JPH05226351A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05226351A
JPH05226351A JP2913692A JP2913692A JPH05226351A JP H05226351 A JPH05226351 A JP H05226351A JP 2913692 A JP2913692 A JP 2913692A JP 2913692 A JP2913692 A JP 2913692A JP H05226351 A JPH05226351 A JP H05226351A
Authority
JP
Japan
Prior art keywords
layer
epitaxial layer
heat treatment
resist
acceleration energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2913692A
Other languages
Japanese (ja)
Inventor
Kanji Yamamura
官司 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2913692A priority Critical patent/JPH05226351A/en
Publication of JPH05226351A publication Critical patent/JPH05226351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a high-frequency and high-speed vertical type PNP transistor by forming a flat low-doped collector area by suppressing the creeping-up of a buried collector layer to an epitaxial layer side by performing diffusion heat treatment, etc., after continuously performing ion implantation two or more times into the epitaxial layer with different acceleration energy. CONSTITUTION:After a buried area 5 is formed on a semiconductor substrate 1 through a photolithographic process, an epitaxial layer 3 is formed on the entire surface of the substrate 1 and a resist 2c is formed on the layer 3 through its oxide film 4. Then an opening is formed by removing the resist 2c and film 4 on the part of layer 3 proposed to a low-doped collector layer 6a and ions are continuously implanted into the opening two or more times with different acceleration energy and diffusion heat treatment is performed. For example, boron ions are implanted by changing the acceleration energy from 500KeV to 50KeV through 300KeV, 150KeV, and 100KeV.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、更に詳しくはバイポーラIC、縦型PNPトラン
ジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a bipolar IC and a vertical PNP transistor.

【0002】[0002]

【従来の技術】図4および図5に、従来技術における一
般的な縦型PNPトランジスタのコレクタ部の製造方法
を示す。
2. Description of the Related Art FIGS. 4 and 5 show a conventional method of manufacturing a collector portion of a vertical PNP transistor.

【0003】まず、P型シリコン基板10上にレジスト
11aを形成し、底面分離用領域12形成のためのフォ
トリソグラフィ工程により、31+ のイオン注入を行う
〔図4(a)〕。
First, a resist 11a is formed on a P-type silicon substrate 10, and 31 P + ions are implanted by a photolithography process for forming a bottom surface separation region 12 [FIG. 4 (a)].

【0004】次に、拡散熱処理後、底面分離用領域12
上に埋込みコレクタ領域形成のためのフォトリソグラフ
ィ工程により、高濃度(〜×1014dose)の11+ のイ
オン注入を行う〔図4(b)〕。
Next, after the diffusion heat treatment, the bottom surface separating region 12 is formed.
Ion implantation of 11 B + with a high concentration (up to × 10 14 dose) is performed by a photolithography process for forming a buried collector region thereon (FIG. 4B).

【0005】次に、エピタキシャル成長を行い、P型シ
リコン基板10上にエピタキシャル層13を形成する。
また、NPNトランジスタ部の分離用のP+ 領域14を
形成する〔図4(c)〕。
Next, epitaxial growth is performed to form an epitaxial layer 13 on the P-type silicon substrate 10.
Further, a P + region 14 for separating the NPN transistor portion is formed [FIG. 4 (c)].

【0006】続いて、コレクタ領域14a形成のための
フォトリソグラフィ工程により、低濃度(〜×1012do
se)の11+ のイオン注入を行う〔図5(a)〕。その
後、1000℃で3時間〜5時間程度の拡散熱処理を行
い、低濃度コレクタ領域14aを形成する〔図5
(b)〕。
Subsequently, a low concentration (.about. × 10 12 do) is formed by a photolithography process for forming the collector region 14a.
se) 11 B + ion implantation is performed [FIG. 5 (a)]. Then, diffusion heat treatment is performed at 1000 ° C. for about 3 hours to 5 hours to form the low concentration collector region 14a [FIG.
(B)].

【0007】この時のコレクタ領域14の不純物濃度プ
ロファイルを図6に示す。この図に示すように、エピタ
キシャル層13の不純物濃度は、所定の拡散層の深さま
で減少し、低コレクタ層における拡散濃度は一定ではな
い。
The impurity concentration profile of the collector region 14 at this time is shown in FIG. As shown in this figure, the impurity concentration of the epitaxial layer 13 decreases to a predetermined diffusion layer depth, and the diffusion concentration in the low collector layer is not constant.

【0008】[0008]

【発明が解決しようとする課題】ところで、従来の技術
では、縦型PNPトランジスタを実現させるために、低
濃度のコレクタ領域が必要であるが、そのコレクタ領域
形成はエピタキシャル成長後、フォト・エッチング、イ
オン注入、長時間にわたる拡散熱処理により形成されて
いた。
By the way, in the prior art, a low concentration collector region is required to realize a vertical PNP transistor. The collector region is formed by epitaxial growth, photoetching and ion implantation. It was formed by implantation and diffusion heat treatment for a long time.

【0009】ところが、この長時間拡散処理により、高
濃度埋込みコレクタ層のエピタキシャル層側への、這い
上がりによる耐圧の低下が問題となっており、このた
め、エピタキシャル層を十分厚くする必要があった。し
かし、一方高周波かつ高速縦型のPNPトランジスタを
実現するための要因として、エピタキシャル層を薄膜化
しなければならず、その実現には困難を伴っていた。
However, due to this long-time diffusion treatment, there is a problem that the withstand voltage is lowered due to the creeping up of the high-concentration buried collector layer toward the epitaxial layer side. Therefore, it is necessary to make the epitaxial layer sufficiently thick. .. However, on the other hand, as a factor for realizing a high-frequency and high-speed vertical PNP transistor, the epitaxial layer must be thinned, which has been difficult to realize.

【0010】本発明はこれらの点に鑑みてなされたもの
であり、埋込みコレクタ層のエピタキシャル層側への這
い上がりを抑え、かつフラットな低濃度コレクタ領域を
形成することができ、高周波かつ高速縦型のPNPトラ
ンジスタを実現する製造方法を提供することを目的とす
る。
The present invention has been made in view of these points, and it is possible to suppress the creeping of the buried collector layer toward the epitaxial layer side and form a flat low-concentration collector region. It is an object of the present invention to provide a manufacturing method for realizing a PNP transistor of the type.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、半導体基板上
に、フォトリソグラフィ工程により埋込み領域を形成し
た後、その基板上全面にエピタキシャル層を形成し、そ
の後そのエピタキシャル層上に酸化膜を介してレジスト
を形成した後、低コレクタ層を形成すべきエピタキシャ
ル層上方の上記レジストおよび酸化膜を除去することに
より開口部を設け、その後、その開口部に異なる加速エ
ネルギで2回以上連続してイオン注入を行った後、拡散
熱処理を行う工程を有することによって特徴付けられ
る。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention comprises forming a buried region on a semiconductor substrate by a photolithography process, and then forming an epitaxial region on the entire surface of the substrate. After forming a layer and then forming a resist on the epitaxial layer via an oxide film, an opening is provided by removing the resist and the oxide film above the epitaxial layer where the low collector layer is to be formed, and thereafter, It is characterized by having a step of performing a diffusion heat treatment after ion-implanting into the opening portion twice or more continuously at different acceleration energies.

【0012】[0012]

【作用】本発明実施例に対応し、その作用を説明する図
3に基づいて説明する。イオンの拡散の深さは、イオン
の加速エネルギが大きくなるにつれて大きくなる。した
がって、加速エネルギを500KeV,300KeV,
150KeV,100KeV,50KeVと変化させ、
連続してイオン注入を行うと、それぞれの拡散分布は、
(a)図に示すように、それぞれd1 ,d2 ,d3 ,d
4 ,d5の濃度プロファイルとなる。さらに、この状態
の基板に拡散熱処理を行うと、拡散深さに対する不純物
濃度は一定となり、(b)図に示すように、低濃度コレ
クタ領域のどの拡散深さにおいてもフラットな部分を有
する濃度プロファイルとなる。
The operation of the present invention will be described with reference to FIG. 3 for explaining the operation thereof. The diffusion depth of the ions increases as the acceleration energy of the ions increases. Therefore, the acceleration energy is 500 KeV, 300 KeV,
Change to 150 KeV, 100 KeV, 50 KeV,
When ion implantation is performed continuously, each diffusion distribution becomes
As shown in the figure (a), d 1 , d 2 , d 3 , d
The density profile is 4 and d 5 . Furthermore, when the diffusion heat treatment is performed on the substrate in this state, the impurity concentration with respect to the diffusion depth becomes constant, and as shown in FIG. 7B, the concentration profile having a flat portion at any diffusion depth of the low concentration collector region. Becomes

【0013】[0013]

【実施例】図1乃至図2は本発明実施例を経時的に説明
する図である。まず、P型シリコン基板1上にレジスト
2aを形成し、底面分離用領域5形成のためのフォトリ
ソグラフィ工程により、31+ のイオン注入を行う〔図
1(a)〕。
1 and 2 are views for explaining an embodiment of the present invention with time. First, a resist 2a is formed on a P-type silicon substrate 1, and 31 P + ions are implanted by a photolithography process for forming the bottom surface separation region 5 [FIG. 1 (a)].

【0014】次に、拡散熱処理後、底面分離用領域5上
に埋込みコレクタ領域形成のためのフォトリソグラフィ
工程により、高濃度(〜×1014dose)の11+ のイオ
ン注入を行う〔図1(b)〕。
After the diffusion heat treatment, 11 B + ions of high concentration (up to × 10 14 dose) are implanted on the bottom surface isolation region 5 by a photolithography process for forming a buried collector region [FIG. 1]. (B)].

【0015】次に、エピタキシャル成長を行い、P型シ
リコン基板1上にエピタキシャル層3を形成する。ま
た、NPNトランジスタ部の分離用のP+ 領域6を形成
する〔図1(c)〕。
Next, epitaxial growth is performed to form an epitaxial layer 3 on the P-type silicon substrate 1. Further, a P + region 6 for separating the NPN transistor portion is formed [FIG. 1 (c)].

【0016】 次に、エピタキシャル層3上に酸化膜4を
形成した後、その酸化膜4上にレジスト2cを形成し
て、コレクタ領域形成のためのフォトリソグラフィ工程
により、高エネルギ、低ドーズの1回目のボロンのイオ
ン注入を行う。本実施例ではこの時の加速エネルギは5
00KeV,ドーズ量2×1012dose程度で行う〔図2
(a)〕。
[0016] Next, an oxide film 4 is formed on the epitaxial layer 3.
After the formation, a resist 2c is formed on the oxide film 4.
Photolithography process for forming collector region
The first high-energy, low-dose boron ion
Injection. In this embodiment, the acceleration energy at this time is 5
00 KeV, dose 2 × 1012Do about dose [Fig. 2
(A)].

【0017】続いて、ドーズ量は2×1012doseとして
変化させずに一定とし、加速エネルギを変化させて2回
目、3回目、4回目、5回目と連続してイオン注入を行
う。この時のエネルギはそれぞれ300KeV,150
KeV,100KeV,50KeVと変化させてイオン
注入を行う〔図2(b)〕。
Subsequently, the dose amount is kept unchanged as 2 × 10 12 dose, and the acceleration energy is changed to perform ion implantation continuously for the second time, the third time, the fourth time, and the fifth time. The energy at this time is 300 KeV and 150, respectively.
Ion implantation is performed by changing to KeV, 100 KeV, and 50 KeV [FIG. 2 (b)].

【0018】その後、1000℃、30〜60分の拡散
熱処理を行い、低濃度コレクタ層6aを形成する。〔図
2(c)〕。このように形成された低濃度コレクタ領域
の不純物濃度のプロファイルを図3に示す。
Thereafter, diffusion heat treatment is performed at 1000 ° C. for 30 to 60 minutes to form the low concentration collector layer 6a. [FIG. 2 (c)]. A profile of the impurity concentration of the low concentration collector region thus formed is shown in FIG.

【0019】ここで、(a)図は、上述した加速エネル
ギのみを変化させて、5回のイオン注入を行った後のプ
ロファイル、また、(b)図は、コレクタ領域形成のた
めの拡散熱処理を行った後のプロファイルを示す。
Here, FIG. 10A is a profile after performing ion implantation five times by changing only the above-mentioned acceleration energy, and FIG. 8B is a diffusion heat treatment for forming a collector region. The profile after performing is shown.

【0020】すなわち、加速エネルギを500KeV,
300KeV,150KeV,100KeV,50Ke
Vと変化させ、連続してイオン注入を行うと、それぞれ
の拡散分布は、(a)図に示すように、それぞれd1
2 ,d3 ,d4 ,d5 の濃度プロファイルとなる。さ
らに、この状態の基板に拡散熱処理を行うと、拡散深さ
に対する不純物濃度は一定となり、(b)図に示すよう
に、低濃度コレクタ領域6aのどの拡散深さにおいても
フラットな濃度プロファイルとなる。
That is, the acceleration energy is 500 KeV,
300 KeV, 150 KeV, 100 KeV, 50 Ke
When the ion implantation is continuously performed by changing the value to V, the diffusion distributions of the respective ions are d 1 , respectively, as shown in FIG.
The density profiles are d 2 , d 3 , d 4 , and d 5 . Further, when the diffusion heat treatment is performed on the substrate in this state, the impurity concentration with respect to the diffusion depth becomes constant, and a flat concentration profile is obtained at any diffusion depth of the low concentration collector region 6a as shown in FIG. ..

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
低コレクタ層を形成すべきエピタキシャル層上方の開口
部に異なる加速エネルギで2回以上連続してイオン注入
を行った後、拡散熱処理を行う工程を有するよう構成し
たから、短い熱処理時間で低コレクタ層をフラットに形
成でき、したがって埋込みコレクタ層のエピタキシャル
層側への這い上がりを抑制できる。その結果、エピタキ
シャル層の薄膜化が可能となり、高周波かつ高速縦型P
NPトランジスタが実現できる。 また、拡散熱処理は
従来に比べ、著しく短縮でき有益である。
As described above, according to the present invention,
Since the diffusion heat treatment is performed after the ion implantation is continuously performed twice or more at different acceleration energies into the opening above the epitaxial layer where the low collector layer is to be formed, the low collector layer can be formed in a short heat treatment time. Can be formed flat, and therefore the creeping up of the buried collector layer toward the epitaxial layer can be suppressed. As a result, the epitaxial layer can be thinned, and high frequency and high speed vertical P
An NP transistor can be realized. In addition, the diffusion heat treatment is useful because it can be significantly shortened as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例を経時的に説明する模式断面図FIG. 1 is a schematic sectional view illustrating an embodiment of the present invention over time.

【図2】本発明実施例を経時的に説明する模式断面図FIG. 2 is a schematic sectional view illustrating an embodiment of the present invention over time.

【図3】本発明実施例を説明する図FIG. 3 is a diagram illustrating an embodiment of the present invention.

【図4】従来例を経時的に説明する図FIG. 4 is a diagram illustrating a conventional example over time.

【図5】従来例を経時的に説明する図FIG. 5 is a diagram illustrating a conventional example over time.

【図6】従来例を説明する図FIG. 6 is a diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1・・・・P型基板 2a,2b,2c・・・・レジスト 3・・・・エピタキシャル層 4・・・・酸化膜 5・・・・底面分離用領域 6・・・・P+ 領域 6a・・・・低濃度コレクタ層1 ... P type substrate 2a, 2b, 2c ... Resist 3 ... Epitaxial layer 4 ... Oxide film 5 ... Bottom isolation region 6 ... P + region 6a .... Low-concentration collector layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、フォトリソグラフィ工
程により埋込み領域を形成した後、その基板上全面にエ
ピタキシャル層を形成し、その後そのエピタキシャル層
上に酸化膜を介してレジストを形成した後、低コレクタ
層を形成すべきエピタキシャル層上方の上記レジストお
よび酸化膜を除去することにより開口部を設け、その
後、その開口部に異なる加速エネルギで2回以上連続し
てイオン注入を行った後、拡散熱処理を行う工程を有す
る半導体装置の製造方法。
1. A semiconductor substrate is formed with a buried region by a photolithography process, an epitaxial layer is formed on the entire surface of the substrate, and then a resist is formed on the epitaxial layer via an oxide film. An opening is formed by removing the resist and the oxide film above the epitaxial layer where the collector layer is to be formed, and then ion implantation is performed twice or more continuously at different acceleration energies in the opening, followed by diffusion heat treatment. A method of manufacturing a semiconductor device, the method including:
JP2913692A 1992-02-17 1992-02-17 Manufacture of semiconductor device Pending JPH05226351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2913692A JPH05226351A (en) 1992-02-17 1992-02-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2913692A JPH05226351A (en) 1992-02-17 1992-02-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05226351A true JPH05226351A (en) 1993-09-03

Family

ID=12267871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2913692A Pending JPH05226351A (en) 1992-02-17 1992-02-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05226351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844531A1 (en) * 1998-09-29 2000-04-06 Gruetzediek Ursula Process for the production of transistors
US7037788B2 (en) 2000-05-30 2006-05-02 Denso Corporation Manufacturing method of semiconductor device
CN102637597A (en) * 2011-02-10 2012-08-15 上海宏力半导体制造有限公司 Vertical PNP (precision navigation processor) preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844531A1 (en) * 1998-09-29 2000-04-06 Gruetzediek Ursula Process for the production of transistors
US7271070B1 (en) 1998-09-29 2007-09-18 Hartmut Grutzediek Method for producing transistors
DE19844531B4 (en) * 1998-09-29 2017-12-14 Prema Semiconductor Gmbh Process for the production of transistors
US7037788B2 (en) 2000-05-30 2006-05-02 Denso Corporation Manufacturing method of semiconductor device
CN102637597A (en) * 2011-02-10 2012-08-15 上海宏力半导体制造有限公司 Vertical PNP (precision navigation processor) preparation method

Similar Documents

Publication Publication Date Title
US6717211B2 (en) Shallow doped junctions with a variable profile gradation of dopants
JP2746499B2 (en) Semiconductor device and manufacturing method thereof
JPH07176608A (en) Semiconductor device and fabrication thereof
JPS6228577B2 (en)
JPH0969528A (en) Semiconductor device and fabrication thereof
JPH0316137A (en) Bipolar-transistor and manufacture thereof
JP3186043B2 (en) Method for manufacturing semiconductor device
JPH05226351A (en) Manufacture of semiconductor device
JP2504573B2 (en) Semiconductor device and manufacturing method thereof
JP3178664B2 (en) Semiconductor device and manufacturing method thereof
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPH09232457A (en) Semiconductor device manufacturing method
JPH10172981A (en) Semiconductor device and its manufacture
JP2881833B2 (en) Method for manufacturing semiconductor device
JPS60137055A (en) Semiconductor device mixed with mosfet and bipolar transistor and manufacture thereof
JPH03209816A (en) Manufacture of semiconductor device
JPH0595000A (en) Manufacture of semiconductor device
JP3041886B2 (en) Method for manufacturing semiconductor device
JPH06216145A (en) Manufacture or semiconductor device
JPH01246871A (en) Manufacture of bipolar transistor
JPH0756881B2 (en) Method of forming buried oxide film
JPS6149469A (en) Manufacture of semiconductor device
JPH05243249A (en) Manufacture of bipolar transistor
JPH0567623A (en) Manufacture of semiconductor device
JPH05198754A (en) Manufacture of semiconductor device