JPH0567623A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0567623A
JPH0567623A JP22672291A JP22672291A JPH0567623A JP H0567623 A JPH0567623 A JP H0567623A JP 22672291 A JP22672291 A JP 22672291A JP 22672291 A JP22672291 A JP 22672291A JP H0567623 A JPH0567623 A JP H0567623A
Authority
JP
Japan
Prior art keywords
forming
semiconductor
opening
base
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22672291A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuda
博 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22672291A priority Critical patent/JPH0567623A/en
Publication of JPH0567623A publication Critical patent/JPH0567623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the irregularity of the diffusion layer of a semiconductor device, and to univocally determine DC characteristics. CONSTITUTION:After a silicon oxide film 3 has been formed on an N-type silicon substrate 1, a P-type base layer 2 is formed. An aperture 4 is perforated, and a polysilicon film 5 is formed. Using photoresists 9 and 10, arsenic ions are implanted into the aperture part where an emitter region 7 will be formed, boron ions are implanted into the aperture part 6 where a base-contact region will be formed, and then the ions are diffused by conducting a heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にプレーナ構造を有する高周波トランジスタや
高周波集積回路を有する半導体装置の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a high frequency transistor or a high frequency integrated circuit having a planar structure.

【0002】[0002]

【従来の技術】従来高周波トランジスタは図3に示すよ
うな工程断面図により製造していた。
2. Description of the Related Art Conventionally, a high frequency transistor has been manufactured by a process sectional view as shown in FIG.

【0003】まず図3Aに示すように、n型シリコンエ
ピタキシャル層1にp型ベース層2を形成する。p型ベ
ース層2は、特に高周波トランジスタでは非常に薄い拡
散層を必要とするため低加速電圧でのイオン注入法によ
り行なう。この後、シリコン酸化膜3を形成する。
First, as shown in FIG. 3A, a p-type base layer 2 is formed on an n-type silicon epitaxial layer 1. Since the p-type base layer 2 requires a very thin diffusion layer especially in a high frequency transistor, it is formed by an ion implantation method at a low acceleration voltage. After that, the silicon oxide film 3 is formed.

【0004】次に、エミッタ及びベースコンタクトの開
口部4を、このシリコン酸化膜3に形成する(図3
B)。プレーナ型の高周波トランジスタではエミッタと
ベースの間隔が非常に狭くなるため、ここではエミッタ
とベースコンタクト部を同時に開口する。
Next, the openings 4 for the emitter and base contacts are formed in the silicon oxide film 3 (FIG. 3).
B). In a planar high-frequency transistor, the distance between the emitter and the base is very narrow, so the emitter and base contact portions are opened simultaneously here.

【0005】続いて、図3Cに示すように、ポリシリコ
ン膜5を1000〜3000オングストロームの厚さで
形成し、これにエミッタの拡散源となる砒素をイオン注
入法により拡散する。イオン注入量は1×1016cm-2
程度である。
Subsequently, as shown in FIG. 3C, a polysilicon film 5 is formed to a thickness of 1000 to 3000 angstroms, and arsenic serving as a diffusion source of the emitter is diffused therein by an ion implantation method. Ion implantation amount is 1 × 10 16 cm -2
It is a degree.

【0006】この後、図3Dに示すようにシリコン酸化
膜6を形成し、フォトレジスト法によりエミッタ開口部
のみポリシリコン膜5を残すようにパターニングを行な
う。パターニング後、900〜1000℃の窒素雰囲気
中で熱拡散を行なうことによりエミッタ拡散層7を形成
する。ポリシリコン5からの砒素拡散により0.5μm
の浅い拡散深さを有するエミッタ拡散層7が形成され
る。
Thereafter, as shown in FIG. 3D, a silicon oxide film 6 is formed and patterned by a photoresist method so that the polysilicon film 5 is left only in the emitter openings. After patterning, thermal diffusion is performed in a nitrogen atmosphere at 900 to 1000 ° C. to form the emitter diffusion layer 7. 0.5 μm due to arsenic diffusion from polysilicon 5
An emitter diffusion layer 7 having a shallow diffusion depth is formed.

【0007】この後、ベースコンタクト部と電極とのオ
ーミックコンタクトを得、ベースコンタクト部の表面濃
度を上げるため、ボロン拡散を900℃位の温度で行な
ったのが図3Eであり、このあと電極を形成して高周波
トランジスタができあがる。
After that, in order to obtain ohmic contact between the base contact portion and the electrode and increase the surface concentration of the base contact portion, boron diffusion was performed at a temperature of about 900 ° C. as shown in FIG. 3E. A high-frequency transistor is completed by forming it.

【0008】[0008]

【発明が解決しようとする課題】この従来の高周波トラ
ンジスタの製造方法では、特に高周波化を進める上で次
のような問題点がある。
This conventional method of manufacturing a high frequency transistor has the following problems, particularly in promoting higher frequencies.

【0009】まず、より高周波化するためには、図3D
の工程でのエミッタ拡散温度を低温化させる必要があ
り、実際この拡散温度は900℃程度に低温化させてい
る。このため、このあとの工程でのコンタクトボロン拡
散時にエミッタ拡散領域の不純物が再拡散して電流増幅
率、コレクタ・ベース間耐圧等の直流特性が変動してし
まい制御が不可能となってきた。
First, in order to increase the frequency, as shown in FIG.
It is necessary to lower the emitter diffusion temperature in this step, and this diffusion temperature is actually lowered to about 900 ° C. For this reason, the impurities in the emitter diffusion region are re-diffused during the contact boron diffusion in the subsequent steps, and the direct current characteristics such as the current amplification factor and the collector-base breakdown voltage change, which makes control impossible.

【0010】また、これに対処するため、コンタクトボ
ロンをイオン注入法にて行なう場合、表面濃度を得るた
めに1×1015cm-2以上のドーズ量が必要となるが、
この時、ベース拡散層よりボロンが深く入ってしまい、
コレクタ・ベース容量が大きくなったり、ウェハー面内
でバラツキが大きくなるという問題があった。
In order to deal with this, when contact boron is formed by the ion implantation method, a dose amount of 1 × 10 15 cm -2 or more is required to obtain the surface concentration.
At this time, boron enters deeper than the base diffusion layer,
There are problems that the collector-base capacitance becomes large and the variation in the wafer surface becomes large.

【0011】[0011]

【課題を解決するための手段】本発明の製造方法によれ
ば、半導体基板上に絶縁膜を形成する工程と、半導体基
板上で絶縁膜下に一導電型の第1の半導体領域を形成す
る工程と、絶縁膜に複数の開口部を形成する工程と、絶
縁膜及び開口部上にポリシリコン膜を形成する工程と、
第1の開口部に他の導電型の不純物イオンを注入する工
程と、第2の開口部に一導電型の不純物イオンを注入す
る工程と、第1の開口部下に他の導電型の第2の半導体
領域を第2の開口部下に一導電型の第3の半導体領域を
それぞれ同時に形成する工程を含む半導体装置が得られ
る。
According to the manufacturing method of the present invention, the step of forming an insulating film on a semiconductor substrate and the step of forming a one-conductivity-type first semiconductor region below the insulating film on the semiconductor substrate. A step, a step of forming a plurality of openings in the insulating film, a step of forming a polysilicon film on the insulating film and the opening,
A step of implanting impurity ions of another conductivity type into the first opening, a step of implanting impurity ions of one conductivity type into the second opening, and a step of implanting impurity ions of another conductivity type below the first opening. A semiconductor device including the step of simultaneously forming the third semiconductor region of one conductivity type under the second opening.

【0012】更に、本発明の製造方法によれば、前述の
第1の半導体領域をベース領域とし、第2の半導体領域
をエミッタ領域とし、第3の半導体領域をベースコンタ
クト領域としてトランジスタを形成する半導体装置が得
られる。
Further, according to the manufacturing method of the present invention, a transistor is formed by using the first semiconductor region as a base region, the second semiconductor region as an emitter region, and the third semiconductor region as a base contact region. A semiconductor device is obtained.

【0013】本発明の製造方法はプレーナ型の高周波ト
ランジスタの製造に適するが、イオン拡散を一義的に決
定することが好ましいその他の半導体装置にも適用する
ことができる。
Although the manufacturing method of the present invention is suitable for manufacturing a planar type high frequency transistor, it can be applied to other semiconductor devices in which it is preferable to uniquely determine ion diffusion.

【0014】[0014]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0015】図1は本発明による半導体装置の製造方法
の第1の実施例を示す工程断面図である。
FIG. 1 is a process sectional view showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention.

【0016】図1Aに示すようにn型シリコン基板1に
p型ベース層2を形成し、基板上をシリコン酸化膜3で
覆う。これに、エミッタ及びベースコンタクトの開口部
4を形成し、ポリシリコン膜5を成長させる(図1
B)。
As shown in FIG. 1A, a p-type base layer 2 is formed on an n-type silicon substrate 1, and the substrate is covered with a silicon oxide film 3. An opening 4 for the emitter and base contacts is formed in this, and a polysilicon film 5 is grown (see FIG. 1).
B).

【0017】次に、フォトレジスト9をマスクとしてエ
ミッタ上部のポリシリコン膜に選択的に砒素の不純物を
イオン注入し(図1C)、さらにフォトレジスト10を
マスクにベースコンタクト上部にポリシリコン膜5に選
択的にボロンの不純物をイオン注入させる(図1D)。
Next, arsenic impurities are selectively ion-implanted into the polysilicon film above the emitter using the photoresist 9 as a mask (FIG. 1C), and the polysilicon film 5 is formed above the base contact using the photoresist 10 as a mask. Boron impurities are selectively ion-implanted (FIG. 1D).

【0018】このあと、シリコン酸化膜6を形成し、フ
ォトレジストでパターニングし、選択的にエミッタ及び
ベースコンタクトの開口部4上にのみポリシリコン膜を
残し、900℃の窒素雰囲気中にて熱処理を行なう。そ
の結果エミッタ拡散層7及びボロン拡散層8を形成する
(図1E)。
After that, a silicon oxide film 6 is formed and patterned with a photoresist, and the polysilicon film is selectively left only on the openings 4 of the emitter and base contacts, followed by heat treatment in a nitrogen atmosphere at 900 ° C. To do. As a result, the emitter diffusion layer 7 and the boron diffusion layer 8 are formed (FIG. 1E).

【0019】こうして高周波トランジスタの拡散は終了
するが、このあとシリコン酸化膜6を除去し、電極11
を形成することにより所望の高周波トランジスタが形成
される(図1F)。
Although the diffusion of the high frequency transistor is completed in this way, the silicon oxide film 6 is thereafter removed and the electrode 11 is removed.
To form a desired high frequency transistor (FIG. 1F).

【0020】図2は、本発明による半導体装置の製造方
法の第2の実施例を説明するための高周波動作集積回路
の断面図である。
FIG. 2 is a sectional view of a high frequency operation integrated circuit for explaining a second embodiment of the method of manufacturing a semiconductor device according to the present invention.

【0021】p型シリコン基板12上にn型シリコンエ
ピタキシャル層1を形成しn+ 型埋込層13,厚いシリ
コン酸化膜14,チャネルストップ用p型拡散層15を
形成したものに、コレクタ拡散層16,ベース拡散層2
を形成する。
A collector diffusion layer is formed by forming an n-type silicon epitaxial layer 1 on a p-type silicon substrate 12 and forming an n + -type buried layer 13, a thick silicon oxide film 14, and a channel stop p-type diffusion layer 15. 16, base diffusion layer 2
To form.

【0022】この状態で、図1に示したのと同じ工程を
用いることにより高周波動作の集積回路に用いる1ケの
トランジスタが形成される。ここで、コレクタのオーミ
ックコンタクト用にも砒素をイオン注入したポリシリコ
ン膜5を形成し、エミッタ拡散と同時に砒素拡散層17
を形成する。
In this state, the same process as shown in FIG. 1 is used to form one transistor used in the high frequency integrated circuit. Here, the polysilicon film 5 in which arsenic is ion-implanted is also formed for the ohmic contact of the collector, and the arsenic diffusion layer 17 is formed at the same time as the emitter diffusion.
To form.

【0023】[0023]

【発明の効果】以上説明したように、本発明はエミッタ
拡散層とオーミック接合を得るためのベースボロン拡散
層を同時に形成でき、その後熱処理を必要としないた
め、高周波トランジスタの電流増幅率コレクタ・ベース
間耐圧等の直流特性を一義的に決定することができると
いう効果を有する。
As described above, according to the present invention, the emitter diffusion layer and the base boron diffusion layer for obtaining the ohmic junction can be formed at the same time, and the subsequent heat treatment is not required. This has the effect that the DC characteristics such as the breakdown voltage can be uniquely determined.

【0024】また本発明は、オーミック接合を得るため
のボロン拡散層をポリシリコン層から拡散して形成する
ため、ボロン拡散層のウェハー面内でのバラツキを小さ
くすることができるという効果を有する。
Further, according to the present invention, since the boron diffusion layer for obtaining the ohmic contact is formed by diffusing from the polysilicon layer, it is possible to reduce the variation of the boron diffusion layer within the wafer surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の製造方法の第1の実
施例を示す工程断面図である。
FIG. 1 is a process sectional view showing a first embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明による半導体装置の製造方法の第2の実
施例を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining a second embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図3】従来の高周波トランジスタの製造方法を示す工
程断面図である
3A to 3D are process cross-sectional views showing a conventional method for manufacturing a high-frequency transistor.

【符号の説明】[Explanation of symbols]

1 n型シリコンエピタキシャル層 2 p型ベース層 3 シリコン酸化膜 4 開口部 5 ポリシリコン膜 6 シリコン酸化膜 7 エミッタ拡散層 8 ボロン拡散層 9,10 フォトレジスト 11 電極 12 p型シリコン基板 13 n+ 型埋込層 14 シリコン酸化膜 15 p型拡散層 16 コレクタ拡散層 17 砒素拡散層1 n-type silicon epitaxial layer 2 p-type base layer 3 silicon oxide film 4 opening 5 polysilicon film 6 silicon oxide film 7 emitter diffusion layer 8 boron diffusion layer 9, 10 photoresist 11 electrode 12 p-type silicon substrate 13 n + type Buried layer 14 Silicon oxide film 15 P-type diffusion layer 16 Collector diffusion layer 17 Arsenic diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜を形成する工程
と、前記半導体基板上で前記絶縁膜下に一導電型の第1
の半導体領域を形成する工程と、前記絶縁膜に複数の開
口部を形成する工程と、前記絶縁膜及び前記開口部上に
ポリシリコン膜を形成する工程と、第1の開口部に他の
導電型の不純物イオンを注入する工程と、第2の開口部
に一導電型の不純物イオンを注入する工程と、前記第1
の開口部下に他の導電型の第2の半導体領域を前記第2
の開口部下に一導電型の第3の半導体領域をそれぞれ同
時に形成する工程を含むことを特徴とする半導体装置の
製造方法。
1. A step of forming an insulating film on a semiconductor substrate, and a first conductive type first film under the insulating film on the semiconductor substrate.
Forming a semiconductor region, forming a plurality of openings in the insulating film, forming a polysilicon film over the insulating film and the opening, and forming another conductive film in the first opening. Type impurity ions, a step of injecting one conductivity type impurity ions into the second opening, and the first
A second semiconductor region of another conductivity type under the opening of
And a step of simultaneously forming third semiconductor regions of one conductivity type under the opening of the semiconductor device.
【請求項2】 前記第1の半導体領域をベース領域と
し、第2の半導体領域をエミッタ領域とし、第3の半導
体領域をベースコンタクト領域としてトランジスタを形
成することを特徴とする請求項1記載の半導体装置の製
造方法。
2. The transistor according to claim 1, wherein the first semiconductor region serves as a base region, the second semiconductor region serves as an emitter region, and the third semiconductor region serves as a base contact region. Method of manufacturing semiconductor device.
JP22672291A 1991-09-06 1991-09-06 Manufacture of semiconductor device Pending JPH0567623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22672291A JPH0567623A (en) 1991-09-06 1991-09-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22672291A JPH0567623A (en) 1991-09-06 1991-09-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0567623A true JPH0567623A (en) 1993-03-19

Family

ID=16849603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22672291A Pending JPH0567623A (en) 1991-09-06 1991-09-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0567623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654829A1 (en) * 1993-11-12 1995-05-24 STMicroelectronics, Inc. Increased density MOS-gated double diffused semiconductor devices
WO2005067056A1 (en) * 2004-01-09 2005-07-21 Sony Corporation Bipolar transistor, semiconductor device comprising the bipolar transistor and process for fabricating them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654829A1 (en) * 1993-11-12 1995-05-24 STMicroelectronics, Inc. Increased density MOS-gated double diffused semiconductor devices
WO2005067056A1 (en) * 2004-01-09 2005-07-21 Sony Corporation Bipolar transistor, semiconductor device comprising the bipolar transistor and process for fabricating them

Similar Documents

Publication Publication Date Title
JPS58210678A (en) Power mosfet structure and method of producing same
US4398962A (en) Method of controlling base contact regions by forming a blocking layer contiguous to a doped poly-si emitter source
KR930009807B1 (en) Bipolar transistor and manufacturing method thereof
US6362025B1 (en) Method of manufacturing a vertical-channel MOSFET
JPS6318346B2 (en)
KR100245813B1 (en) Self-aligned type double polysilicon bipolar transistor and the manufacturing method thereof
JPH0226032A (en) Manufacture of semiconductor device
US5328857A (en) Method of forming a bilevel, self aligned, low base resistance semiconductor structure
JPH0567623A (en) Manufacture of semiconductor device
JP3506632B2 (en) Method for manufacturing semiconductor device
KR0172509B1 (en) Method of fabricating lateral bipolar transistor
JP2890509B2 (en) Method for manufacturing semiconductor device
JPS6143858B2 (en)
JPH01155660A (en) Manufacture of semiconductor device
JP3226232B2 (en) Semiconductor device and manufacturing method thereof
US5376563A (en) Method of manufacturing an emitter base self alignment structure
JP2594697B2 (en) Method for manufacturing semiconductor device
JP3333863B2 (en) Manufacturing method of bipolar transistor
JPH07249636A (en) Semiconductor device and manufacture thereof
JP3132023B2 (en) Method for manufacturing semiconductor device
JPH0629304A (en) Semiconductor device and manufacture thereof
JPH061815B2 (en) Method for manufacturing semiconductor device
JPH0258230A (en) Manufacture of bipolar transistor
JPH0897226A (en) Pnp transistor, semiconductor integrated circuit, manufacture of semiconductor device, and manufacture of semiconductor integrated circuit
JPH0685052A (en) Manufacture of semiconductor device