JPH0574791A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0574791A
JPH0574791A JP23420291A JP23420291A JPH0574791A JP H0574791 A JPH0574791 A JP H0574791A JP 23420291 A JP23420291 A JP 23420291A JP 23420291 A JP23420291 A JP 23420291A JP H0574791 A JPH0574791 A JP H0574791A
Authority
JP
Japan
Prior art keywords
type
layer
buried layer
type buried
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23420291A
Other languages
Japanese (ja)
Inventor
Hisashi Tajima
久之 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP23420291A priority Critical patent/JPH0574791A/en
Publication of JPH0574791A publication Critical patent/JPH0574791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable a semiconductor of this design to be enhanced in breakdown strength by a method wherein an N-type epitaxial layer low enough in impurity concentration is located inside a groove formed on an N<+>-type buried layer surrounding the side face of a P<+>-type buried layer. CONSTITUTION:Phosphorus ions are implanted into a P-type silicon substrate 1 to form an N<+>-type buried layer 2. P<+>-type buried layers 3 and 3a are formed the same as above. Then, an etching process is carried out surrounding the buried layer 3 to isolate the side face. In succession, an N-type epitaxial layer 4 is made to grow, and boron ions are implanted into the N-type epitaxial layer 4 through its surface to form a P<->-type collector. As mentioned above, boron ions are implanted to form a P<+>-type collector leading-out layer 6 and a P<+>-type insulating isolation layer 6a at the same time. By this setup, a depletion layer is made to extend from the P<+>-type buried layer to the N-type epitaxial layer, so that a semiconductor device of this design can be enhanced in breakdown strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
三重拡散型PNPトランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a triple diffusion type PNP transistor.

【0002】[0002]

【従来の技術】従来の半導体集積回路用三重拡散型PN
Pトランジスタ(以下T−PNPと記す)について図2
を参照して工程順に説明するはじめにP型シリコン基板
1にN+ 型埋込層2を形成し、P+ 型埋込層3,3aを
形成したのち、全面にN型エピタキシャル層4を成長さ
せる。
2. Description of the Related Art Conventional triple diffusion type PN for semiconductor integrated circuits
P-transistor (hereinafter referred to as T-PNP) FIG.
First, an N + type buried layer 2 is formed on a P type silicon substrate 1, P + type buried layers 3 and 3a are formed, and then an N type epitaxial layer 4 is grown on the entire surface. ..

【0003】つぎにN型エピタキシャル層4表面からP
型絶縁分離層6aを形成して素子領域毎に絶縁分離す
る。このとき同時にP+ 型コレクタ引出層6を形成す
る。
Next, from the surface of the N type epitaxial layer 4 to P
A type insulation separation layer 6a is formed to perform insulation separation for each element region. At this time, the P + -type collector extraction layer 6 is formed at the same time.

【0004】つぎにP+ 型コレクタ引出層6に接するよ
うに、P- 型コレクタ5を形成し、P- 型コレクタ5表
面からN型ベース7を形成する。このとき同時にN+
バイアスコンタクト7aを形成する。
Next, a P type collector 5 is formed so as to contact the P + type collector extraction layer 6, and an N type base 7 is formed from the surface of the P type collector 5. At this time, the N + type bias contact 7a is simultaneously formed.

【0005】つぎにN型ベース7表面からP+ 型エミッ
タ8を形成する。つぎに全面に酸化シリコン膜9を成長
させたのち、ベース7、エミッタ8、コレクタ引出層
6、バイアスコンタクト7aのそれぞれにコンタクトを
開口する。つぎにアルミからなるコレクタ電極12、ベ
ース電極11、エミッタ電極10、バイアス電極13を
形成して三重拡散型PNPトランジスタ(T−PNP)
の素子部が完成する。
Next, a P + type emitter 8 is formed from the surface of the N type base 7. Next, after a silicon oxide film 9 is grown on the entire surface, contacts are opened in each of the base 7, the emitter 8, the collector extraction layer 6, and the bias contact 7a. Next, a collector electrode 12, a base electrode 11, an emitter electrode 10 and a bias electrode 13 made of aluminum are formed to form a triple diffusion PNP transistor (T-PNP).
The element part of is completed.

【0006】[0006]

【発明が解決しようとする課題】図2において半導体集
積回路用のT−PNPのN型エピタキシャル層4は、寄
生素子などによる洩れ電流を防止するため、VCCなど各
回路の最高電位によってバイアスし、コレクタ引出層6
とN型エピタキシャル層4とが常に逆バイアスになるよ
う設定される。
In FIG. 2, the N-type epitaxial layer 4 of the T-PNP for a semiconductor integrated circuit is biased by the maximum potential of each circuit such as V CC in order to prevent leakage current due to parasitic elements. , Collector extraction layer 6
And the N-type epitaxial layer 4 are always set to be reverse biased.

【0007】しかしT−PNPのN+ 型埋込層2とP+
型埋込層3との接合の底面のプロファイルは低濃度で緩
やかであるが、側面のプロファイルは特にN型エピタキ
シャル層4とP型シリコン基板1との境界近傍で高濃度
で急峻になっている。そのため埋込層2,3の側面で空
乏層が伸びなくて、耐圧が低下するので高耐圧化への対
応が困難であった。
However, the T + PNP N + type buried layer 2 and P +
The profile of the bottom surface of the junction with the mold burying layer 3 is gentle at low concentration, but the profile of the side surface is steep at high concentration especially near the boundary between the N-type epitaxial layer 4 and the P-type silicon substrate 1. .. Therefore, the depletion layer does not extend on the side surfaces of the buried layers 2 and 3, and the breakdown voltage is lowered, so that it is difficult to cope with the high breakdown voltage.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置は、
一導電型半導体基板の一主面に選択的に逆導電型埋込層
が形成され、前記逆導電型埋込層に選択的に一導電型埋
込層が形成され、前記一導電型埋込層側面を囲んで前記
逆導電型埋込層に前記一導電型埋込層よりも低濃度で逆
導電型の半導体層が形成されたものである。
The semiconductor device of the present invention comprises:
A reverse conductivity type buried layer is selectively formed on one main surface of the one conductivity type semiconductor substrate, and a one conductivity type buried layer is selectively formed on the reverse conductivity type buried layer. A semiconductor layer of the opposite conductivity type is formed in the buried layer of the opposite conductivity type so as to surround the side surface of the layer and have a lower concentration than that of the buried layer of the one conductivity type.

【0009】[0009]

【実施例】本発明の一実施例について、図1(a)〜
(c)を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to (c).

【0010】この三重拡散型PNPトランジスタはつぎ
のようにして製造される。
This triple diffused PNP transistor is manufactured as follows.

【0011】はじめに図1(a)に示すように、P型シ
リコン基板1に例えば燐(31+ )をイオン注入してN
+ 型埋込層2を形成する。同様にしてP+ 型埋込層3,
3aを形成する。つぎにP+ 型埋込層3を囲むようにエ
ッチングして側面を分離する。
First, as shown in FIG. 1A, a P-type silicon substrate 1 is ion-implanted with phosphorus ( 31 P + ), for example, and N
A + type buried layer 2 is formed. Similarly, the P + type buried layer 3,
3a is formed. Then, the side surface is separated by etching so as to surround the P + type buried layer 3.

【0012】つぎに図1(b)に示すように、N型エピ
タキシャル層4を成長させたのち、N型エピタキシャル
層4表面からボロン(11+)をイオン注入してP-
コレクタ5を形成する。同様にボロンをイオン注入して
+ 型コレクタ引出層6およびP+ 型絶縁分離層6aを
同時に形成する。
Next, as shown in FIG. 1B, after growing the N type epitaxial layer 4, boron ( 11 B + ) ions are implanted from the surface of the N type epitaxial layer 4 to form the P type collector 5. Form. Similarly, boron is ion-implanted to simultaneously form the P + -type collector extraction layer 6 and the P + -type insulating separation layer 6a.

【0013】このときP- 型コレクタ5はP+ 型埋込層
3に接続し、同様にP+ 型コレクタ引出層6はP- 型コ
レクタ5およびP+ 型コレクタ引出層6と接続してい
る。またP+ 型絶縁分離層6aはP+ 型埋込層3aと接
続している。
At this time, the P type collector 5 is connected to the P + type buried layer 3, and similarly the P + type collector extraction layer 6 is connected to the P type collector 5 and the P + type collector extraction layer 6. .. Further, the P + type insulating separation layer 6a is connected to the P + type buried layer 3a.

【0014】つぎに図1(c)に示すように、P型コレ
クタ5内にN型不純物をイオン注入してN型ベース7、
およびN型エピタキシャル層4にN+ 型バイアスコンタ
クト7aを形成する。つぎにN型ベース7内にP型不純
物を拡散してP+ 型エミッタ8を形成する。
Next, as shown in FIG. 1C, an N-type impurity is ion-implanted into the P-type collector 5 to form an N-type base 7,
Then, an N + type bias contact 7a is formed in the N type epitaxial layer 4. Next, P-type impurities are diffused in the N-type base 7 to form a P + -type emitter 8.

【0015】つぎに全面に酸化シリコン膜9を成長させ
たのち、ベース7、エミッタ8、コレクタ引出層6、バ
イアスコンタクト7aのそれぞれにコンタクトを開口す
る。つぎにアルミからなるコレクタ電極12、ベース電
極11、エミッタ電極10、バイアス電極13を形成し
て三重拡散型PNPトランジスタの素子部が完成する。
Next, after a silicon oxide film 9 is grown on the entire surface, contacts are opened in each of the base 7, the emitter 8, the collector extraction layer 6, and the bias contact 7a. Next, the collector electrode 12, the base electrode 11, the emitter electrode 10, and the bias electrode 13 made of aluminum are formed to complete the element portion of the triple diffusion PNP transistor.

【0016】[0016]

【発明の効果】P+ 型埋込層側面を囲んでN+ 型埋込層
に形成された溝に不純物濃度が十分低いN型エピタキシ
ャル層が存在するので、P+ 型埋込層からN型エピタキ
シャル層に空乏層が伸びる。そのため高耐圧化への対応
が可能になった。
Since the impurity concentration in a groove formed in the N + -type buried layer surrounds the P + -type buried layer side according to the present invention there is sufficiently low N-type epitaxial layer, N-type from the P + -type buried layer A depletion layer extends to the epitaxial layer. Therefore, it has become possible to deal with higher breakdown voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を工程順に示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps.

【図2】従来の三重拡散型PNPトランジスタを示す断
面図である。
FIG. 2 is a sectional view showing a conventional triple diffusion type PNP transistor.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 N+ 型埋込層 3,3a P+ 型埋込層 4 N型エピタキシャル層 5 P- 型コレクタ 6 P+ 型コレクタ引出層 6a P+ 型絶縁分離層 7 N型ベース 7a N+ 型バイアスコンタクト 8 P+ 型エミッタ 9 酸化シリコン膜 10 エミッタ電極 11 ベース電極 12 コレクタ電極 13 バイアス電極1 P-type silicon substrate 2 N + type buried layer 3, 3a P + type buried layer 4 N type epitaxial layer 5 P type collector 6 P + type collector extraction layer 6a P + type insulating separation layer 7 N type base 7a N + type bias contact 8 P + type emitter 9 Silicon oxide film 10 Emitter electrode 11 Base electrode 12 Collector electrode 13 Bias electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の一主面に選択的に
逆導電型埋込層が形成され、前記逆導電型埋込層に選択
的に一導電型埋込層が形成され、前記一導電型埋込層側
面を囲んで前記逆導電型埋込層に前記一導電型埋込層よ
りも低濃度で逆導電型の半導体層が形成された半導体装
置。
1. A reverse conductivity type buried layer is selectively formed on one main surface of a single conductivity type semiconductor substrate, and a reverse conductivity type buried layer is selectively formed on the reverse conductivity type buried layer. A semiconductor device in which a semiconductor layer of a reverse conductivity type is formed in the reverse conductivity type buried layer so as to surround a side surface of the first conductivity type buried layer and at a concentration lower than that of the first conductivity type buried layer.
JP23420291A 1991-09-13 1991-09-13 Semiconductor device Pending JPH0574791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23420291A JPH0574791A (en) 1991-09-13 1991-09-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23420291A JPH0574791A (en) 1991-09-13 1991-09-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0574791A true JPH0574791A (en) 1993-03-26

Family

ID=16967293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23420291A Pending JPH0574791A (en) 1991-09-13 1991-09-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0574791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434386B1 (en) * 2012-09-10 2014-09-01 도한우 Robot control system and method for controlling thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434386B1 (en) * 2012-09-10 2014-09-01 도한우 Robot control system and method for controlling thereof

Similar Documents

Publication Publication Date Title
KR100683100B1 (en) Semiconductor integrated circuit device and method for manufacturing the same
US5034338A (en) Circuit containing integrated bipolar and complementary MOS transistors on a common substrate
CA1048656A (en) Fabricating high performance integrated bipolar and complementary field effect transistors
US4583106A (en) Fabrication methods for high performance lateral bipolar transistors
US4016596A (en) High performance integrated bipolar and complementary field effect transistors
JP3014012B2 (en) Method for manufacturing semiconductor device
JPS6159852A (en) Manufacture of semiconductor device
EP0817257A1 (en) Integrated circuit containing devices dielectrically isolated and junction isloated from a substrate
JPS6229904B2 (en)
JPH04363046A (en) Manufacture of semiconductor device
JPH06151728A (en) Semiconductor integrated circuit device
JPH0574791A (en) Semiconductor device
JPS61245573A (en) Semiconductor device
JP3438359B2 (en) Semiconductor device
JPH0478163A (en) Semiconductor device
JPH10189755A (en) Semiconductor device and its manufacturing method
JPH0521442A (en) Semiconductor device
JP2864863B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPH04151874A (en) Semiconductor device
JP3089755B2 (en) Semiconductor integrated circuit device
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPS644349B2 (en)
JPS6140140B2 (en)
JPH05109745A (en) Semiconductor device