JP2659190B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2659190B2
JP2659190B2 JP13725287A JP13725287A JP2659190B2 JP 2659190 B2 JP2659190 B2 JP 2659190B2 JP 13725287 A JP13725287 A JP 13725287A JP 13725287 A JP13725287 A JP 13725287A JP 2659190 B2 JP2659190 B2 JP 2659190B2
Authority
JP
Japan
Prior art keywords
diffusion region
concentration
insulating film
gate electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13725287A
Other languages
Japanese (ja)
Other versions
JPS63300564A (en
Inventor
秀幸 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13725287A priority Critical patent/JP2659190B2/en
Publication of JPS63300564A publication Critical patent/JPS63300564A/en
Application granted granted Critical
Publication of JP2659190B2 publication Critical patent/JP2659190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関する。The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

近年、半導体装置の高集積化につれ、該半導体装置を
構成する絶縁ゲート型電界効果トランジスタは、微細化
により内部電界強度が増大し、これによるホットキャリ
ア効果と呼ばれる一連の現象が、当該装置の信頼性上問
題となっている。
2. Description of the Related Art In recent years, as semiconductor devices have become more highly integrated, the insulated gate field-effect transistor that constitutes the semiconductor device has an increased internal electric field strength due to miniaturization. It is a sexual problem.

このような問題に対処する一方法として、ドレイン領
域近傍における電界強度を緩和することが考えられ、例
えばLDD(Lightly Doped Drain)構造が提案されてい
る。
One way to address such a problem is to alleviate the electric field strength near the drain region. For example, an LDD (Lightly Doped Drain) structure has been proposed.

第2図は従来の半導体装置の一例を説明するための半
導体チップの断面図である。
FIG. 2 is a sectional view of a semiconductor chip for explaining an example of a conventional semiconductor device.

第2図に示すように、P型シリコン基板1の主表面に
素子形成領域を区画して設けられたフィールド絶縁膜2
と、前記素子形成領域の表面に選択的に設けられたゲー
ト絶縁膜3と、ゲート絶縁膜3の上に選択的に設けられ
たゲート電極6と、ゲート電極6およびフィールド絶縁
膜2をマスクとして低濃度不純物をイオン注入して前記
素子形成領域に設けられたN-型拡散領域7と、ゲート電
極6の側壁に設けられたシリコン酸化膜8と、ゲート電
極6とシリコン酸化膜8とフィールド絶縁膜2とをマス
クとして前記素子形成領域に高濃度不純物を導入し、且
つN-型拡散領域7と接続されて設けられたN+型拡散領域
10と、ゲート電極6を含む表面に堆積され且つN+型拡散
領域10の上にコンタクト用窓を有するリンを含むシリコ
ン酸化膜(以後PSG膜と記す)11と、前記コンタクト用
窓のN+型拡散領域10とコンタクトしPSG膜11上に延在す
る電極配線12とを含んで半導体装置が構成される。
As shown in FIG. 2, a field insulating film 2 provided on a main surface of a P-type silicon substrate 1 to partition an element formation region.
A gate insulating film 3 selectively provided on the surface of the element formation region; a gate electrode 6 selectively provided on the gate insulating film 3; and a mask using the gate electrode 6 and the field insulating film 2 as masks. An N -type diffusion region 7 provided in the element formation region by ion implantation of a low concentration impurity, a silicon oxide film 8 provided on a side wall of the gate electrode 6, An N + -type diffusion region provided by introducing a high-concentration impurity into the element formation region using the film 2 as a mask and being connected to the N -type diffusion region 7.
10, a silicon oxide film (hereinafter referred to as PSG film) 11 containing phosphorus having a contact window on the surface of the deposited and N + -type diffusion region 10 including the gate electrode 6, the contact window N + A semiconductor device is configured to include the electrode diffusion region 12 in contact with the mold diffusion region 10 and extending on the PSG film 11.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の半導体装置は、低濃度拡散領域が素子
形成領域表面の浅い領域にしか存在しないため、この低
濃度拡散領域よりも深い領域における高濃度拡散領域端
では、電界緩和の効果がなく、ホットキャリア効果によ
る特性劣化を抑止できないという問題がある。
In the above-described conventional semiconductor device, since the low concentration diffusion region exists only in the shallow region on the surface of the element forming region, there is no electric field relaxation effect at the end of the high concentration diffusion region in a region deeper than the low concentration diffusion region. There is a problem that characteristic deterioration due to the hot carrier effect cannot be suppressed.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の半導体装置の製造方法は、一導電型半導体基
板の主表面に素子分離用のフィールド絶縁膜を選択的に
設けて素子形成領域を区画し該素子形成領域の表面にゲ
ート絶縁膜を形成する工程と、前記ゲート絶縁膜を含む
表面に多結晶シリコン層を堆積し選択的にエッチングし
てゲート電極を形成する工程と、前記ゲート電極および
前記フィールド絶縁膜をマスクとして第1の濃度の逆導
電型不純物をイオン注入し前記素子形成領域表面に逆導
電型の第1の低濃度拡散領域を形成する工程と、前記ゲ
ート電極を含む表面にシリコン酸化膜を堆積し異方性エ
ッチング法によりエッチバックして前記ゲート電極の側
面にのみ前記シリコン酸化膜を残して側壁スペーサを形
成する工程と、前記ゲート電極と前記側壁スペーサおよ
び前記フィールド絶縁膜をマスクとして前記第1の濃度
よりも高濃度の逆導電型不純物をイオン注入して前記素
子形成領域表面に前記第1の低濃度拡散領域と接続し且
つ前記第1の低濃度拡散領域より深い逆導電型の第2の
低濃度拡散領域を形成する工程と、前記マスクを再度用
いて前記第2の低濃度拡散領域内に前記第2の濃度より
も高濃度の第3の濃度の逆導電型不純物をイオン注入し
て高濃度拡散領域を形成する工程とを含んで構成され
る。
According to the method of manufacturing a semiconductor device of the present invention, a field insulating film for element isolation is selectively provided on a main surface of a semiconductor substrate of one conductivity type to divide an element forming region and a gate insulating film is formed on a surface of the element forming region. Forming a gate electrode by depositing and selectively etching a polycrystalline silicon layer on the surface including the gate insulating film; and inverting the first concentration using the gate electrode and the field insulating film as a mask. Forming a first low-concentration diffusion region of the opposite conductivity type on the surface of the element formation region by ion-implanting a conductivity type impurity; and depositing a silicon oxide film on the surface including the gate electrode and etching by an anisotropic etching method. Backing to form a sidewall spacer leaving the silicon oxide film only on the side surface of the gate electrode; and forming the gate electrode, the sidewall spacer and the field isolation. Using a film as a mask, an impurity of a reverse conductivity type having a higher concentration than the first concentration is ion-implanted and connected to the first low-concentration diffusion region on the surface of the element formation region. Forming a second low-concentration diffusion region of a deep reverse conductivity type; Forming a high concentration diffusion region by ion-implanting a conductive impurity.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(g)は本発明の一実施例を説明する
ための工程順に示した半導体チップの断面図である。
1 (a) to 1 (g) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板
1の主表面に素子分離用のフィールド絶縁膜2を選択的
に設けて素子形成領域を区画し、該素子形成領域の表面
に熱酸化法によりゲート絶縁膜3を形成する。次に、ゲ
ート絶縁膜3を含む表面に多結晶シリコン層4を堆積
し、前記素子形成領域上の多結晶シリコン層4の上にゲ
ート電極形成用パターンを有するホトレジスト膜5を選
択的に設ける。
First, as shown in FIG. 1A, a field insulating film 2 for element isolation is selectively provided on a main surface of a P-type silicon substrate 1 to divide an element formation region. The gate insulating film 3 is formed by a thermal oxidation method. Next, a polycrystalline silicon layer 4 is deposited on the surface including the gate insulating film 3, and a photoresist film 5 having a pattern for forming a gate electrode is selectively provided on the polycrystalline silicon layer 4 on the element formation region.

次に、第1図(b)に示すように、ホトレジスト膜5
をマスクとして多結晶シリコン層4を反応性イオンエッ
チングで除去してゲート電極6を形成し、ホトレジスト
膜5を除去する。次に、ゲート電極6とフィールド絶縁
膜2をマスクとしてヒ素を加速エネルギー50keV、ドー
ズ量5×1013cm-2でイオン注入し前記素子形成領域表面
にN-型拡散領域7を形成する。
Next, as shown in FIG.
Is used as a mask to remove the polycrystalline silicon layer 4 by reactive ion etching to form a gate electrode 6 and remove the photoresist film 5. Next, using the gate electrode 6 and the field insulating film 2 as a mask, arsenic is ion-implanted at an acceleration energy of 50 keV and a dose of 5 × 10 13 cm −2 to form an N type diffusion region 7 on the surface of the element formation region.

次に、第1図(c)に示すように、ゲート電極6を含
む表面に気相成長法により膜厚約0.3μmのシリコン酸
化膜8を形成する。
Next, as shown in FIG. 1C, a silicon oxide film 8 having a thickness of about 0.3 μm is formed on the surface including the gate electrode 6 by a vapor phase growth method.

次に、第1図(d)に示すように、異方性エッチング
によりゲート電極6の側壁にのみシリコン酸化膜8を残
して側壁スペーサを形成し、他の領域のシリコン酸化膜
8を除去する。次に、ゲート電極6と側壁スペーサであ
るシリコン酸化膜8とフィールド絶縁膜2とをマスクと
してリンを加速エネルギー70keV、ドーズ量1×1014cm
-2でイオン注入し、前記素子形成領域表面にN-型拡散領
域7と接続し且つN-型拡散領域7より深い接合面を有す
るN-型拡散領域9を形成する。
Next, as shown in FIG. 1 (d), sidewall spacers are formed by anisotropic etching while leaving the silicon oxide film 8 only on the sidewalls of the gate electrode 6, and the silicon oxide film 8 in other regions is removed. . Next, using the gate electrode 6, the silicon oxide film 8 as a side wall spacer, and the field insulating film 2 as a mask, phosphorus is accelerated at an energy of 70 keV and a dose of 1 × 10 14 cm.
By ion implantation at −2 , an N -type diffusion region 9 connected to the N -type diffusion region 7 and having a junction surface deeper than the N -type diffusion region 7 is formed on the surface of the element formation region.

次に、第1図(e)に示すように同様にして、ゲート
電極6とシリコン酸化膜8とフィールド絶縁膜2とを再
度マスクとして用いヒ素を加速エネルギー50keV、ドー
ズ量3×1015cm-2でイオン注入し、N-型拡散領域9の内
側に浅いN+型拡散領域10を形成する。
Next, as shown in FIG. 1E, the gate electrode 6, the silicon oxide film 8, and the field insulating film 2 are again used as a mask, and arsenic is used at an acceleration energy of 50 keV and a dose of 3 × 10 15 cm − 2 is implanted to form a shallow N + type diffusion region 10 inside the N type diffusion region 9.

次に、第1図(f)に示すように、ゲート電極6を含
む表面にPSG膜11を堆積し層間絶縁膜を形成する。
Next, as shown in FIG. 1 (f), a PSG film 11 is deposited on the surface including the gate electrode 6 to form an interlayer insulating film.

次に、第1図(g)に示すように、N+型拡散領域10の
上のPSG膜11にコンタクト用窓を選択的に設け、該コン
タクト窓を含む表面にアルミニウム層を堆積し、選択的
にエッチングして前記コンタクト用窓のN+型拡散領域10
とコンタクトしPSG膜11上に延在する電極配線12を形成
する。
Next, as shown in FIG. 1 (g), a contact window is selectively provided in the PSG film 11 on the N + type diffusion region 10, and an aluminum layer is deposited on the surface including the contact window. N + type diffusion region 10 of the contact window
And an electrode wiring 12 extending on the PSG film 11 is formed.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ゲート電極とフィール
ド絶縁膜とをマスクとして自己整合的に素子形成領域表
面に第1の低濃度拡散領域を形成した後、ゲート電極の
側壁にのみ被覆する絶縁膜を形成し、この絶縁膜とゲー
ト電極とフィールド絶縁膜とをマスクとして自己整合的
に素子形成領域表面に第1の濃度の不純物をイオン注入
した第1の低濃度拡散領域と接続する第2の濃度の不純
物をイオン注入した第2の低濃度拡散領域と、この第2
の低濃度拡散領域内に第3の濃度の不純物をイオン注入
した浅い高濃度拡散領域を形成することにより、拡散領
域の電界強度を緩和させ、ホットキャリア効果によるデ
バイス特性の劣化を抑制できるという効果を有する。
As described above, according to the present invention, an insulating film is formed by forming a first low-concentration diffusion region on the surface of an element forming region in a self-aligned manner using a gate electrode and a field insulating film as a mask, and then covering only the side wall of the gate electrode. And a second low-concentration diffusion region in which a first-concentration impurity is ion-implanted into the surface of the element formation region in a self-aligned manner using the insulating film, the gate electrode, and the field insulating film as a mask. A second low-concentration diffusion region into which impurities having a high concentration are ion-implanted;
By forming a shallow high-concentration diffusion region in which a third concentration impurity is ion-implanted in the low-concentration diffusion region, the electric field intensity of the diffusion region can be reduced, and the deterioration of device characteristics due to the hot carrier effect can be suppressed. Having.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(g)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は従
来の半導体装置の一例を説明するための半導体チップの
断面図である。 1……P型シリコン基板、2……フィールド絶縁膜、3
……ゲート絶縁膜、4……多結晶シリコン層、5……ホ
トレジスト膜、6……ゲート電極、7……N-型拡散領
域、8……シリコン酸化膜、9……N-型拡散領域、10…
…N+型拡散領域、11……PSG膜、12……電極配線。
1A to 1G are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a sectional view of a semiconductor chip for explaining an example of a conventional semiconductor device. It is sectional drawing. 1 ... P-type silicon substrate, 2 ... Field insulating film, 3
... Gate insulating film, 4 polycrystalline silicon layer, 5 photoresist film, 6 gate electrode, 7 N - type diffusion region, 8 silicon oxide film, 9 N - type diffusion region ,Ten…
... N + type diffusion region, 11 ... PSG film, 12 ... Electrode wiring.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型半導体基板の主表面に素子分離用
のフィールド絶縁膜を選択的に設けて素子形成領域を区
画し該素子形成領域の表面にゲート絶縁膜を形成する工
程と、前記ゲート絶縁膜を含む表面に多結晶シリコン層
を堆積し選択的にエッチングしてゲート電極を形成する
工程と、前記ゲート電極および前記フィールド絶縁膜を
マスクとして第1の濃度の逆導電型不純物をイオン注入
し前記素子形成領域表面に逆導電型の第1の低濃度拡散
領域を形成する工程と、前記ゲート電極を含む表面にシ
リコン酸化膜を堆積し異方性エッチング法によりエッチ
バックして前記ゲート電極の側面にのみ前記シリコン酸
化膜を残して側壁スペーサを形成する工程と、前記ゲー
ト電極と前記側壁スペーサおよび前記フィールド絶縁膜
をマスクとして前記第1の濃度よりも高濃度の逆導電型
不純物をイオン注入して前記素子形成領域表面に前記第
1の低濃度拡散領域と接続し且つ前記第1の低濃度拡散
領域より深い逆導電型の第2の低濃度拡散領域を形成す
る工程と、前記マスクを再度用いて前記第2の低濃度拡
散領域内に前記第2の濃度よりも高濃度の第3の濃度の
逆導電型不純物をイオン注入して高濃度拡散領域を形成
する工程とを含むことを特徴とする半導体装置の製造方
法。
A step of selectively providing a field insulating film for element isolation on a main surface of a semiconductor substrate of one conductivity type to divide an element forming region, and forming a gate insulating film on a surface of the element forming region; Depositing a polycrystalline silicon layer on the surface including the gate insulating film and selectively etching to form a gate electrode; and ion-implanting a first concentration of a reverse conductivity type impurity using the gate electrode and the field insulating film as a mask. Implanting to form a first low-concentration diffusion region of the opposite conductivity type on the surface of the element forming region; and depositing a silicon oxide film on the surface including the gate electrode and etching back by anisotropic etching to form the gate. Forming a sidewall spacer while leaving the silicon oxide film only on the side surface of the electrode; and forming a sidewall spacer using the gate electrode, the sidewall spacer, and the field insulating film as a mask. An impurity of a reverse conductivity type having a higher concentration than the first concentration is ion-implanted and connected to the first low concentration diffusion region on the surface of the element forming region and deeper than the first low concentration diffusion region. Forming a second low-concentration diffusion region, and ion-transferring a third concentration of a reverse-conductivity-type impurity having a higher concentration than the second concentration into the second low-concentration diffusion region by using the mask again. Implanting to form a high concentration diffusion region.
JP13725287A 1987-05-29 1987-05-29 Method for manufacturing semiconductor device Expired - Lifetime JP2659190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13725287A JP2659190B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13725287A JP2659190B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63300564A JPS63300564A (en) 1988-12-07
JP2659190B2 true JP2659190B2 (en) 1997-09-30

Family

ID=15194316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13725287A Expired - Lifetime JP2659190B2 (en) 1987-05-29 1987-05-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2659190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222433A (en) * 1990-01-29 1991-10-01 Matsushita Electron Corp Manufacture of mos transistor
JP2632101B2 (en) * 1990-11-05 1997-07-23 三菱電機株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS63300564A (en) 1988-12-07

Similar Documents

Publication Publication Date Title
US4350536A (en) Method of producing dynamic random-access memory cells
JPH0923010A (en) Semiconductor element and its preparation
KR970011641B1 (en) Semiconductor device and method of manufacturing the same
JP2002314065A (en) Mos semiconductor device and its manufacturing method
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2659190B2 (en) Method for manufacturing semiconductor device
JP2931243B2 (en) Method for manufacturing semiconductor device
JP3088547B2 (en) Method for manufacturing semiconductor device
JP2741042B2 (en) Semiconductor device and manufacturing method thereof
JPH0491481A (en) Mis field effect transistor
JPH0485968A (en) Mos semiconductor device and manufacture thereof
JP2658027B2 (en) Method for manufacturing semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPS6315748B2 (en)
JPH02219237A (en) Mis type semiconductor device
JP3124283B2 (en) Method for manufacturing semiconductor device
JP2674568B2 (en) Method for manufacturing semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH0864820A (en) Semiconductor device and method of fabrication thereof
JP2573303B2 (en) Method for manufacturing semiconductor device
JPS60119781A (en) Manufacture of semiconductor device
JPH05291569A (en) Insulation gate type fet and its manufacture
JPS6396960A (en) Manufacture of mos type semiconductor device
JPS63124574A (en) Semiconductor device and manufacture thereof
JPH0458562A (en) Mas transistor and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term