JPS58196639A - Photothermic and magnetic recording medium - Google Patents

Photothermic and magnetic recording medium

Info

Publication number
JPS58196639A
JPS58196639A JP7767782A JP7767782A JPS58196639A JP S58196639 A JPS58196639 A JP S58196639A JP 7767782 A JP7767782 A JP 7767782A JP 7767782 A JP7767782 A JP 7767782A JP S58196639 A JPS58196639 A JP S58196639A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
film
photothermic
photothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7767782A
Other languages
Japanese (ja)
Other versions
JPH0232690B2 (en
Inventor
Hiroyoshi Kishi
博義 岸
Masaaki Matsushima
正明 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7767782A priority Critical patent/JPS58196639A/en
Priority to DE19833317101 priority patent/DE3317101A1/en
Priority to DE3348423A priority patent/DE3348423C2/en
Publication of JPS58196639A publication Critical patent/JPS58196639A/en
Priority to US06/671,978 priority patent/US4693943A/en
Publication of JPH0232690B2 publication Critical patent/JPH0232690B2/ja
Priority to US08/485,159 priority patent/US5738950A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/133Amorphous metallic alloys, e.g. glassy metals containing rare earth metals
    • H01F10/135Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals
    • H01F10/136Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals containing iron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10

Abstract

PURPOSE:To obtain a photothermic and magnetic recording medium which has a Kerr rotational angle larger than the conventional value and high S/N along with easy producibility of film, by providing a 4-element amorphous magnetic alloy film of Gd-Tb-Fe-Co having an axis of easy magnetization on the film surface and in the vertical direction on a substrate. CONSTITUTION:Gd, Tb and Co pieces are arrayed evenly on Fe to obtain a target. Then a high-frequency sputtering device is used to form an amorphous magnetic alloy film consisting of Gd-Tb-Fe-Co having the sum of Fe and Co equal to 50-90% total of 4 elements in terms of an atom ratio on a glass substrate so that an axis of easy magnetization is obtained in the direction vertical to the film surface. It is preferable to set the composition of 4 elements within a range shown by an equation (0.005<=X<1.05<=Y<=0.9, 0<Z<1). As a result, the Kerr rotational angle is greatly increased in comparison with the conventional value with high S/N and excellent heat stability for a photothermic and magnetic recording medium.

Description

【発明の詳細な説明】 本発明は、光磁気メモリー、磁気記録、表示素子などに
用いられる光熱磁気記録媒体に関するもので、特に、磁
気カー効果、若しくはファラデー効果などの磁気光学効
果を用いて読み出すことのできる磁性薄膜記録媒体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photothermal magnetic recording medium used for magneto-optical memory, magnetic recording, display elements, etc. In particular, the present invention relates to a photothermal magnetic recording medium used for magneto-optical memory, magnetic recording, display elements, etc. The present invention relates to a magnetic thin film recording medium that can be used as a magnetic thin film recording medium.

従来、光熱磁気記録媒体としては、MnB1 。Conventionally, MnB1 has been used as a photothermal magnetic recording medium.

MnCuB1等の多結晶体薄膜、GdCo 、 GdF
e 。
Polycrystalline thin film such as MnCuB1, GdCo, GdF
e.

TbFe 、 DYFe 、 GdTbFe 、 Tb
D)’Fe等の非晶質薄膜、Gd IG等の単結晶薄膜
等が知られている。
TbFe, DYFe, GdTbFe, Tb
D)' Amorphous thin films such as Fe, single crystal thin films such as Gd IG, etc. are known.

これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する製膜性、信号を小さな光熱エネルギーで書き込
むための書き込み効率、書き込まれ良信号をS/Nよ〈
読み出す丸めの読尋出し効率等を勘案し、最近では、前
記非晶質薄膜が光熱磁気記録媒体として優れていると考
えられている。
Among these thin films, the film-forming efficiency of producing a large-area thin film at a temperature near room temperature, the writing efficiency for writing signals with small photothermal energy, and the S/N of a good written signal are important.
Taking into account readout efficiency of rounding, etc., the amorphous thin film is recently considered to be excellent as a photothermal magnetic recording medium.

然しながら、これ等の非晶質薄膜においても種々の欠点
が指摘されている。例えばGdFeは保磁力が小さく、
記帰され九情報が不安定である。またGdFe 、 G
dCoは、磁気的補償点を利用した書き込みを行なって
おり、書き込み効率を均一にする為に製膜の際、膜組成
を厳しく管理しなければならない、 TbF”e 、 
DyF”e 、 TbDyFeは、キューリ一点書き込
みの為、膜組成をそれほど厳しく管理することはないが
、キューリ一点が! 100°C以下と低い為に、信号を読み出す時にパワー
の強い光を用いることができないという電点がある。
However, various drawbacks have been pointed out even in these amorphous thin films. For example, GdFe has a small coercive force,
The recorded information is unstable. Also, GdFe, G
dCo performs writing using magnetic compensation points, and the film composition must be strictly controlled during film formation to make the writing efficiency uniform.
For DyF"e and TbDyFe, the film composition is not so strictly controlled because one Curie point is written. However, because the temperature is low at less than 100°C, it is not possible to use strong light when reading out signals. There is a point that it cannot be done.

キューリ一温度は低ければ、書き込む為の効率は向上す
るが書き込まれ九信号が、周囲の温度とか読み出し光に
よプ乱されてしまう。従って磁気変態温度は、使用上の
状態を考慮すると、100℃以上が望ましい。反射光に
よる読み出し林は、反射率をR1カー回転角をθにとす
ると、R・θkに比例する。従って、林比良く読み出す
為には、カー回転角を大きくすれば良い。
If the Curie temperature is low, the writing efficiency will improve, but the written signal will be disturbed by the ambient temperature or read light. Therefore, considering the usage conditions, the magnetic transformation temperature is preferably 100° C. or higher. The readout by reflected light is proportional to R.theta.k, where the reflectance is R1 and the Kerr rotation angle is .theta.. Therefore, in order to read with good accuracy, the Kerr rotation angle should be increased.

表1には、非、晶質磁性膜のカー 回転角が示されてい
る。
Table 1 shows the Kerr rotation angles of non-crystalline magnetic films.

表1 この中では、GdTbFeのカー回転角が最も太きい。Table 1 Among these, GdTbFe has the widest Kerr rotation angle.

しかし、この値でも充分ではなく、更にカー回転角を大
きくする研究が進められている。
However, even this value is not sufficient, and research is underway to further increase the Kerr rotation angle.

本発明の目的は、熱安定性に優れ、かつカー回転角が充
分に大きくS/)J比の良い読み出しが6丁能な光熱磁
気記録媒体を提供することにある。
An object of the present invention is to provide a photothermal magnetic recording medium that has excellent thermal stability, has a sufficiently large Kerr rotation angle, and can be read out with a good S/)J ratio.

即ち、光熱磁気記録媒体に於いては、該媒体をGd −
Tb −Fe −Coの4元系非晶質磁性合金より構成
することにより上記目的を達成せんとするものである。
That is, in a photothermal magnetic recording medium, the medium is Gd −
The above object is achieved by constructing a quaternary amorphous magnetic alloy of Tb-Fe-Co.

また、本発明に係る上記光熱磁気記録媒体に於いては 
膜面に垂直な方向に磁化容易軸を向けるのに充分な磁気
異方性を持たせる組成としてFeとCoとを合わせた原
子比が50 atom−〜90 atomlGの範囲に
存在することが望ましい。
Further, in the above photothermal magnetic recording medium according to the present invention,
As a composition that provides sufficient magnetic anisotropy to orient the axis of easy magnetization in a direction perpendicular to the film surface, it is desirable that the combined atomic ratio of Fe and Co be in the range of 50 atoms to 90 atoms.

特に好ましくは、70 atom% 〜85 atom
%である。更に本発明lこ係る上記光熱磁気記録媒体に
於いては、カー回転角が従来の構成元素による値に比べ
て充分に大きくなるためにはFeとCo1とを合わせた
原子比を100−とした場合COがFeに対して0.5
 a t om%以上の原子比で存在することか望まし
い。以下、本=発明の光熱磁気記録媒体に関して詳述す
る。
Particularly preferably 70 atom% to 85 atom%
%. Furthermore, in the photothermal magnetic recording medium according to the present invention, in order for the Kerr rotation angle to be sufficiently large compared to the value of conventional constituent elements, the combined atomic ratio of Fe and Co1 is set to 100-. If CO is 0.5 for Fe
It is desirable that it be present in an atomic ratio of at % or more. Hereinafter, the photothermal magnetic recording medium of the present invention will be described in detail.

本発明に係る光熱磁気記録媒体に於いでば、Gd −T
b −Fe −Coの組み合わせで非晶質磁性媒体を形
成することくより、磁気光学定数の値の優れた記録媒体
が得られたものである。この結果は後述する実施例より
明・らかな様に、従来知られている蝦も大きなカー回転
角であるGdTbFeの0.27度を大幅に凌ぐ値を有
するものである。
In the photothermal magnetic recording medium according to the present invention, Gd -T
By forming an amorphous magnetic medium using the combination of b-Fe-Co, a recording medium with excellent magneto-optic constant values was obtained. As will be clearly seen from the examples described later, this result has a value that greatly exceeds the Kerr rotation angle of GdTbFe, which has a large Kerr rotation angle of 0.27 degrees, even in the conventionally known shrimp.

また、本発明のGd −Tb −Fe −Co系系非晶
質4會 膜面に垂直嫌方向に向轄られるだけに充分な磁気異方性
を持たな妙ればならない。この丸めには、まず薄膜を非
晶質で構成する必要があり、これには、スパッタリング
法あるいは真空蒸着法などによって薄膜を製膜すること
によって達成される。充分な磁気異方性及び充分なカー
回転角を持たせるための組成としては、GdとTbとF
eとCoとの組成を (Gdl zTbz)+−y(Fat−XCOX)yと
すると、X,Y。
In addition, the Gd-Tb-Fe-Co amorphous film of the present invention must have sufficient magnetic anisotropy to be directed in the perpendicular direction. To achieve this rounding, it is first necessary to make the thin film amorphous, and this is accomplished by forming the thin film by sputtering, vacuum evaporation, or the like. The composition to have sufficient magnetic anisotropy and sufficient Kerr rotation angle is Gd, Tb, and F.
If the composition of e and Co is (Gdl zTbz)+-y(Fat-XCOX)y, then X, Y.

2が 0、005≦X<1.  05≦Y≦0.9.  0<
Z<1であることが望ましい。
2 is 0, 005≦X<1. 05≦Y≦0.9. 0<
It is desirable that Z<1.

以下、本発明を実施例によって詳細に説明す −る0 実施例1:高周波スパッタ装置において、3インチ0の
白板ガラスを基板とし、ターゲットとして4インチφの
Fe上に5騙のGd 、 Tb 、 C。
Hereinafter, the present invention will be explained in detail with reference to examples. Example 1: In a high-frequency sputtering apparatus, a 3-inch 0 white plate glass was used as a substrate, and 5 layers of Gd, Tb, C.

片を均一に並べたものを使用した。チャンバー内を1.
 5 X 1 0’ Pa以下になるまで真空排気した
後、Arガスを4 X 1 0’Paまで導入し、真空
排気系のメインバルブを操作することによりAr圧を3
 Paにした。^周波電源よ!11 2 0 0Wのス
パッタ電力で製膜を行なった。この様にしてできた膜厚
1500ムの膜は、膜面に垂直な方向に磁気容易軸を有
し、またX線的に非晶質であった。゛また組成分析の結
果この磁性膜は、(Gdo.s Tbas)o.zt(
Feo.*s COO.Q5)0.79であり1力ー回
転角は、発振波長633nmのHe−Neレーザで調定
し九ところ0.37度であつ九。これは同様に作成し九
(GdasTbo、5)azlFea7s  のカー回
転角の値より約30チ大きかった。
I used pieces arranged evenly. Inside the chamber 1.
After evacuation to 5 x 10' Pa or less, Ar gas was introduced to 4 x 10' Pa, and the Ar pressure was reduced to 3 by operating the main valve of the evacuation system.
I set it to Pa. ^ Frequency power supply! Film formation was performed with a sputtering power of 11200 W. The film thus produced with a thickness of 1500 μm had a magnetic easy axis in the direction perpendicular to the film surface, and was amorphous in X-ray examination. Also, as a result of compositional analysis, this magnetic film has (Gdo.s Tbas) o. zt(
Feo. *s COO. Q5) is 0.79, and the rotation angle per force is 0.37 degrees when adjusted with a He-Ne laser with an oscillation wavelength of 633 nm. This was approximately 30 inches larger than the value of the Kerr rotation angle of 9 (GdasTbo, 5)azlFea7s, which was similarly prepared.

第1実施例に於けるFeターゲット上のCo。Co on the Fe target in the first example.

量を変化させる以外は、fa1夾施例と同様の方法で作
成し九実−例2〜実施例5の組成及びカー回転角は以下
の様であった。
The compositions and Kerr rotation angles of Examples 2 to 5 were prepared in the same manner as in Example FA1 except for changing the amount.

111図は、このCaO量の変化に対してカー(ロ)転
角が変化する様子を示したもので縦軸にカー回転角を、
横軸にCoの蓋を示している。この様にFeに対してC
aO量を変化させることにより、種実の異なった値のカ
ー回転角を有する磁性膜が得らnlそれ等のカー回転角
は従来の構成の磁性膜より充分に大きな値を有するもの
であった0 Tb 、 CaO量を変化させる以外は、41実施例と
同様の方法で作成した実施例6〜実施例12の組成及び
カー回転角は以下の様であった。
Figure 111 shows how the Kerr (b) rotation angle changes in response to changes in the amount of CaO. The vertical axis represents the Kerr rotation angle,
The horizontal axis shows the Co lid. In this way, C for Fe
By varying the amount of aO, magnetic films with Kerr rotation angles of different values were obtained, and their Kerr rotation angles were sufficiently larger than those of magnetic films with conventional configurations. The compositions and Kerr rotation angles of Examples 6 to 12, which were prepared in the same manner as in Example 41 except for changing the amounts of Tb and CaO, were as follows.

II6実施例〜第12実施例に於けるカー回転角も従前
の構成に於けるカー回転角に比して充分な大きいもので
あった。
The Kerr rotation angles in Examples II6 to 12 were also sufficiently large compared to the Kerr rotation angles in the previous configurations.

以上、本発明に係る光熱磁気記録媒体に於いては、Gd
 −Tb −Fe −Coより成る4元非晶質磁性膜と
して形成することにより、従来得られ    ′1なか
った大きい磁気光学定数が得られ、S//N比が良(読
み出しり能であQ、製膜性も容易な優れた光熱磁気記録
媒体と言えるものである。
As described above, in the photothermal magnetic recording medium according to the present invention, Gd
By forming a quaternary amorphous magnetic film consisting of -Tb -Fe -Co, a large magneto-optical constant that could not be obtained conventionally can be obtained, and a good S//N ratio (readout performance and Q This can be said to be an excellent photothermal magnetic recording medium that is easy to form into films.

【図面の簡単な説明】[Brief explanation of the drawing]

411図は、本発明に係る光熱磁気記録媒体の一組成に
於いて、Coの量とカー回転角の関係を示す図。 Cot (ate−m ’/−) 手続補正書(自発) 特許庁長官 若杉和夫  殿 1、事件の表示 昭+1157年 特d1願 第 77677   号2
、発明の名称 光熱磁気記録媒体 3、補正をする者 “1しflとの関係       特許出1人Ij+ 
 所 東京都大131区下丸r3−30−2名称 (1
00)キャノン株式会社 5、補正の対象 図   面 6、補正の内容 (1)図面の第1図を別紙の如く補正する。 ・j Co量(ぬ胤%) 特許庁長官 若杉和 夫  殿 1、事件の表示 昭和57年 特許願  第 77677   号2 発
明の名称 光熱磁気記録媒体 3 補正をする者 事件との関係       特許出願人任 所 東京都
大l」区丁丸干3−30−2居 所 田146東京都人
II(メト丸干3−30−25、補正の対象 明細書 6、補正の内容 明細書の特許請求の範囲の欄を別紙の通9訂正する。 特許請求の範囲 (1)膜面に垂直方向に磁化容易軸を有するGd −T
b−Fe −Coの4寓元系非晶質磁性合金より成る事
を特徴とする光熱磁気記録媒体。 (2)前記FeとCOとを合わせた原子比が5.[la
tomチ〜9Qatom%の範囲に存在する特許請求の
範囲第1項記載の光熱磁気記録媒体。
FIG. 411 is a diagram showing the relationship between the amount of Co and the Kerr rotation angle in one composition of the photothermal magnetic recording medium according to the present invention. Cot (ate-m'/-) Procedural amendment (spontaneous) Commissioner of the Patent Office Kazuo Wakasugi 1, case indication 1157 Sho+1 Special d1 Application No. 77677 No. 2
, Name of the invention Photothermal magnetic recording medium 3, Person making the correction “1” Relationship with fl Patent issued by 1 person Ij+
Location Shimomaru r3-30-2, 131st ward, University of Tokyo Name (1
00) Canon Co., Ltd. 5, Drawings to be corrected 6, Details of correction (1) Figure 1 of the drawings will be corrected as shown in the attached sheet.・j Co amount (%) Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case 1982 Patent Application No. 77677 2. Name of the invention Photothermal magnetic recording medium 3. Person making the amendment Relationship with the case Appointment of patent applicant 146 Tokyo Metropolitan University, 3-30-2 Maruboshi, 3-30-2 Tokyo Metropolitan University, 3-30-25 Met Maruboshi, Specification Subject to Amendment 6, Scope of Claims in the Statement of Contents of the Amendment amended in Attachment 9. Claims (1) Gd-T having an axis of easy magnetization perpendicular to the film surface.
A photothermal magnetic recording medium comprising a four-element amorphous magnetic alloy of b-Fe-Co. (2) The combined atomic ratio of Fe and CO is 5. [la
2. The photothermal magnetic recording medium according to claim 1, wherein the photothermal magnetic recording medium is present in a range of 1 to 9 Qatom%.

Claims (2)

【特許請求の範囲】[Claims] (1)  膜面に垂直方向に磁化容易軸を有するCd−
Tb −Fe−Coの4元系非晶質磁性合金より成る事
を特徴とする光熱磁気記録媒体。
(1) Cd- with an axis of easy magnetization perpendicular to the film surface
A photothermal magnetic recording medium comprising a quaternary amorphous magnetic alloy of Tb-Fe-Co.
(2)  前記FeとCoとを合わせた原子比が50a
tom%〜90 atom*の範囲に存在する特許請求
の範囲第1項記載の光熱磁気記録媒体。
(2) The combined atomic ratio of Fe and Co is 50a
The photothermal magnetic recording medium according to claim 1, wherein the content is in the range of tom% to 90 atoms*.
JP7767782A 1982-05-10 1982-05-10 Photothermic and magnetic recording medium Granted JPS58196639A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7767782A JPS58196639A (en) 1982-05-10 1982-05-10 Photothermic and magnetic recording medium
DE19833317101 DE3317101A1 (en) 1982-05-10 1983-05-10 Magneto-optical recording base
DE3348423A DE3348423C2 (en) 1982-05-10 1983-05-10 Use of an amorphous magnetic quaternary GdTbFeCo alloy for the production of a magneto-optical recording layer
US06/671,978 US4693943A (en) 1982-05-10 1984-11-16 Magnetooptical recording medium
US08/485,159 US5738950A (en) 1982-05-10 1995-06-07 Magnetooptical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7767782A JPS58196639A (en) 1982-05-10 1982-05-10 Photothermic and magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58196639A true JPS58196639A (en) 1983-11-16
JPH0232690B2 JPH0232690B2 (en) 1990-07-23

Family

ID=13640514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7767782A Granted JPS58196639A (en) 1982-05-10 1982-05-10 Photothermic and magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58196639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148157A (en) * 1983-02-14 1984-08-24 Yoshifumi Sakurai Photomagnetic recording medium
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPS60171652A (en) * 1984-02-16 1985-09-05 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for compensation point writing
JPS60189208A (en) * 1984-03-09 1985-09-26 Nippon Hoso Kyokai <Nhk> Photomagnetic recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947043A (en) * 1972-08-29 1974-05-07
JPS5637607A (en) * 1979-09-05 1981-04-11 Nissei Electric Method of manufacturing electronic part
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium
JPS56143547A (en) * 1980-04-09 1981-11-09 Sharp Corp Magnetooptical storage disk
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947043A (en) * 1972-08-29 1974-05-07
JPS5637607A (en) * 1979-09-05 1981-04-11 Nissei Electric Method of manufacturing electronic part
JPS5674843A (en) * 1979-11-21 1981-06-20 Fuji Photo Film Co Ltd Photomagnetic recording medium
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium
JPS56143547A (en) * 1980-04-09 1981-11-09 Sharp Corp Magnetooptical storage disk
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148157A (en) * 1983-02-14 1984-08-24 Yoshifumi Sakurai Photomagnetic recording medium
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPS60171652A (en) * 1984-02-16 1985-09-05 Nippon Kogaku Kk <Nikon> Photomagnetic recording medium for compensation point writing
JPS60189208A (en) * 1984-03-09 1985-09-26 Nippon Hoso Kyokai <Nhk> Photomagnetic recording medium

Also Published As

Publication number Publication date
JPH0232690B2 (en) 1990-07-23

Similar Documents

Publication Publication Date Title
US5738950A (en) Magnetooptical recording medium
US4670353A (en) Magnetooptical recording medium
JPS58196639A (en) Photothermic and magnetic recording medium
JPS63107008A (en) Thin-film having large kerr&#39;s angle of rotation and manufacture thereof
JPS60107751A (en) Photothermomagnetic recording medium
JP2550633B2 (en) Photothermal magnetic recording medium
JPH0570922B2 (en)
JPH0555941B2 (en)
JPH0795376B2 (en) Photothermal magnetic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH0589555A (en) Information recording and reproducing method
JPH05174437A (en) Magneto-optical recording medium
JPS607633A (en) Photothermomagnetic recording medium
JPS6257145A (en) Photothermomagnetic recording medium
JPH05182265A (en) Magneto-optical recording medium
JPH0823944B2 (en) Method for manufacturing magneto-optical recording medium
JPS59168953A (en) Opto-thermo-magnetic recording medium
JP2647958B2 (en) Magneto-optical recording medium
JPS62172547A (en) Photomagnetic recording medium
JPH0795377B2 (en) Photothermal magnetic recording medium
JPH0458661B2 (en)
JPH0410132B2 (en)
JPS62217445A (en) Photomagnetic recording medium
JPH01140446A (en) Magneto-optical memory medium
JPS6371959A (en) Production of magneto-optical recording medium