JPS60107751A - Photothermomagnetic recording medium - Google Patents

Photothermomagnetic recording medium

Info

Publication number
JPS60107751A
JPS60107751A JP21505583A JP21505583A JPS60107751A JP S60107751 A JPS60107751 A JP S60107751A JP 21505583 A JP21505583 A JP 21505583A JP 21505583 A JP21505583 A JP 21505583A JP S60107751 A JPS60107751 A JP S60107751A
Authority
JP
Japan
Prior art keywords
recording medium
amorphous
film
magnetic alloy
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21505583A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kishi
博義 岸
Masaaki Matsushima
正明 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21505583A priority Critical patent/JPS60107751A/en
Publication of JPS60107751A publication Critical patent/JPS60107751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve recording efficiency and reproducing efficiency with a photothermomagnetic recording medium formed with a recording layer consisting of a thin film of an amorphous magnetic alloy having the axis of easy magnetization in the direction perpendicular to the film plane on a base plate by selecting the amorphous magnetic alloy from GdDyFeCo, TbDyFeCo or GdTb-DyFeCo. CONSTITUTION:An amorphous magnetic alloy selected from GdDyFeCo, TbDyFeCo or GdTbDyFeCo is used with a photothermomagnetic recording medium formed with an amorphous magnetic alloy layer having the axis of easy magnetization in the direction perpendicular to the film plane on a base plate. Fe and Co exist preferably in the range of 50-90atm% in the total amt. thereof as the compsn. to provide substantial magnetic anisotropy for directing the axis of easy magnetization in the direction perpendicular to the film plane with such photothermomagnetic recording medium. Said amt. is more particularly preferably 70-85atm%. Co exists preferably by >=0.5atm% with respect to Fe in order for the Kerr rotating angle to attain the value substantially larger than the value by the conventional constituting elements. The film is formed by a sputtering method or vacuum deposition method in order to constitute the amorphous thin film.

Description

【発明の詳細な説明】 子などに用いられる光熱磁気記録媒体に関するもので、
特に、磁気カー効果あるいはファラデー効果などの磁気
光学効果を用いて読み出すことのできる光熱磁気記録媒
体に関するものである。
[Detailed Description of the Invention] This invention relates to a photothermal magnetic recording medium used for
In particular, the present invention relates to a photothermal magnetic recording medium that can be read using magneto-optical effects such as the magnetic Kerr effect or the Faraday effect.

従来、光熱磁気記録媒体としてはMnBi 、 Mn−
CuBi等の多結晶薄膜、GdCo, GdFe, T
bFe。
Conventionally, MnBi, Mn-
Polycrystalline thin film such as CuBi, GdCo, GdFe, T
bFe.

DyFe, GdTbFe, TbDyFe等の非晶質
薄膜、GdIG等の単結晶薄膜等が知られている。
Amorphous thin films such as DyFe, GdTbFe, and TbDyFe, and single crystal thin films such as GdIG are known.

これ等の薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する製膜性、信号を小さ7(光熱エネルギーで書き
込むための書き込み効率、書き込まれた信号をS/N比
よく読み出すための読み出し効率等を勘案し、最近では
前記非晶質簿膜が光熱磁気記録媒体として優れていると
考えられている。
Among these thin films, the film-forming ability of producing a large-area thin film at a temperature close to room temperature, the writing efficiency for writing signals with light thermal energy, and the ability to read the written signals with a good S/N ratio are important. In consideration of read efficiency and the like, the amorphous film is recently considered to be excellent as a photothermal magnetic recording medium.

然しなから、これ等の非晶質薄膜においても種々の欠点
が指摘されている。例えばGrlFeは保磁力が小さく
、記録された情報が不安定である。またGdFe, G
dCoは、磁気的補償点を利用した書き込みを行なって
おり、書き込み効率を均一にする為に製膜の際、膜組成
を厳しく管理しなければ7:Cらない。TbFe, D
yFe, TbDyFeは、ギューリ一点男き込みの為
、膜組成をそれほど厳しく管理することはないが、キュ
ーリ一点が100℃以下と低い為に、信号を読み出す時
にパワーの強い光を用いることができないという難点が
ある。
However, various drawbacks have been pointed out in these amorphous thin films as well. For example, GrlFe has a small coercive force and recorded information is unstable. Also, GdFe, G
dCo performs writing using a magnetic compensation point, and 7:C cannot be achieved unless the film composition is strictly controlled during film formation in order to make the writing efficiency uniform. TbFe,D
For yFe and TbDyFe, the film composition is not so strictly controlled because the Gyuri single point is applied, but because the Cure single point is low at less than 100 degrees Celsius, it is said that it is not possible to use strong light when reading out signals. There are some difficulties.

キューリ一温度は低ければ、書き込む為の効率は向上す
るが書き込まれた信号が、周囲の温度とか読み出し光に
より乱されてしまう。従って磁気変態温度は、使用上の
状態を考慮すると、100℃以上が望ましい。反射光に
よる読み出しS/Nは、反射率をR、カー回転角をθに
とすると、IK−fjkに比例する。従って、S/N比
良く読み出す為には、カー回転角を大きくすれば良い。
If the Curie temperature is low, the writing efficiency will improve, but the written signal will be disturbed by the ambient temperature or read light. Therefore, considering the usage conditions, the magnetic transformation temperature is preferably 100° C. or higher. The readout S/N by reflected light is proportional to IK-fjk, where R is the reflectance and θ is the Kerr rotation angle. Therefore, in order to read with a good S/N ratio, the Kerr rotation angle may be increased.

表1には、非晶質磁性膜のカー回転角が示されている。Table 1 shows the Kerr rotation angle of the amorphous magnetic film.

表 1 この中では、GdTbFeのカー回転角が最も大きい。Table 1 Among these, GdTbFe has the largest Kerr rotation angle.

しかしながら、この値でもなお充分とは云いがたく、更
にカー回転角を大きくする研究を進めた結果、GdFe
やTbFeにCoを添加したGd Fe Co 。
However, even this value was still not sufficient, and as a result of research to further increase the Kerr rotation angle, GdFe
or Gd Fe Co , which is TbFe with Co added.

TbFeCoは、カー回転角が大きく、特に、GdTb
FeにCoを添加したGdTbFeCoの4元系非晶質
磁性合金が熱安定性に優れ、かつ、カー回転角が充分に
太きく S/N比の良い読み出しが可能な光熱磁気記録
媒体であることを見い出した。
TbFeCo has a large Kerr rotation angle, especially GdTb
A quaternary amorphous magnetic alloy of GdTbFeCo, which is made by adding Co to Fe, has excellent thermal stability, has a sufficiently large Kerr rotation angle, and is a photothermal magnetic recording medium that enables readout with a good S/N ratio. I found out.

この様に、従来の希土類−遷移金属系の非晶質磁性合金
において、遷移金属として、FeとCoを含む系が、カ
ー回転角を増大させることがわかる。
Thus, it can be seen that in conventional rare earth-transition metal based amorphous magnetic alloys, systems containing Fe and Co as transition metals increase the Kerr rotation angle.

しかしながら、COを含む系は、キューリ一温度を上昇
させる。表2には、TbFeCoとGdFeCoのカー
回転角とキューリ一温度が示されている。
However, systems containing CO increase the Curie temperature. Table 2 shows the Kerr rotation angle and Curie temperature of TbFeCo and GdFeCo.

表2 この様にCoを添加する事により、θkを増大させるこ
とが可能にrxるが、キューリ一温度も増大したため、
記録感度が著しく低下した。
Table 2 By adding Co in this way, it is possible to increase θk, but since the Curie temperature also increases,
Recording sensitivity decreased significantly.

本発明の目的は、カー回転角が充分に大きく、かつS/
N比の良い読み出しが可能なだけでなく、適当なキュー
リ一温度の値を持つ光熱磁気記録媒体を提供することに
ある。
The object of the present invention is to have a sufficiently large Kerr rotation angle and
The object of the present invention is to provide a photothermal magnetic recording medium that not only allows reading with a good N ratio but also has an appropriate Curie temperature value.

本発明の光熱磁気記録媒体は、基板上に、膜面に垂直方
向に磁化容易軸を有する非晶質磁性合金層を形成した光
熱磁気記録媒体において、前記非晶質磁性合金がGdD
yFeCo 、 TbDyFe0off、if GdT
bDyFeC。
The photothermal magnetic recording medium of the present invention is a photothermal magnetic recording medium in which an amorphous magnetic alloy layer having an axis of easy magnetization perpendicular to the film surface is formed on a substrate, wherein the amorphous magnetic alloy is GdD.
yFeCo, TbDyFe0off, if GdT
bDyFeC.

から選ばれることを特徴とするものである。It is characterized by being selected from.

本発明に係る上記光熱磁気記録媒体に於いては、膜面に
垂直な方向に磁化容易軸を向けるのに充分な磁気異方性
を持たせる組成としてFeとCoとがその合1’ fi
″iで50原子%〜90原子%の範囲に存在することが
望ましい。特に好ましくは、70原子%〜85原−r%
である。
In the photothermal magnetic recording medium according to the present invention, the composition of Fe and Co is 1' fi as a composition that provides sufficient magnetic anisotropy to orient the axis of easy magnetization in the direction perpendicular to the film surface.
It is desirable that ``i'' exists in the range of 50 atom % to 90 atom %. Particularly preferably 70 atom % to 85 atom %
It is.

更に、本発明に係る上記光熱磁気記録媒体に於いては、
カー回転角が従来の構成元素による値に比べて充分に大
きくなるためには、CoがFeに対して0.5原子%以
上存在することが望ましい。
Furthermore, in the photothermal magnetic recording medium according to the present invention,
In order for the Kerr rotation angle to be sufficiently larger than the value due to conventional constituent elements, it is desirable that Co be present in an amount of 0.5 atomic % or more relative to Fe.

本発明のGdDyFeCo、 TbDyFe0o、 G
dTbDyFeCo系非晶質合金の光熱磁気記録媒体は
、磁化容易軸が、膜面に垂直な方向に向けられるだけに
充分な磁気異方性を持たなければならない。口のために
は、まず薄膜を非晶質で構成する必要があり、これには
、スパッタリング法あるいは真空蒸着法などによって薄
膜を製膜することによって連成される。充分な磁気異方
性及び充分なカー回転角を持たせるための組成としては
 、(Dy+−zAz)+−y(Fe+−XcoX)y
に\でAはGd、Tb、あるいは(Gd +−wTbw
)である)とすると、X、 Y、 ZおよびWが、それ
ぞれ0.005≦X<1.0.5≦Y≦09,0≦Z<
1.O≦W≦1であることが望ましい。
GdDyFeCo, TbDyFe0o, G of the present invention
The dTbDyFeCo amorphous alloy photothermal magnetic recording medium must have sufficient magnetic anisotropy so that the axis of easy magnetization is oriented perpendicular to the film surface. For the mouth, it is first necessary to form a thin film of amorphous material, and this is accomplished by forming the thin film by a sputtering method, a vacuum evaporation method, or the like. The composition to have sufficient magnetic anisotropy and sufficient Kerr rotation angle is (Dy+-zAz)+-y(Fe+-XcoX)y
\ and A is Gd, Tb, or (Gd + - wTbw
), then X, Y, Z and W are 0.005≦X<1.0.5≦Y≦09, 0≦Z<
1. It is desirable that O≦W≦1.

実施例 1゜ 高周波スパッタ装置において3インチ角の白板ガラスを
基板とし、ターゲットとして4インチfの(Fe 0,
70 Co o、ao )合金上に、5個角のDyと、
5覗角のGd片を均一に並べたものを使用した。チャン
バー内を1..5 X 10 ’ Pa以下になるまで
真空排気した後、Arガスを4 X 10−’ Paま
で導入し、真空排気系のメインバルブを操作することに
よりAr圧を3Paにした。高周波電源より、200W
のスパッタ電力で製膜な行なった。この様にしてできた
膜厚1000への膜は、膜面に垂直な方向に磁化容易軸
を有し、またX線回折により、非晶質であることを確認
した。また組成分析の結果、この磁性膜は、 (DNl
o、50Gd O,50) 0.28 (Fe 007
0 Co o、8o )0.??であり、カー回転角は
、発振波長633 nmのHe−Neレーザーで測定し
たところ、0,38度であった。またキューリ一温度は
、約300°Cであった。これは、同様に作成したGd
 0125 (Fe 0,70 Co o、go ) 
0.75のカー回転角0.40度、キューリ一温度約3
80°Cに比較してカー回転角は、若干低下はしたが、
キューリ一温度を大幅に低下させる事ができた。
Example 1 In a high-frequency sputtering device, a 3-inch square white glass plate was used as a substrate, and a 4-inch f (Fe 0,
70 Co o, ao) Five square Dy on the alloy,
Gd pieces with a viewing angle of 5 were uniformly arranged. Inside the chamber 1. .. After evacuation to 5×10′ Pa or less, Ar gas was introduced to 4×10 −′ Pa, and the Ar pressure was brought to 3 Pa by operating the main valve of the vacuum evacuation system. 200W from high frequency power supply
The film was formed with a sputtering power of . The film thus formed with a thickness of 1000 mm had an axis of easy magnetization in the direction perpendicular to the film surface, and was confirmed by X-ray diffraction to be amorphous. Moreover, as a result of compositional analysis, this magnetic film is (DNl
o,50Gd O,50) 0.28 (Fe 007
0 Co o, 8o)0. ? ? The Kerr rotation angle was 0.38 degrees when measured using a He--Ne laser with an oscillation wavelength of 633 nm. Moreover, the cucumber temperature was about 300°C. This is the Gd created in the same way.
0125 (Fe 0,70 Co o, go )
0.75 Kerr rotation angle 0.40 degrees, cucumber temperature approx. 3
Although the Kerr rotation angle was slightly lower than that at 80°C,
We were able to significantly lower the cucumber temperature.

実施例2.〜6 実施例1におけるFeCo合金の組成比とD’l、Gd
片の枚数を変化させる以外は実施例1と同様ζ二して製
膜した実施例2〜6の磁性薄膜の組成、カー回転角およ
びキューリ一温度は表3のとおりであった。
Example 2. ~6 Composition ratio and D'l, Gd of FeCo alloy in Example 1
Table 3 shows the composition, Kerr rotation angle, and Curie temperature of the magnetic thin films of Examples 2 to 6, which were formed in the same manner as in Example 1 except that the number of pieces was changed.

表3 この様にFeに対してCoの量を変化させることにより
、種々の異y’zっだ値のカー回転角が得られ、かつそ
の値は、従来のGdTbFe系よりは、か’txり大き
く、GdFeCo系とは、はぼ同様な値のものもあった
。また、GdFeCo系のキュ−リ一温度と比較して、
Dyを含むため、キューリ一温度を下げる事が可能とな
った。
Table 3 By changing the amount of Co with respect to Fe in this way, Kerr rotation angles with various values of different y'z can be obtained, and the values are much lower than those of the conventional GdTbFe system. There were also values that were much larger and almost similar to those of the GdFeCo system. Also, compared to the Curie temperature of the GdFeCo system,
Because it contains Dy, it has become possible to lower the cucumber temperature.

実施例7〜16 実施例1〜3に於ける種々のFe Co合金ターゲット
上にDy片と共に、5鴫角のTb片、あるいは、Tb片
とGd片を並べる以外は、実施例1と同様の方法で作成
した実施例7〜16の薄膜の組成、カー回転角およびキ
ューリ一温度は表4のとおりであった。
Examples 7 to 16 The same procedure as in Example 1 was carried out except that the 5-square Tb piece or the Tb piece and the Gd piece were arranged together with the Dy piece on the various Fe Co alloy targets in Examples 1 to 3. The compositions, Kerr rotation angles, and Curie temperature of the thin films of Examples 7 to 16 prepared by the method are as shown in Table 4.

表4 この様にDyTbFeCo系、DyTb Gd Fe 
Co系の磁性膜は、TbFeCo系、GdTbFeCo
系の磁性膜と比較してDyを含むため、キューリ一温度
を下げることが可能となり、カー回転角も充分に大きい
から、記録効率、再生効率ともに優れた光熱磁気記録媒
体を提供することができる。
Table 4 In this way, DyTbFeCo system, DyTb Gd Fe
Co-based magnetic films include TbFeCo-based, GdTbFeCo-based
Since it contains Dy compared to other magnetic films, it is possible to lower the Curie temperature, and the Kerr rotation angle is also sufficiently large, making it possible to provide a photothermal magnetic recording medium with excellent recording efficiency and reproduction efficiency. .

本発明に係る光熱の気記録媒体に用いられる非品質磁性
合金であるDyGdFeCo、 DyTbFeCo、 
Dy−Tb Gd Fe Coに於いては、Dy 、!
l: COを含むため、C。
DyGdFeCo, DyTbFeCo, which are non-quality magnetic alloys used in the photothermal recording medium according to the present invention,
In Dy-Tb Gd Fe Co, Dy,!
l: C because it contains CO.

添加によるカー回転角の増大の長所と、Co添加による
キューリ一温度の増大の短所をDy添加によるキューリ
tm度の減少による相殺効果によって、元々の大きなカ
ー回転角を損うことなく、キューリ一温度を下げること
が可能となった。したがって、本発明の光熱磁気記録媒
体は記録効率および再生効率の双方において優れた特性
を有している。
The advantage of increasing the Kerr rotation angle due to addition, and the disadvantage of increasing the Curie temperature due to Co addition, are offset by the decrease in Curie tm due to the addition of Dy. It became possible to lower the Therefore, the photothermal magnetic recording medium of the present invention has excellent characteristics in both recording efficiency and reproduction efficiency.

Claims (1)

【特許請求の範囲】 (])基板上に、膜面に垂直方向に磁化容易軸を有する
非晶質磁性合金の薄膜からなる記録層を形成した光熱磁
気記録媒体(=おいて、前記非晶質磁性合金がGdDy
FeCo、 TbDyFeCoまたはGdTb−DyF
eCoから選ばれることを特徴とする光熱磁気記録媒体
。 (2)前記非晶質合金におけるFeとCoの合計量が5
0〜90原子係である特許請求の範囲第1項に記載の光
熱磁気記録媒体。
[Scope of Claims] (]) A photothermal magnetic recording medium in which a recording layer consisting of a thin film of an amorphous magnetic alloy having an axis of easy magnetization perpendicular to the film surface is formed on a substrate (= where the amorphous The magnetic alloy is GdDy
FeCo, TbDyFeCo or GdTb-DyF
A photothermal magnetic recording medium characterized in that it is selected from eCo. (2) The total amount of Fe and Co in the amorphous alloy is 5
The photothermal magnetic recording medium according to claim 1, which has an atom density of 0 to 90 atoms.
JP21505583A 1983-11-17 1983-11-17 Photothermomagnetic recording medium Pending JPS60107751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21505583A JPS60107751A (en) 1983-11-17 1983-11-17 Photothermomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21505583A JPS60107751A (en) 1983-11-17 1983-11-17 Photothermomagnetic recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP12686691A Division JPH05174437A (en) 1991-04-30 1991-04-30 Magneto-optical recording medium
JP12686391A Division JPH05182265A (en) 1991-04-30 1991-04-30 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS60107751A true JPS60107751A (en) 1985-06-13

Family

ID=16666012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21505583A Pending JPS60107751A (en) 1983-11-17 1983-11-17 Photothermomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60107751A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173746A (en) * 1984-02-17 1985-09-07 Kyocera Corp Photoelectromagnetic recording medium
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPS6214350A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Photomagnetic recording medium
US5094925A (en) * 1989-06-30 1992-03-10 Sharp Kabushiki Kaisha Opto-magnetic recording medium
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation
US5667887A (en) * 1989-03-28 1997-09-16 Seiko Epson Corporation Magneto-optical media

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS58196639A (en) * 1982-05-10 1983-11-16 Canon Inc Photothermic and magnetic recording medium
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium
JPS609855A (en) * 1983-06-28 1985-01-18 Toshiba Corp Magnetic alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS58196639A (en) * 1982-05-10 1983-11-16 Canon Inc Photothermic and magnetic recording medium
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium
JPS609855A (en) * 1983-06-28 1985-01-18 Toshiba Corp Magnetic alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173746A (en) * 1984-02-17 1985-09-07 Kyocera Corp Photoelectromagnetic recording medium
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPS6214350A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Photomagnetic recording medium
US5667887A (en) * 1989-03-28 1997-09-16 Seiko Epson Corporation Magneto-optical media
US5094925A (en) * 1989-06-30 1992-03-10 Sharp Kabushiki Kaisha Opto-magnetic recording medium
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation
US5473582A (en) * 1993-09-02 1995-12-05 Nikon Corporation Magneto-optical recording method having constant recording sensitivity and magneto-optical recording medium used therefor

Similar Documents

Publication Publication Date Title
US4753853A (en) Double-layered magnetooptical recording medium
US4670353A (en) Magnetooptical recording medium
US5112701A (en) Magneto-optic recording media and process for producing the same
US5738950A (en) Magnetooptical recording medium
US4995024A (en) Magneto-optical recording element
JPS60107751A (en) Photothermomagnetic recording medium
EP0330394B1 (en) Two-layered type opto-magnetic recording medium having low-coercive force layer containing Gd and at least one of Tb and Dy
JPS58159252A (en) Magnetooptic recording medium
JPH0232690B2 (en)
JPH0555941B2 (en)
JPH0570922B2 (en)
Kryder et al. Control of parameters in rare earth-transition metal alloys for magneto-optical recording media
JPS60246041A (en) Photo thermomagnetic recording medium
JPH02227847A (en) Magneto-optical recording medium
GB2150946A (en) Magneto-optical recording medium
JP2829321B2 (en) Magneto-optical recording medium
JPH05174437A (en) Magneto-optical recording medium
JPS62217445A (en) Photomagnetic recording medium
JP2681199B2 (en) Magneto-optical recording element
JPH05182265A (en) Magneto-optical recording medium
JPS61196447A (en) Photomagnetic recording element
JPH0589555A (en) Information recording and reproducing method
JP2876062B2 (en) Magnetic film
JPS607632A (en) Photothermomagnetic recording medium
JPS60101740A (en) Photomagnetic recording medium