JP3327658B2 - Manufacturing method of vertical bipolar transistor - Google Patents

Manufacturing method of vertical bipolar transistor

Info

Publication number
JP3327658B2
JP3327658B2 JP34591093A JP34591093A JP3327658B2 JP 3327658 B2 JP3327658 B2 JP 3327658B2 JP 34591093 A JP34591093 A JP 34591093A JP 34591093 A JP34591093 A JP 34591093A JP 3327658 B2 JP3327658 B2 JP 3327658B2
Authority
JP
Japan
Prior art keywords
type
diffusion region
base
collector
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34591093A
Other languages
Japanese (ja)
Other versions
JPH07183308A (en
Inventor
透 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP34591093A priority Critical patent/JP3327658B2/en
Publication of JPH07183308A publication Critical patent/JPH07183308A/en
Application granted granted Critical
Publication of JP3327658B2 publication Critical patent/JP3327658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バイポーラ集積回路に
おける高耐圧縦型バイポーラトランジスタの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high withstand voltage vertical bipolar transistor in a bipolar integrated circuit.

【0002】[0002]

【従来の技術】図3に、従来の縦型バイポーラトランジ
スタの代表的な製造方法を示す。P型シリコン基板1上
にN型埋込層2、P型分離層3およびPNPトランジス
タのコレクタとなるP型埋込層4を周知の拡散技術によ
って形成し、N型エピタキシャル層5を、例えば1.5
Ω・cmの比抵抗で約3.0ミクロンの厚さで成長させる
(図3a)。次に、N型エピタキシャル層の表面に酸化
膜を形成した後、周知のフォトエッチング法により選択
除去する。この酸化膜6をマスクとして露出したエピタ
キシャル層5表面に不純物をイオン注入し、熱拡散して
P型分離層7およびPNPトランジスタのコレクタの一
部を構成するP型拡散領域8を同時に形成し、それぞれ
先に形成したP型分離層3とP型埋込層4に接続させる
(図3b)。このP型拡散領域8とP型埋込層4とで、
PNPトランジスタのコレクタを構成する。酸化膜6を
除去し、新たに酸化膜を形成した後、ベース形成領域の
酸化膜を選択的に除去し、この酸化膜9をマスクとして
露出したP型拡散領域8表面に、不純物をイオン注入
し、PNPトランジスタのベースを構成するN型拡散領
域10を形成する(図3c)。その後、酸化膜9を除去
し、新たに酸化膜を形成し、選択除去した後、酸化膜1
1をマスクとして露出したN型拡散領域10表面に不純
物をイオン注入し、PNPトランジスタのエミッタを構
成するP型拡散領域12を形成する。同時に、PNPト
ランジスタのコレクタを構成するP型拡散領域8を露出
させ、P型拡散領域を形成する。これは、PNPトラン
ジスタのコレクタコンタクト領域13を構成する(図3
d)。その後、酸化膜11を除去し、新たに酸化膜を形
成し、選択除去して、この酸化膜をマスクとして、露出
したN型拡散領域10表面に、不純物をイオン注入し、
N型拡散領域14を形成する。これは、PNPトランジ
スタのベースコンタクトを構成する。次に、マスクの酸
化膜を除去し、新たに酸化膜15を形成し、選択除去し
てPNPトランジスのコレクタ、ベース、エミッタのコ
ンタクト窓を開口し、それぞれ電極16、18、17を
形成し、PNPトランジスタを完成する(図3e)。
2. Description of the Related Art FIG. 3 shows a typical method of manufacturing a conventional vertical bipolar transistor. An N-type buried layer 2, a P-type isolation layer 3, and a P-type buried layer 4 serving as a collector of a PNP transistor are formed on a P-type silicon substrate 1 by a known diffusion technique. .5
It is grown to a thickness of about 3.0 microns with a resistivity of Ω · cm (FIG. 3a). Next, after an oxide film is formed on the surface of the N-type epitaxial layer, it is selectively removed by a well-known photo-etching method. Using the oxide film 6 as a mask, impurities are ion-implanted into the exposed surface of the epitaxial layer 5 and thermally diffused to simultaneously form a P-type isolation layer 7 and a P-type diffusion region 8 constituting a part of the collector of the PNP transistor. Each is connected to the P-type separation layer 3 and the P-type buried layer 4 formed earlier (FIG. 3B). With the P-type diffusion region 8 and the P-type buried layer 4,
It constitutes the collector of the PNP transistor. After removing the oxide film 6 and forming a new oxide film, the oxide film in the base formation region is selectively removed, and impurities are ion-implanted into the exposed surface of the P-type diffusion region 8 using the oxide film 9 as a mask. Then, an N-type diffusion region 10 constituting the base of the PNP transistor is formed (FIG. 3C). Thereafter, the oxide film 9 is removed, a new oxide film is formed, and after selective removal, the oxide film 1 is removed.
Impurities are ion-implanted into the exposed surface of the N-type diffusion region 10 using 1 as a mask to form a P-type diffusion region 12 constituting an emitter of the PNP transistor. At the same time, the P-type diffusion region 8 constituting the collector of the PNP transistor is exposed to form a P-type diffusion region. This constitutes the collector contact region 13 of the PNP transistor (FIG. 3)
d). Thereafter, the oxide film 11 is removed, a new oxide film is formed and selectively removed, and impurities are ion-implanted into the exposed surface of the N-type diffusion region 10 using the oxide film as a mask.
An N-type diffusion region 14 is formed. This constitutes the base contact of the PNP transistor. Next, the oxide film of the mask is removed, a new oxide film 15 is formed, and selectively removed to open the contact windows of the collector, base, and emitter of the PNP transistor, and electrodes 16, 18, and 17 are formed, respectively. A PNP transistor is completed (FIG. 3E).

【0003】上記のように従来のPNPトランジスタの
製造方法は、コレクタの一部を構成するP型拡散領域8
の形成をイオン注入した後、熱拡散によって形成してい
た。エピタキシャル層5の厚さが3.0ミクロン程度と
比較的薄い場合、この熱拡散は短時間で終了する必要が
ある。そのため、P型拡散領域8の深さ方向の不純物濃
度のプロファイルは、深くなるにつれて不純物濃度が小
さくなるという濃度勾配が生じる。このような濃度勾配
のあるP型拡散領域8上に、PNPトランジスタのベー
スとなるN型拡散領域10を形成すると、P型拡散領域
8の濃度によってN型拡散領域10の濃度が影響を受
け、変化する。図2(a)に、従来の製造方法で形成し
たPNPトランジスタのベース部分の深さ方向の不純物
濃度のプロファイルを示す。PNPトランジスタのコレ
クタを構成するP型拡散領域8の濃度は、ベースを構成
するN型拡散領域10側で高くなる。このような濃度プ
ロファイルでは、相対的にベースを構成するN型拡散領
域10の不純物濃度が低くなり、コレクタ・ベース間空
乏層のベース側への拡がりが抑えられなくなり、実効的
なベース幅が変化し、アーリー電圧が低下するという問
題があった。また、相対的にコレクタを構成するP型拡
散領域10の不純物濃度が高くなり、ベース・コレクタ
間耐圧が低下するという問題があった。
As described above, the conventional method of manufacturing a PNP transistor uses the P-type diffusion region 8 forming a part of the collector.
Was formed by thermal diffusion after ion implantation. When the thickness of the epitaxial layer 5 is relatively small, such as about 3.0 μm, this thermal diffusion needs to be completed in a short time. Therefore, the profile of the impurity concentration in the depth direction of the P-type diffusion region 8 has a concentration gradient such that the impurity concentration decreases as the depth increases. When the N-type diffusion region 10 serving as the base of the PNP transistor is formed on the P-type diffusion region 8 having such a concentration gradient, the concentration of the P-type diffusion region 8 affects the concentration of the N-type diffusion region 10. Change. FIG. 2A shows a profile of an impurity concentration in a depth direction of a base portion of a PNP transistor formed by a conventional manufacturing method. The concentration of the P-type diffusion region 8 forming the collector of the PNP transistor becomes higher on the side of the N-type diffusion region 10 forming the base. In such a concentration profile, the impurity concentration of the N-type diffusion region 10 constituting the base becomes relatively low, so that the expansion of the depletion layer between the collector and the base to the base side cannot be suppressed, and the effective base width changes. However, there is a problem that the Early voltage is reduced. Further, there is a problem that the impurity concentration of the P-type diffusion region 10 constituting the collector becomes relatively high, and the withstand voltage between the base and the collector is lowered.

【0004】[0004]

【発明が解決しようとする課題】従来のPNPトランジ
スタの製造方法では、コレクタを構成するP型拡散領域
の不純物濃度が相対的に高いため、アーリー電圧の低下
や、ベース・コレクタ間耐圧が低下するという問題があ
った。本発明は上記問題を解消するためになされたもの
で、高耐圧化した縦型バイポーラトランジスタを得るこ
とを目的とする。
In the conventional method of manufacturing a PNP transistor, since the impurity concentration of the P-type diffusion region forming the collector is relatively high, the Early voltage is reduced and the base-collector breakdown voltage is reduced. There was a problem. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a vertical bipolar transistor having a high withstand voltage.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、一導電型の半導体基板上に、逆導電型のエピ
タキシャル層を形成し、該エピタキシャル層と前記半導
体基板との間に逆導電型の埋込層を形成し、該埋込層上
の前記エピタキシャル層の所定の位置に一導電型のコレ
クタと、逆導電型のベースと、一導電型のエミッタとを
形成する縦型バイポーラトランジスタの製造方法におい
て、前記ベース形成領域の前記エピタキシャル層表面
に、一導電型の不純物と、逆導電型の不純物をそれぞれ
イオン注入し、同時に熱拡散後、前記表面に逆導電型の
不純物のイオン注入を行うことで、前記ベース領域を形
成するとともに、前記ベースと前記コレクタとの間に、
前記コレクタより不純物濃度の低い一導電型の拡散領域
を形成する工程を含むことを特徴とするものである。
According to the present invention, in order to achieve the above object, a reverse conductivity type epitaxial layer is formed on a semiconductor substrate of one conductivity type, and a reverse conductivity type is formed between the epitaxial layer and the semiconductor substrate. A vertical bipolar transistor for forming a buried layer of conductivity type and forming a collector of one conductivity type, a base of opposite conductivity type, and an emitter of one conductivity type at predetermined positions of the epitaxial layer on the buried layer; In the method for manufacturing a transistor, an impurity of one conductivity type and an impurity of the opposite conductivity type are respectively formed on the surface of the epitaxial layer in the base formation region.
After ion implantation and thermal diffusion at the same time, a reverse conductivity type
The base region is formed by ion implantation of impurities.
As well as formed, between the base and the collector,
Forming a diffusion region of one conductivity type having a lower impurity concentration than that of the collector.

【0006】[0006]

【実施例】図1に本発明の縦型PNPトランジスタの製
造方法を示す。P型シリコン基板1上にN型埋込層2、
P型分離層3およびPNPトランジスタのコレクタとな
るP型埋込層4を周知の拡散技術により形成し、さら
に、N型エピタキシャル層5を、例えば1.5Ωcmの比
抵抗で、約3.0ミクロンの厚さで成長させる。次に、
N型エピタキシャル層5の表面から酸化膜をマスクとし
て、不純物をイオン注入し、熱拡散して、P型分離層7
およびPNPトランジスタのコレクタの一部となるP型
拡散領域8を同時に形成し、それぞれ先に形成している
P型分離層3とP型埋込層4とに接続させる。このP型
拡散領域8とP型埋込層4とで、PNPトランジスタの
コレクタを構成する。新たに、酸化膜を形成し、PNP
トランジスタのベース形成領域の酸化膜9を選択除去す
る(図1a)。ここまでの工程は、従来の製造方法と同
じである。
FIG. 1 shows a method of manufacturing a vertical PNP transistor according to the present invention. An N-type buried layer 2 on a P-type silicon substrate 1;
A P-type isolation layer 3 and a P-type buried layer 4 serving as a collector of a PNP transistor are formed by a well-known diffusion technique. Further, an N-type epitaxial layer 5 is formed with a specific resistance of, for example, 1.5 Ωcm and about 3.0 μm. Growing in thickness. next,
Using the oxide film as a mask, impurities are ion-implanted from the surface of the N-type epitaxial layer 5 and thermally diffused to form a P-type isolation layer 7.
And a P-type diffusion region 8 which is a part of the collector of the PNP transistor is formed at the same time, and is connected to the P-type separation layer 3 and the P-type buried layer 4 formed earlier. The P-type diffusion region 8 and the P-type buried layer 4 form a collector of the PNP transistor. A new oxide film is formed and PNP
The oxide film 9 in the base formation region of the transistor is selectively removed (FIG. 1A). The steps so far are the same as the conventional manufacturing method.

【0007】露出したP型拡散領域8表面に不純物をイ
オン注入する。従来この不純物の注入は、N型拡散領域
10を形成するために、ボロンの注入を1回行なうのみ
であったが、本発明では、このボロンの注入の前に、次
のようなイオン注入、熱拡散工程を追加したことに特徴
がある。即ち、露出したP型拡散領域8表面にボロンお
よびリンをそれぞれイオン注入し、同時に熱拡散を行な
う。一例としては、ボロンをドース量1.5E12、加
速電圧200KeVで注入した後、すぐにリンをドーズ
量1.3E12、加速電圧200KeVで注入する。そ
の後、1100℃、120分間の熱拡散を行なう。イオ
ン注入の飛程と濃度の関係により、ボロンはリンに較べ
て、熱拡散によって深い位置まで拡散する。その結果表
面から、1.0〜1.3ミクロンの深さのP型拡散領域
8中にP型拡散領域8の不純物濃度より低い濃度のP-
型拡散領域19が形成される。その後の工程は、従来の
方法と同じで、酸化膜9をマスクとして不純物をイオン
注入し、PNPトランジスタのベースを構成するN型拡
散領域10を形成する(図1b)。その後、酸化膜9を
除去し、新たに酸化膜を形成し、選択除去した後、酸化
膜11をマスクとして露出したN型拡散領域10表面に
イオン注入し、PNPトランジスタのエミッタを構成す
るP型拡散領域12を形成する。同時に、PNPトラン
ジスタのコレクタを構成するP型拡散領域8を露出さ
せ、P型拡散領域を形成する。これは、PNPトランジ
スタのコレクタコンタクト領域13を構成する(図1
c)。また、酸化膜11を除去し、新たに酸化膜を形成
し、選択除去して、この酸化膜をマスクとして、露出し
たN型拡散領域10票面に不純物をイオン注入し、N型
拡散領域14を形成する。これは、PNPトランジスタ
のベースのコンタクトを構成する。次に、酸化膜を除去
し、新たに、酸化膜15を形成し、選択除去してPNP
トランジスタのコレクタ、ベース、エミッタのコンタク
ト窓を開口し、それぞれ電極16、18、17を形成
し、PNPトランジスタを完成する(図1d)。
An impurity is ion-implanted into the exposed surface of the P-type diffusion region 8. Conventionally, this impurity implantation was performed only once by implanting boron in order to form the N-type diffusion region 10. However, in the present invention, the following ion implantation, It is characterized by adding a heat diffusion step. That is, boron and phosphorus are respectively ion-implanted into the exposed surface of the P-type diffusion region 8 and simultaneously thermal diffusion is performed. As an example, after boron is implanted at a dose of 1.5E12 and an acceleration voltage of 200 KeV, phosphorus is immediately implanted at a dose of 1.3E12 and an acceleration voltage of 200 KeV. Thereafter, thermal diffusion is performed at 1100 ° C. for 120 minutes. Due to the relationship between the range of ion implantation and the concentration, boron diffuses deeper by thermal diffusion than phosphorus. As a result, a P-type diffusion region 8 having a depth lower than the impurity concentration of the P-type diffusion region 8 is introduced into the P-type diffusion region 8 having a depth of 1.0 to 1.3 μm from the surface.
A mold diffusion region 19 is formed. Subsequent steps are the same as in the conventional method, and an impurity is ion-implanted using the oxide film 9 as a mask to form an N-type diffusion region 10 constituting the base of the PNP transistor (FIG. 1B). Thereafter, the oxide film 9 is removed, a new oxide film is formed, and the oxide film 11 is selectively removed. Then, ions are implanted into the exposed surface of the N-type diffusion region 10 using the oxide film 11 as a mask to form a P-type transistor constituting the emitter of the PNP transistor. A diffusion region 12 is formed. At the same time, the P-type diffusion region 8 constituting the collector of the PNP transistor is exposed to form a P-type diffusion region. This constitutes the collector contact region 13 of the PNP transistor (FIG. 1).
c). Further, the oxide film 11 is removed, a new oxide film is formed, and the oxide film is selectively removed. Using this oxide film as a mask, impurities are ion-implanted into the exposed N-type diffusion region 10 to form the N-type diffusion region 14. Form. This constitutes the contact at the base of the PNP transistor. Next, the oxide film is removed, and a new oxide film 15 is formed.
The contact windows of the collector, base, and emitter of the transistor are opened, and electrodes 16, 18, and 17 are formed, respectively, to complete the PNP transistor (FIG. 1d).

【0008】上記の製造方法によって形成したPNPト
ランジスタのベース部分の深さ方向の不純物濃度プロフ
ァイルを図2(b)に示す(実線)。従来の製造方法で
形成したPNPトランジスタ(点線で示す)と比較し
て、P型拡散領域、即ちコレクタ部分の濃度プロファイ
ルに大きな違いがあることがわかる。本発明のPNPト
ランジスタでは、コレクタ部分にP-拡散領域が存在す
るため、コレクタ部分の不純物濃度が低く、しかも従来
見られていたようなN型拡散領域(ベース)側で高くな
るような濃度勾配が生じていない。加えて、従来はこの
濃度勾配によって発生していたと思われるN型拡散領域
(ベース)幅の短縮が緩和していることがわかる。本発
明は、このような濃度プロファイルを実現することによ
って、相対的にN型拡散領域の不純物濃度が高くなり、
コレクタ・ベース間空乏層のベース側への拡りが抑えら
れ、実効的なベース幅の変化がなくなり、アーリー電圧
の低下という問題を解消することができた。また、相対
的にP型拡散領域(コレクタ)の不純物濃度が低くな
り、十分なベース・コレクタ間耐圧を得ることができ
た。
FIG. 2B shows the impurity concentration profile in the depth direction of the base portion of the PNP transistor formed by the above-described manufacturing method (solid line). It can be seen that there is a great difference in the concentration profile of the P-type diffusion region, that is, the collector portion, as compared with the PNP transistor (shown by the dotted line) formed by the conventional manufacturing method. In the PNP transistor of the present invention, since the P- diffusion region is present in the collector portion, the impurity concentration in the collector portion is low, and the concentration gradient is increased on the N-type diffusion region (base) side as conventionally observed. Has not occurred. In addition, it can be seen that the shortening of the width of the N-type diffusion region (base), which is considered to have conventionally occurred due to the concentration gradient, has eased. According to the present invention, by realizing such a concentration profile, the impurity concentration of the N-type diffusion region becomes relatively high,
The expansion of the depletion layer between the collector and the base toward the base side was suppressed, the effective base width did not change, and the problem of an early voltage drop could be solved. Also, the impurity concentration of the P-type diffusion region (collector) was relatively low, and a sufficient base-collector breakdown voltage was obtained.

【0009】P-拡散領域18を形成する際、ボロンと
リンの注入を行なう場合を例に取り説明を行なったが、
この組み合わせに限定されるものではなく、半導体基板
に対してP型、N型となる不純物の組み合わせにおい
て、熱拡散の結果、P型不純物の方がN型不純物より深
い位置まで拡散するものであれば良い。このような拡散
を実現するためには、エピタキシャル層の濃度、P型不
純物、N型不純物の注入条件、熱拡散条件等は適宜設定
されるものである。
In the case where P-diffusion region 18 is formed, the case where boron and phosphorus are implanted has been described as an example.
The present invention is not limited to this combination. In a combination of impurities that become P-type and N-type with respect to the semiconductor substrate, the P-type impurity diffuses deeper than the N-type impurity as a result of thermal diffusion. Good. In order to realize such diffusion, the concentration of the epitaxial layer, implantation conditions of P-type impurities and N-type impurities, thermal diffusion conditions, and the like are appropriately set.

【0010】また本発明は、縦型バイポーラトランジス
タをCMOSFETと同一半導体基板上に備える集積回
路を形成する際、特に効果が大きい。例えば、通常、縦
型PNPトランジスタのコレクタを構成するP型拡散領
域8を、nMOSトランジスタのPウエルと同時に形成
するが、本発明によれば、Pウエルの不純物濃度によら
ずに、ベース直下の不純物濃度を決めることができる。
したがって、高耐圧の縦型バイポータトランジスタをC
MOSFETと同一基板上に形成することができる。
The present invention is particularly effective when forming an integrated circuit having a vertical bipolar transistor and a CMOSFET on the same semiconductor substrate. For example, usually, the P-type diffusion region 8 constituting the collector of the vertical PNP transistor is formed simultaneously with the P-well of the nMOS transistor, but according to the present invention, regardless of the impurity concentration of the P-well, the P-type diffusion region 8 is formed immediately below the base. The impurity concentration can be determined.
Therefore, a high breakdown voltage vertical bipolar transistor is
It can be formed on the same substrate as the MOSFET.

【0011】[0011]

【発明の効果】以上説明したように本発明の製造方法に
よる縦型バイポーラトランジスタは、ベース領域直下の
コレクタ領域に、不純物濃度の低いP-拡散領域を形成
することで、相対的なベース領域の不純物濃度が高くな
り、コレクタ・ベース間空乏層のベース側への拡りが抑
えられ、実効的なベース幅の変化が少なくなり、アーリ
ー電圧の低下が防止できた。また、相対的にコレクタの
不純物濃度が低くなり、十分なベース・コレクタ耐圧を
得ることができた。さらに、高濃度エミッタを形成し、
それによってベースも高濃度とすることもでき、ベース
抵抗が小さく、高い電流増幅率を有し、しかもそのため
にベース幅を小さくしても十分なパンチスルー電圧が得
られ、その結果、エミッタ・ベース間を浅く形成するこ
とができるので、高周波動作が可能となった。
As described above, in the vertical bipolar transistor according to the manufacturing method of the present invention, the P- diffusion region having a low impurity concentration is formed in the collector region immediately below the base region, so that the relative base region can be formed. The impurity concentration was increased, the expansion of the collector-base depletion layer to the base side was suppressed, the change in the effective base width was reduced, and the early voltage was prevented from lowering. Further, the impurity concentration of the collector was relatively low, and a sufficient base-collector breakdown voltage could be obtained. Furthermore, forming a high concentration emitter,
As a result, the base can also be made highly concentrated, the base resistance is small, the current amplification factor is high, and a sufficient punch-through voltage can be obtained even if the base width is reduced. Since the gap can be formed shallow, high-frequency operation has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の製造方法を示す説明図であ
る。
FIG. 1 is an explanatory view showing a manufacturing method according to an embodiment of the present invention.

【図2】本発明と従来例の不純物濃度プロファイルを比
較する説明図である。
FIG. 2 is an explanatory diagram comparing impurity concentration profiles of the present invention and a conventional example.

【図3】従来の縦型バイポーラトランジスタの製造方法
を示す説明図である。
FIG. 3 is an explanatory view showing a method for manufacturing a conventional vertical bipolar transistor.

【符合の説明】[Description of sign]

1 P型シリコン基板 2 N型埋込層 3 P型分離層 4 P型埋込層 5 N型エピタキシャル層 6 酸化膜 7 P型分離層 8 P型拡散領域 9 酸化膜 10 N型拡散領域 11 酸化膜 12 P型拡散領域 13 コレクタコンタクト領域 14 N型拡散領域 15 酸化膜 16 コレクタ電極 17 エミッタ電極 18 ベース電極 19 P-型拡散領域 Reference Signs List 1 P-type silicon substrate 2 N-type buried layer 3 P-type separation layer 4 P-type buried layer 5 N-type epitaxial layer 6 oxide film 7 P-type separation layer 8 P-type diffusion region 9 oxide film 10 N-type diffusion region 11 oxidation Film 12 P-type diffusion region 13 Collector contact region 14 N-type diffusion region 15 Oxide film 16 Collector electrode 17 Emitter electrode 18 Base electrode 19 P-type diffusion region

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型の半導体基板上に、逆導電型の
エピタキシャル層を形成し、該エピタキシャル層と前記
半導体基板との間に逆導電型の埋込層を形成し、該埋込
層上の前記エピタキシャル層の所定の位置に一導電型の
コレクタと、逆導電型のベースと、一導電型のエミッタ
とを形成する縦型バイポーラトランジスタの製造方法に
おいて、 前記ベース形成領域の前記エピタキシャル層表面に、一
導電型の不純物と、逆導電型の不純物をそれぞれイオン
注入し、同時に熱拡散後、前記表面に逆導電型の不純物
のイオン注入を行うことで、前記ベース領域を形成する
とともに、前記ベースと前記コレクタとの間に、前記コ
レクタより不純物濃度の低い一導電型の拡散領域を形成
する工程を含むことを特徴とする縦型バイポーラトラン
ジスタの製造方法。
An epitaxial layer of a reverse conductivity type is formed on a semiconductor substrate of one conductivity type, and a buried layer of a reverse conductivity type is formed between the epitaxial layer and the semiconductor substrate. A method of manufacturing a vertical bipolar transistor in which a collector of one conductivity type, a base of opposite conductivity type, and an emitter of one conductivity type are formed at predetermined positions of the epitaxial layer above, wherein the epitaxial layer in the base formation region On the surface, impurities of one conductivity type and impurities of the opposite conductivity type are ionized, respectively.
After implantation and thermal diffusion at the same time, impurities of the opposite conductivity type
Forming the base region by performing ion implantation of
And a step of forming a one-conductivity-type diffusion region having a lower impurity concentration than the collector between the base and the collector.
JP34591093A 1993-12-24 1993-12-24 Manufacturing method of vertical bipolar transistor Expired - Fee Related JP3327658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34591093A JP3327658B2 (en) 1993-12-24 1993-12-24 Manufacturing method of vertical bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34591093A JP3327658B2 (en) 1993-12-24 1993-12-24 Manufacturing method of vertical bipolar transistor

Publications (2)

Publication Number Publication Date
JPH07183308A JPH07183308A (en) 1995-07-21
JP3327658B2 true JP3327658B2 (en) 2002-09-24

Family

ID=18379830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34591093A Expired - Fee Related JP3327658B2 (en) 1993-12-24 1993-12-24 Manufacturing method of vertical bipolar transistor

Country Status (1)

Country Link
JP (1) JP3327658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256421B (en) * 2018-09-10 2021-12-14 西安微电子技术研究所 Bipolar device with high early voltage and manufacturing method thereof
CN112992664B (en) * 2021-02-26 2023-06-02 西安微电子技术研究所 Preparation method of high early voltage NPN transistor based on ion implantation

Also Published As

Publication number Publication date
JPH07183308A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
JP2746499B2 (en) Semiconductor device and manufacturing method thereof
US5411898A (en) Method of manufacturing a complementary bipolar transistor
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
KR930010094B1 (en) Semiconductor device and making method of the same
US6337252B1 (en) Semiconductor device manufacturing method
JP2001291781A (en) Method for manufacturing semiconductor device
JPH0575032A (en) Semiconductor integrated circuit device
JPH07273127A (en) Semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JPH02264436A (en) Manufacture of semiconductor device containing vertical p-n-p bipolar junction transistor
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPH05226351A (en) Manufacture of semiconductor device
JPH09223746A (en) Semiconductor device
JPS641933B2 (en)
JPS63144567A (en) Manufacture of semiconductor device
JPS616853A (en) Manufacture of semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPH07335662A (en) Semiconductor device and its manufacture
JPH10326836A (en) Production of semiconductor device
JPH0834214B2 (en) Method for manufacturing semiconductor device
JPH07147285A (en) Semiconductor device and manufacture thereof
JPH0722433A (en) Semiconductor device and its manufacture
JPS61182253A (en) Manufacture of a semiconductor ic device
JPH03165522A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees