、電極金属11は断線をおこさない。Therefore, the electrode metal 11 does not break.

よって、この電極金属の形成および配線法を用いるとシ
ャロウジャンクション型の半導体素子が信頼性よく得ら
れる。
Therefore, by using this electrode metal formation and wiring method, a shallow junction type semiconductor element can be obtained with high reliability.

また、実施例においては、高濃度N型多結晶シリコン層
9をイオン打ち込み法で形成し、高濃度N型領域10を
拡散法を用いて形成したが、多結晶シリコン内での不純
物の拡散係数が大きいので、領域9,10はN型不純物
である燐または砒素を900℃ないし1000℃で多結
晶シリコン層とP型巣結晶層1へと拡散することにより
拡散法のみでも形成できる。
In addition, in the example, the highly doped N-type polycrystalline silicon layer 9 was formed by the ion implantation method, and the highly doped N-type region 10 was formed by the diffusion method, but the diffusion coefficient of impurities in the polycrystalline silicon Since this is large, regions 9 and 10 can be formed only by a diffusion method by diffusing phosphorus or arsenic, which are N-type impurities, into the polycrystalline silicon layer and P-type nested crystal layer 1 at 900° C. to 1000° C.

更に、実施例においては、P型シリコン単結晶層を用い
て説明したが、導電型は必要に応じて変更できることは
言うまでもないことである。
Furthermore, although the embodiment has been described using a P-type silicon single crystal layer, it goes without saying that the conductivity type can be changed as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Eは本発明の第1の実施例を製造工程に従っ
て示した断面図、第2図は第2の実施例の製造工程の一
部を示した断面図、第3図はシャロウジャンクションを
有する半導体素子への金属電極の形成および配線法の従
来の方法を示した断面図である。 なお図において、1:P型シリコン単結晶層、2:二酸
化珪素層、4:高抵抗率の多結晶シリコン層、5:酸化
珪素層、9:高濃度不純物を含んだ多結晶シリコン領域
、10:高濃度不純物領域、11:金属電極および配線
、21:P型シリコン単結晶層、22゜31:二酸化珪
素層、24:高濃度不純物領域、32:高濃度不純物を
含んだ多結晶シリコン領域、33:金属電極および配線
FIG. 1 A-E is a sectional view showing the first embodiment of the present invention according to the manufacturing process, FIG. 2 is a sectional view showing a part of the manufacturing process of the second embodiment, and FIG. 3 is a shallow 1 is a cross-sectional view showing a conventional method for forming and wiring metal electrodes on a semiconductor element having a junction. In the figure, 1: P-type silicon single crystal layer, 2: silicon dioxide layer, 4: high resistivity polycrystalline silicon layer, 5: silicon oxide layer, 9: polycrystalline silicon region containing high concentration impurity, 10 : High concentration impurity region, 11: Metal electrode and wiring, 21: P-type silicon single crystal layer, 22°31: Silicon dioxide layer, 24: High concentration impurity region, 32: Polycrystalline silicon region containing high concentration impurity, 33: Metal electrode and wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の主面上に設けられた第1と絶
縁層と、該第1の絶縁層に設けられた該主面に達する開
口と、該開口内の該主面上に設けられた逆導電型の不純
物を含む第1の半導体層と、該第1の半導体層下の該半
導体基板に設けられた逆導電型の領域と、該第1の絶縁
層上に設けられ、該第1の半導体層より高い抵抗率を有
する前記第1の半導体層と前記開口周辺において隣接し
た第2の半導体層と、該第2の半導体層上に設けられた
第2の絶縁層と、該第1の半導体層上と前記開口上にお
いて接続され、該第2の絶縁層上を延在する電極とを含
むことを特徴とする半導体素子。
1 A first insulating layer provided on the main surface of a semiconductor substrate of one conductivity type, an opening provided in the first insulating layer reaching the main surface, and a first insulating layer provided on the main surface within the opening. a first semiconductor layer containing impurities of opposite conductivity type; a region of opposite conductivity type provided on the semiconductor substrate under the first semiconductor layer; the first semiconductor layer having a resistivity higher than that of the first semiconductor layer; a second semiconductor layer adjacent to the first semiconductor layer around the opening; a second insulating layer provided on the second semiconductor layer; What is claimed is: 1. A semiconductor device comprising: an electrode connected on one semiconductor layer and on the opening, and extending on the second insulating layer.
JP47084460A 1972-08-25 1972-08-25 Hand-crafted construction work Expired JPS5818784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP47084460A JPS5818784B2 (en) 1972-08-25 1972-08-25 Hand-crafted construction work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47084460A JPS5818784B2 (en) 1972-08-25 1972-08-25 Hand-crafted construction work

Publications (2)

Publication Number Publication Date
JPS4940860A JPS4940860A (en) 1974-04-17
JPS5818784B2 true JPS5818784B2 (en) 1983-04-14

Family

ID=13831223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47084460A Expired JPS5818784B2 (en) 1972-08-25 1972-08-25 Hand-crafted construction work

Country Status (1)

Country Link
JP (1) JPS5818784B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116675A (en) * 1975-04-05 1976-10-14 Fujitsu Ltd Manufacturing method for a semiconductor device
JPS55165406U (en) * 1979-05-16 1980-11-28
JPS55157240A (en) * 1979-05-25 1980-12-06 Nec Corp Semiconductor device
JPS57172762A (en) * 1981-04-16 1982-10-23 Matsushita Electronics Corp Semiconductor device and manufacture thereof
JPS5825729U (en) * 1981-08-14 1983-02-18 トヨタ自動車株式会社 Automotive fuel tank filtration device
US4810820A (en) * 1987-08-12 1989-03-07 Mobay Corporation Process for the production of polyisocyanates containing allophanate groups

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843584A (en) * 1971-10-05 1973-06-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843584A (en) * 1971-10-05 1973-06-23

Also Published As

Publication number Publication date
JPS4940860A (en) 1974-04-17

Similar Documents

Publication Publication Date Title
EP0083816B1 (en) Semiconductor device having an interconnection pattern
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JPH0812865B2 (en) Bipolar transistor and manufacturing method thereof
JPH025432A (en) Semiconductor device and its manufacture
JPS5818784B2 (en) Hand-crafted construction work
JP3923620B2 (en) Manufacturing method of semiconductor substrate
JPH0239091B2 (en)
JPS6220711B2 (en)
JP2659190B2 (en) Method for manufacturing semiconductor device
JP2654056B2 (en) Method for manufacturing semiconductor device
JP3070392B2 (en) Semiconductor device
JP2621607B2 (en) Method for manufacturing semiconductor device
JPH0554263B2 (en)
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS62120040A (en) Manufacture of semiconductor device
JPS6158981B2 (en)
JPH0338742B2 (en)
JP2697221B2 (en) Semiconductor device
JP2556155B2 (en) Method for manufacturing semiconductor device
JPS6159871A (en) Manufacture of semiconductor device
JPH0669044B2 (en) Method for manufacturing semiconductor device
JPS5919374A (en) Manufacture of semiconductor device
JPH02246223A (en) Manufacture of semiconductor device
JPS61184872A (en) Manufacture of semiconductor device
JPH0582071B2 (en)