JPS5873746A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS5873746A
JPS5873746A JP17083781A JP17083781A JPS5873746A JP S5873746 A JPS5873746 A JP S5873746A JP 17083781 A JP17083781 A JP 17083781A JP 17083781 A JP17083781 A JP 17083781A JP S5873746 A JPS5873746 A JP S5873746A
Authority
JP
Japan
Prior art keywords
thin film
recording medium
magnetic
axis
direction perpendicular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17083781A
Other languages
Japanese (ja)
Other versions
JPH0123927B2 (en
Inventor
Shinsuke Tanaka
信介 田中
Fujio Tanaka
田中 富士雄
Yasuyuki Nagao
長尾 康之
Osatake Imamura
今村 修武
Chuichi Oota
太田 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP17083781A priority Critical patent/JPS5873746A/en
Publication of JPS5873746A publication Critical patent/JPS5873746A/en
Publication of JPH0123927B2 publication Critical patent/JPH0123927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To efficiently produce optical reproduction output by forming an amorphous thin film of a Tb-Fe-Co or Dy-Fe-Co ternary alloy having an axis of easy magnetization in the direction perpendicular to the film surface and specifying the composition of the constitutent elements. CONSTITUTION:A photomagnetic recording medium is obtd. by forming an amorphous thin film of a Tb-Fe-Co of Dy-Fe-Co ternary alloy having an axis of easy magnetization in the direction perpendicular to the film surface and 120-200 deg.C Curie point. The thin film is made amorphous by manufacturing a thin film on a substrate kept at a temp. below room temp. by sputtering or other method. It is required to regulate the composition consisting of Tb or Dy, Co and Fe to Tbx(Fe1-yCoy)1-x or Dyx(Fe1-yCoy)1-x (where 0.15<=x<=0.35 and 0<y<=0.5).

Description

【発明の詳細な説明】 本発明は光磁気メモリー、磁気記録表示素子などに用い
られる光磁気記録媒体に関するもので、具体的には膜面
と垂直な方向に磁化容易方向を有し、円形あるいは任意
の形状の反転磁区を作ることにより情報を記録すること
が出来、磁気カー効果などの磁気光学効果を利用して読
み出すことのできる磁性薄膜記録媒体に関するものであ
る。
Detailed Description of the Invention The present invention relates to a magneto-optical recording medium used in a magneto-optical memory, a magnetic recording display element, etc. Specifically, the present invention relates to a magneto-optical recording medium that has an easy magnetization direction perpendicular to the film surface, and has a circular or The present invention relates to a magnetic thin film recording medium in which information can be recorded by creating reversed magnetic domains of arbitrary shapes and read out using magneto-optic effects such as the magnetic Kerr effect.

磁化容易軸が膜面と垂直な方向にある強磁性薄膜では、
51r7!、あるいはN極に一様に磁化された膜面内の
一様磁化極性と逆向きの磁極をもつ小さな反転磁区を作
ることができる。この反転磁区の有無をrlJ 、 r
OJに対応させれば、このような強磁性薄膜を高密度の
磁気記録媒体として用いることができる。このような強
磁性薄膜のうち、室温にて大きな保磁力を有し、かつキ
ューリ一点又は磁気的補償温度が比較的室温に近い薄膜
は、キューリ一点又は磁気的補償温度を利用して光ビー
ムにより、任意の位置に反転磁区を作ることによって情
報を記録させることができるため、一般にビーム・アド
レサプルファイルとして用いられている。
In a ferromagnetic thin film whose axis of easy magnetization is perpendicular to the film surface,
51r7! Alternatively, it is possible to create a small reversal magnetic domain having a magnetic pole in the opposite direction to the uniform magnetization polarity in the plane of the film, which is uniformly magnetized to the N pole. The presence or absence of this inverted magnetic domain is determined by rlJ and r
If made compatible with OJ, such a ferromagnetic thin film can be used as a high-density magnetic recording medium. Among such ferromagnetic thin films, thin films that have a large coercive force at room temperature and have a Curie point or magnetic compensation temperature relatively close to room temperature can be irradiated with a light beam using the Curie point or magnetic compensation temperature. , it is generally used as a beam addressable file because information can be recorded by creating reversed magnetic domains at arbitrary positions.

従来、公知である膜面と垂直な方向に磁化容易軸を有し
、かつビーム・アドレサプルファイルとして使用可能な
強磁性薄膜としては、MnB1に代表される多結晶金属
薄膜、Gd −Co 、 Gd−Fe 、 Tb −F
e 。
Conventionally known ferromagnetic thin films that have an axis of easy magnetization in the direction perpendicular to the film surface and can be used as beam addressable files include polycrystalline metal thin films typified by MnB1, Gd-Co, and Gd. -Fe, Tb -F
e.

Dy −Fe等の非晶質金属薄膜、GIGに代表される
化合物単結晶薄膜があるが、それ、それ以下に述べるよ
うな利点及び欠点を有している。MnB1に代表される
キューリ一点を利用して書き込みを行なう多結晶性金属
薄膜は室温で数KOeの大きな保磁力を有している点で
は磁気記録媒体として優れているが、キューリーAが高
い(MnBiではT。=360℃)ために書き込みに大
きなエネルギーを必要とする欠点がある。また、多結晶
体であるため化学、量論的な組成の薄膜を作製する必要
があり、薄膜の作製が技術的に難しいという欠点もある
。また、Gd”Co 、 Gd−Feの磁気的補償点を
利用して書き込みを行なう非晶質金属薄膜は、非晶質で
あるため任意の基体上に作製可能であり、多少の不純物
を加えることによっである程度磁気的補償温度を任意に
制御できる等の利点を有するが、室温における保磁力が
小さく (300〜□1)000e)、記録された情り 報が不安定′″ch h L = 3.、、”’1G、
、点を有す6・しかも・この程度の保磁力を有す 薄膜
を作製するためにも棹成をほぼ1 atom%以内に制
御する必要があり、薄膜作製面でも容易でない。
There are amorphous metal thin films such as Dy-Fe and compound single crystal thin films typified by GIG, but they have advantages and disadvantages as described below. A polycrystalline metal thin film that performs writing using a single Curie point, such as MnB1, is excellent as a magnetic recording medium in that it has a large coercive force of several KOe at room temperature, but it has a high Curie A (MnBi (T = 360°C), it has the disadvantage that it requires a large amount of energy for writing. Furthermore, since it is a polycrystalline material, it is necessary to produce a thin film with a chemical and stoichiometric composition, and it also has the disadvantage that it is technically difficult to produce a thin film. In addition, since the amorphous metal thin film that performs writing using the magnetic compensation points of Gd"Co and Gd-Fe is amorphous, it can be fabricated on any substrate, and it is possible to fabricate it on any substrate without adding some impurities. Although it has the advantage that the magnetic compensation temperature can be arbitrarily controlled to some extent, the coercive force at room temperature is small (300~□1)000e), and the recorded information is unstable. 3. ,,”'1G,
In order to produce a thin film having a coercive force of this level, it is necessary to control the formation to within approximately 1 atom%, which is not easy in terms of thin film production.

さらに、GIGに代表される化合物単結晶薄膜は他のも
のにくらべ非常にコスト高になるという大きな欠点を有
する。
Furthermore, compound single crystal thin films typified by GIG have a major drawback in that they are extremely expensive compared to other films.

又、これ等の欠点を除去した新しい磁性薄膜記録媒体と
して提案された15 atom %〜30 atom 
%の1又はDyを含むTbFeやDyFeの非晶質合金
薄膜は、次のような利点を有している。
In addition, 15 atom % to 30 atom was proposed as a new magnetic thin film recording medium that eliminates these drawbacks.
The amorphous alloy thin film of TbFe or DyFe containing 1% or Dy has the following advantages.

■膜面と垂直な方向に磁化容易軸を有し、室温において
数KOeの大きな保磁力を有するため、高密度の情報記
録が可能で、記録された情報が極めて安定である。
(2) It has an axis of easy magnetization in the direction perpendicular to the film surface and has a large coercive force of several KOe at room temperature, so high-density information recording is possible and the recorded information is extremely stable.

■保磁力が大きく所望の形状の磁区を書き込むことが可
能である。
■It has a large coercive force, making it possible to write magnetic domains in a desired shape.

■幅広い組成範囲にわたって大きな保磁力を有しており
、記録媒体として優れた特性を持っている組成範囲もま
た広いため、組成の厳しく限定さ−にた薄膜竺゛作る必
要がなく非常に容易に作製でき歩留まりも良い。
■It has a large coercive force over a wide composition range, and has excellent properties as a recording medium.The composition range is also wide, so there is no need to create thin films with a strictly limited composition, making it very easy to use. It can be manufactured and has a good yield.

■キューリ一点がTbFeでは120℃、 、DyFe
では60℃と低いため、キューリ一点を利用して熱書き
込みを行なう場合には非常に小さな4.T、ネルギーに
より書き込みを行なうことができる。
■One cucumber is 120℃ in TbFe, ,DyFe
Since the temperature is as low as 60 degrees Celsius, it is extremely small when performing thermal writing using a single point of Curi. Writing can be performed using T, energy.

しかしながら、このTbFe 、 DyFe等の非晶質
合金薄膜は次の様な欠点がある。すなわち、キューリ一
点が低いと確かに小さなエネルギーで書き込みは出来る
が、光で読み出す時のS/Nは逆に悪くなる。図1には
、非晶質合金薄膜の光再生時の光再生出力(S)及び信
号対雑音比(S/N)を照射レーザパワー(Io)の関
数として示しであるが、記録媒体として良い特性を有す
るTbFe 、 DyFeは光再生の点では記録媒体と
して良くないGdFeよりも悪いことがわかる。これは
この記録媒体を光磁気メモリとして考える場合には非常
に大きな欠点となる。
However, this amorphous alloy thin film such as TbFe or DyFe has the following drawbacks. That is, if the Curie point is low, it is true that writing can be performed with small energy, but the S/N ratio when reading with light becomes worse. Figure 1 shows the optical reproduction output (S) and signal-to-noise ratio (S/N) during optical reproduction of an amorphous alloy thin film as a function of the irradiated laser power (Io), which can be used as a recording medium. It can be seen that TbFe and DyFe, which have such characteristics, are worse than GdFe, which is not good as a recording medium in terms of optical reproduction. This is a very serious drawback when considering this recording medium as a magneto-optical memory.

本発明の目的は、上記めような膜面と垂直な方向に磁−
化容易軸を有する従来の光磁気記録媒体の欠点を除去し
て効率よく光再生出力をとり出し得る光磁気記録媒体を
提供することにある。
The object of the present invention is to conduct a magnetic field in a direction perpendicular to the above film surface.
It is an object of the present invention to provide a magneto-optical recording medium that can efficiently extract optical reproduction output by eliminating the drawbacks of conventional magneto-optical recording media having an easy axis.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の光磁気記録媒体は、膜面に垂直な方向が磁化容
易軸でおるとともに、120℃〜200℃の間のキュー
リ一点を有するTb−Fe−伽とDy−Fe−Coの非
晶質合金薄膜である。膜面に垂直な方向に磁化を向ける
に十分な磁気異方性をもたせるためには、薄膜を非晶質
にすることが必要であるが、この条件は室温以下の温度
に保持された基体上にスパッタリング法あるいは真空蒸
着法等によって薄膜作製を行なうことによって達成され
る。また、磁化を安定しぞ膜面に垂直な方向に向かせる
ためには膜の厚さを100A”以上とし、上記のように
Tb又はDyとFeとCoの組成をTbx(Fe I 
y Coy ) 1−X及びDyx(F’el−yCo
y)1−、として0.15<x<0.35 。
The magneto-optical recording medium of the present invention is an amorphous material of Tb-Fe-C and Dy-Fe-Co which has an axis of easy magnetization in the direction perpendicular to the film surface and has a single Curie point between 120°C and 200°C. It is an alloy thin film. In order to have sufficient magnetic anisotropy to orient the magnetization in the direction perpendicular to the film surface, it is necessary to make the thin film amorphous, but this condition cannot be achieved on a substrate kept at a temperature below room temperature. This is achieved by fabricating a thin film using a sputtering method, a vacuum evaporation method, or the like. In addition, in order to stabilize the magnetization and direct it in the direction perpendicular to the film surface, the thickness of the film should be 100A" or more, and the composition of Tb or Dy, Fe, and Co should be changed to Tbx (Fe I
y Coy ) 1-X and Dyx (F'el-yCo
y) 1-, as 0.15<x<0.35.

o、oo (y≦050の範囲にすることが必要である
o, oo (It is necessary to set the range of y≦050.

o、so (yでは、キー−り一点または磁気的補償温
度の組成依存性が大きく、実用性がない。この組成範囲
における光磁気記録媒体は膜面に垂直方向に磁化容易軸
を有せしめることができ、非常に高密度の記録が可能で
ある。
o, so (at y, the dependence of the key point or the magnetic compensation temperature on the composition is large, making it impractical. A magneto-optical recording medium in this composition range must have an axis of easy magnetization perpendicular to the film surface. This enables extremely high-density recording.

本発明の磁気光学記録媒体は120〜200℃程度の比
較的低いキューリ一点を有するにもかかわらず、磁気カ
ー効果を利用した光再生出力が同程度のキューリ一点を
有するTbFe +DyFe’、l¥:Iものより大き
いことを特徴としている。例としてTbFeC。
Although the magneto-optical recording medium of the present invention has a relatively low Curie point of about 120 to 200°C, the optical reproduction output using the magnetic Kerr effect has a similar Curie point. It is characterized by being larger than I. An example is TbFeC.

の場合を示すと、図2に示すとと< 、Tb (FeC
o )のカー回転角θえは二元のTbFeにCoを添加
するにつれて向上していることが分る。図2において、
横軸はCoのTbFeCo全体に対する率(チ)を示す
。一方、記録特性に係わる保磁力Heとキー−り一点T
cについてみ−ると、表1のように保磁力はTbF、e
二元系と比べかなり大きくなっていて、またキューリ一
点Tcは若干上昇はするけれどもTbFeのすぐれた記
録特性はそのまま残されている。
In the case of < , Tb (FeC
It can be seen that the Kerr rotation angle θ of (o) is improved as Co is added to the binary TbFe. In Figure 2,
The horizontal axis shows the ratio (chi) of Co to the entire TbFeCo. On the other hand, the coercive force He and key point T, which are related to recording characteristics, are
Regarding c, as shown in Table 1, the coercive force is TbF, e
Although it is considerably larger than the binary system, and the Curie point Tc increases slightly, the excellent recording characteristics of TbFe remain unchanged.

表   1 以上説明したように、本□発::明の光磁気記録媒体:
・1 は良く知られた非晶質合金薄膜のTbFe 、 DyF
e等と同じく膜面に垂直な方向に磁化容易軸を有し、か
つ室温で大きな保磁力を有し、かクキューリ一点が室温
に近く、作製も容易であるという非晶質合金薄膜の特長
はそのまま有していて、しかも光再生出力だけは従来の
どれよりも大きい。従って、光ビームを用いて書き込み
、カー効果を利用して読み出しを行なう、いわゆるビー
ム・アドーツサブルファイルメモリ等の光磁気メモリの
貯蔵媒体として使用すれば、極めて高密度でS/Nの大
きい優れたメモリ装置を実現することができる。書き込
み方法としては光ビームに限らず、釘型磁気ヘッド、熱
ペン、電子ビームなど反転磁区を生じせしめるのに必要
なエネルギーを供給するいかなる方法で行なっても良い
ことは言うまでもない。
Table 1 As explained above, from this book: Ming's magneto-optical recording medium:
・1 is a well-known amorphous alloy thin film of TbFe, DyF
The features of amorphous alloy thin films are that they have an axis of easy magnetization in the direction perpendicular to the film surface like e.g., have a large coercive force at room temperature, have a single cucumber point close to room temperature, and are easy to fabricate. However, the optical reproduction output is larger than any of the conventional ones. Therefore, if it is used as a storage medium for a magneto-optical memory such as a so-called beam-addressable file memory, which writes using a light beam and reads using the Kerr effect, it has an extremely high density and a large S/N ratio. A memory device can be realized. It goes without saying that the writing method is not limited to a light beam, and may be performed by any method that supplies the energy necessary to generate reversed magnetic domains, such as a nail-shaped magnetic head, a hot pen, or an electron beam.

【図面の簡単な説明】[Brief explanation of drawings]

図1は従来の非晶質合金薄膜の光再生特性図、図2は本
発明/) GdDyCo薄膜のCo(%)とカー回転角
:11 θ3の関係を示す特性1・である。 特許出願人  国際電信電株式会社 代理人 大塚 学 外1名 Φ
FIG. 1 is a diagram of optical reproduction characteristics of a conventional amorphous alloy thin film, and FIG. 2 is a characteristic 1 showing the relationship between Co (%) and Kerr rotation angle: 11 θ3 of the present invention/GdDyCo thin film. Patent applicant Kokusai Telegraph and Telegraph Co., Ltd. agent Otsuka 1 external personΦ

Claims (1)

【特許請求の範囲】[Claims] 膜面と垂直な方向に磁化容易軸を有する非、晶質Tb−
Fe−Co又はDy−FeLCo三元系合金薄膜を有し
、’rbx(Fe 1−y Coy ) 1−z + 
1))’z (Fe 1−y Coy ) 1−z と
したとき、Xが0.15<x≦0.35の範囲であり、
yが0<y<o、soの範囲にあることを特徴とする光
磁気記録媒体。
Non-crystalline Tb- with an axis of easy magnetization perpendicular to the film surface
It has a Fe-Co or Dy-FeLCo ternary alloy thin film, 'rbx(Fe 1-y Coy ) 1-z +
1))'z (Fe 1-y Coy ) 1-z, X is in the range of 0.15<x≦0.35,
A magneto-optical recording medium characterized in that y is in the range of 0<y<o, so.
JP17083781A 1981-10-27 1981-10-27 Photomagnetic recording medium Granted JPS5873746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17083781A JPS5873746A (en) 1981-10-27 1981-10-27 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17083781A JPS5873746A (en) 1981-10-27 1981-10-27 Photomagnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10160290A Division JPH0316049A (en) 1990-04-19 1990-04-19 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS5873746A true JPS5873746A (en) 1983-05-04
JPH0123927B2 JPH0123927B2 (en) 1989-05-09

Family

ID=15912243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17083781A Granted JPS5873746A (en) 1981-10-27 1981-10-27 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5873746A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS58196639A (en) * 1982-05-10 1983-11-16 Canon Inc Photothermic and magnetic recording medium
JPS59159510A (en) * 1983-03-01 1984-09-10 Canon Inc Magnetooptical recording medium
JPS59159509A (en) * 1983-03-01 1984-09-10 Canon Inc Magneto optical recording medium
JPS59201247A (en) * 1983-04-28 1984-11-14 Ricoh Co Ltd Photomagnetic recording medium
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS6068607A (en) * 1983-09-14 1985-04-19 Sumitomo Metal Mining Co Ltd Magnetic thin film recording medium
JPS6083305A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Magneto-optic medium
JPS60101744A (en) * 1983-11-07 1985-06-05 Daido Steel Co Ltd Recording medium consisting of thin magnetic film
JPS60177455A (en) * 1984-02-22 1985-09-11 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for curie point writing
JPS60246606A (en) * 1984-05-22 1985-12-06 Ricoh Co Ltd Amorphous magneto-optical layer
JPS616808A (en) * 1984-06-20 1986-01-13 Oki Electric Ind Co Ltd Photomagnetic recording material
JPS6140012A (en) * 1984-07-31 1986-02-26 Oki Electric Ind Co Ltd Material for photomagnetic recording
DE3536210A1 (en) * 1984-10-11 1986-04-17 Hitachi, Ltd., Tokio/Tokyo Magneto-optical recording medium
JPS61196439A (en) * 1985-02-25 1986-08-30 Toshiba Corp Photomagnetic recording medium and its production
DE3604642A1 (en) * 1985-03-20 1986-10-02 Hitachi, Ltd., Tokio/Tokyo Magneto-optical recording medium
US4803129A (en) * 1985-11-09 1989-02-07 Yamaha Corporation Magnetic recording material
US4838962A (en) * 1985-07-12 1989-06-13 Hitachi, Ltd. Magneto-optical recording medium
EP0351250A2 (en) * 1988-07-13 1990-01-17 Matsushita Electric Industrial Co., Ltd. Magneto-optic recording medium comprising Dy-Fe-Co-based alloys
JPH0296952A (en) * 1988-06-28 1990-04-09 Sharp Corp Optical memory element
JPH0316049A (en) * 1990-04-19 1991-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Magneto-optical recording medium
US5093174A (en) * 1989-07-04 1992-03-03 Teijin Limited Optical recording medium
US5135819A (en) * 1987-10-30 1992-08-04 Pioneer Electronic Corporation Photomagnetic memory medium having a non-columnar structure
US5192626A (en) * 1988-12-14 1993-03-09 Teijin Limited Optical recording medium
JPH0589555A (en) * 1992-01-28 1993-04-09 Canon Inc Information recording and reproducing method
JPH05174437A (en) * 1991-04-30 1993-07-13 Canon Inc Magneto-optical recording medium
JPH05189822A (en) * 1992-06-19 1993-07-30 Sharp Corp Magneto-optical recording medium
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor
US5492773A (en) * 1988-09-13 1996-02-20 Teijin Limited Magneto-optical recording medium
US5512364A (en) * 1986-05-14 1996-04-30 Teijin Limited Magneto-optical recording medium
US5595805A (en) * 1991-07-08 1997-01-21 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5667862A (en) * 1989-03-15 1997-09-16 Sony Corporation Magneto-optical disk
US5705286A (en) * 1992-12-10 1998-01-06 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5786078A (en) * 1990-10-26 1998-07-28 Teijin Limited Magneto-optical recording medium
US6139949A (en) * 1989-02-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Magneto optical recording medium

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS58196639A (en) * 1982-05-10 1983-11-16 Canon Inc Photothermic and magnetic recording medium
JPH0232690B2 (en) * 1982-05-10 1990-07-23 Canon Kk
JPH0570922B2 (en) * 1983-03-01 1993-10-06 Canon Kk
JPS59159510A (en) * 1983-03-01 1984-09-10 Canon Inc Magnetooptical recording medium
JPS59159509A (en) * 1983-03-01 1984-09-10 Canon Inc Magneto optical recording medium
JPS59201247A (en) * 1983-04-28 1984-11-14 Ricoh Co Ltd Photomagnetic recording medium
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS6068607A (en) * 1983-09-14 1985-04-19 Sumitomo Metal Mining Co Ltd Magnetic thin film recording medium
JPS6083305A (en) * 1983-10-14 1985-05-11 Hitachi Ltd Magneto-optic medium
JPS60101744A (en) * 1983-11-07 1985-06-05 Daido Steel Co Ltd Recording medium consisting of thin magnetic film
US5204193A (en) * 1984-02-22 1993-04-20 Nippon Kogaku K.K. Recording magnetooptical recording medium
JPS60177455A (en) * 1984-02-22 1985-09-11 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for curie point writing
JPS60246606A (en) * 1984-05-22 1985-12-06 Ricoh Co Ltd Amorphous magneto-optical layer
JPS616808A (en) * 1984-06-20 1986-01-13 Oki Electric Ind Co Ltd Photomagnetic recording material
JPH0330964B2 (en) * 1984-06-20 1991-05-01 Oki Electric Ind Co Ltd
JPS6140012A (en) * 1984-07-31 1986-02-26 Oki Electric Ind Co Ltd Material for photomagnetic recording
US4923765A (en) * 1984-10-11 1990-05-08 Hitachi, Ltd. Magneto-optical recording medium
DE3536210A1 (en) * 1984-10-11 1986-04-17 Hitachi, Ltd., Tokio/Tokyo Magneto-optical recording medium
JPS61196439A (en) * 1985-02-25 1986-08-30 Toshiba Corp Photomagnetic recording medium and its production
DE3604642A1 (en) * 1985-03-20 1986-10-02 Hitachi, Ltd., Tokio/Tokyo Magneto-optical recording medium
US4838962A (en) * 1985-07-12 1989-06-13 Hitachi, Ltd. Magneto-optical recording medium
US4803129A (en) * 1985-11-09 1989-02-07 Yamaha Corporation Magnetic recording material
US5512364A (en) * 1986-05-14 1996-04-30 Teijin Limited Magneto-optical recording medium
US5135819A (en) * 1987-10-30 1992-08-04 Pioneer Electronic Corporation Photomagnetic memory medium having a non-columnar structure
JPH0296952A (en) * 1988-06-28 1990-04-09 Sharp Corp Optical memory element
EP0351250A2 (en) * 1988-07-13 1990-01-17 Matsushita Electric Industrial Co., Ltd. Magneto-optic recording medium comprising Dy-Fe-Co-based alloys
US5492773A (en) * 1988-09-13 1996-02-20 Teijin Limited Magneto-optical recording medium
US5192626A (en) * 1988-12-14 1993-03-09 Teijin Limited Optical recording medium
US6139949A (en) * 1989-02-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Magneto optical recording medium
US5667862A (en) * 1989-03-15 1997-09-16 Sony Corporation Magneto-optical disk
US5093174A (en) * 1989-07-04 1992-03-03 Teijin Limited Optical recording medium
JPH0465523B2 (en) * 1990-04-19 1992-10-20 Kokusai Denshin Denwa Co Ltd
JPH0316049A (en) * 1990-04-19 1991-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Magneto-optical recording medium
US5786078A (en) * 1990-10-26 1998-07-28 Teijin Limited Magneto-optical recording medium
JPH05174437A (en) * 1991-04-30 1993-07-13 Canon Inc Magneto-optical recording medium
US5595805A (en) * 1991-07-08 1997-01-21 Sharp Kabushiki Kaisha Magneto-optical recording medium
JPH0589555A (en) * 1992-01-28 1993-04-09 Canon Inc Information recording and reproducing method
JPH05189822A (en) * 1992-06-19 1993-07-30 Sharp Corp Magneto-optical recording medium
US5705286A (en) * 1992-12-10 1998-01-06 Sharp Kabushiki Kaisha Magneto-optical recording medium
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor

Also Published As

Publication number Publication date
JPH0123927B2 (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPS5873746A (en) Photomagnetic recording medium
JPS6032331B2 (en) magneto-optical recording medium
JPH0118506B2 (en)
US4152486A (en) Magneto-optical memory medium
JPS6227459B2 (en)
US4814238A (en) Magneto-optical recording medium
JP2579631B2 (en) Magneto-optical recording method
US4612068A (en) Magneto-optical recording medium
JPS5968854A (en) Photomagnetic recording medium
JPH0330963B2 (en)
JPS61255546A (en) Photomagnetic recording medium
JPS6131533B2 (en)
US4333991A (en) Magnetic garnet film and manufacturing method therefor
JPS59108304A (en) Optical magnetic recording medium
JPH0316049A (en) Magneto-optical recording medium
JPS5873030A (en) Optical magnetic recording medium
JPS58125251A (en) Optical and magnetic recording medium
JPS6184004A (en) Photo-magnetic recording medium
JPS6196706A (en) Photomagnetic recording medium
JPS6122451A (en) Photomagnetic recording medium
JPS6228947A (en) Photomagnetic recording medium
JPS5968853A (en) Photomagnetic recording medium
JPH03273540A (en) Magnetic recording medium and magnetic recording device and spin glass magnetic material
JPH0481269B2 (en)
JPS6289254A (en) Photomagnetic recording medium