JPS609855A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPS609855A
JPS609855A JP11510683A JP11510683A JPS609855A JP S609855 A JPS609855 A JP S609855A JP 11510683 A JP11510683 A JP 11510683A JP 11510683 A JP11510683 A JP 11510683A JP S609855 A JPS609855 A JP S609855A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
thin film
amorphous
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11510683A
Other languages
Japanese (ja)
Other versions
JPH0515778B2 (en
Inventor
Masashi Sato
佐藤 政司
Tetsuhiko Mizoguchi
徹彦 溝口
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11510683A priority Critical patent/JPS609855A/en
Publication of JPS609855A publication Critical patent/JPS609855A/en
Publication of JPH0515778B2 publication Critical patent/JPH0515778B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic alloy which has low magnetorestriction and is suitable for a magnetic recording medium having an excellent noise characteristic by specifying the compsn. of a Dy-Fe-Co alloy contg. Gd, Tb, Ho. Er, etc. CONSTITUTION:A magnetic alloy consists of 0.2<= a <=0.7, 0.02<= b <=0.8, 1.0<= z <=4.0 in (Fe1-aCoa)ZDy1-bRb (where R; >= combination of >=1 kind among Gd, Tb, Ho and Er) has low magnetorestriction and has excellent uniaxial magnetic anisotropy and coercive force characteristic. Magnetic recording to a high density is made possible by forming said alloy in the form of a thin film. The alloy is preferably amorphous as the grain boundary is liable to be a cause for nonuniform properties and leads to a decreased noise characteristic if the alloy is polycrystalline. The above-mentioned alloy of the amorphous thin film is obtainable by melting and cooling the alloy having the prescribed comps. in a vacuum or inert gaseous or reducing gaseous atmosphere to form an ingot., cutting the resulting ingot to a suitable size to make a target and sputtering the alloy on a glass base plate by using such target.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は磁性合金に関し、特にノイズ特性の優れた磁気
記録媒体用に適したDy −Fe −Co系低磁歪の磁
性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetic alloy, and particularly to a Dy-Fe-Co based low magnetostriction magnetic alloy suitable for use in magnetic recording media with excellent noise characteristics.

[発明の技術的背景とその問題点コ 一般に磁気層の磁化容易軸が基体面に垂直に揃った磁気
記録媒体は自己減磁が小さいので高密度の記録に適して
いる。このうち、特にキューリ一点が室温よシやや高い
ところにある薄膜の上記磁気記録媒体は高密度の磁気光
学記録媒体としての用途が期待されている。
[Technical background of the invention and its problems] In general, magnetic recording media in which the axis of easy magnetization of the magnetic layer is aligned perpendicular to the substrate surface are suitable for high-density recording because self-demagnetization is small. Among these, the thin film magnetic recording medium in which the Curie point is slightly higher than room temperature is particularly expected to be used as a high-density magneto-optical recording medium.

磁気光学記録媒体とは、該媒体に光(レザー)を照射し
、熱磁気的に磁化方向を逆転せしめることにより情報を
記録し、また光のカー(Ke r r )回転角を測定
することによって情報を銃み取ることができる記録媒体
である。
A magneto-optical recording medium is a recording medium that records information by irradiating the medium with light (laser) and thermomagnetically reversing the direction of magnetization, and by measuring the Kerr rotation angle of the light. It is a recording medium from which information can be extracted.

現在、このような磁気光学記録媒体として公知と力って
いる磁性薄膜には、 MnB1で代表される多結晶性金
属薄膜、G I G (Gaclol inium I
ron Garnet )で代表される化合物単結晶薄
膜、…−FeおよびDy −Fe等の非晶質金属薄膜が
ある。
At present, magnetic thin films that are well known as such magneto-optical recording media include polycrystalline metal thin films represented by MnB1, G I G (Gaclol inium I
There are compound single-crystal thin films typified by (Ron Garnet), and amorphous metal thin films such as ...-Fe and Dy-Fe.

ところで、MnB1に代表される多結晶性金属薄膜はキ
ューリ一点が高すぎる(MnBiではキューリ一点Tc
=360℃)ため、書き込みに大きなエネルギーを要し
、しかも、多結晶体であるので化学景論的組成の薄膜と
する必贋があシ、その製造が技術的に困難であるという
欠点を有している。
By the way, polycrystalline metal thin films such as MnB1 have too high a Curie point (in MnBi, the Curie point Tc
= 360°C), it requires a large amount of energy to write, and since it is polycrystalline, it must be made into a thin film with a chemical composition, making it technically difficult to manufacture. are doing.

GIG等の化合物単結晶薄膜にあっては、その製造費が
高すぎるので到底実用化が困難である。寸た、Gd −
Fe等の非晶質金属薄膜は宰温における保磁力が小さく
(300〜5000e)、記録情報が不安定であるとい
う欠点がある。
Since the manufacturing cost of single crystal thin films of compounds such as GIG is too high, it is difficult to put them into practical use. Dimensions, Gd -
An amorphous metal thin film such as Fe has a small coercive force (300 to 5000e) at room temperature, and has the disadvantage that recorded information is unstable.

しかるに、Dy−Fe等の非晶質金属薄膜は、MnB 
i +G I Gと違って、非晶質であるため任意の基
体上に薄膜を製造するととができ、しかも、多少の不純
物を加えることによって、キューリ一点をある程度任意
に制御することができるという利点を有し、また、DY
の1イオン異方性のため、上記Gd −Feに比べて、
著しく保磁力c数KOe)が大きいという長所を有する
。このため、磁気記録媒体、特に磁気光学記録媒体とし
て注目されている0 しかしながら、Dy −Fe等の磁性合金は磁歪定数が
大きい(飽和磁歪定数λS≧1×10 )のため、ノイ
ズ特性の優れた磁気記録媒体が得られにくいという問題
があった。すなわち、Dy −Fe合金材料から磁気記
録媒体を製造する際、媒体中に何らかの原因によって内
部応力σが発生すると、磁歪の逆効果によって生ずるσ
方向の磁気異方性エネルギーKd=、λ、σのため異方
性等の物性が微視的に不均一となり、その結果S/N比
の低下を招いてしまうのである。例えば、バイアス・ス
パッタリング法によって、Dy −Fe磁性合金薄膜を
製造する場合、ペルジャー内のガス圧やスパッタ時のバ
イアス電圧によって、膜内応力が変動するため、膜の物
性が微視的に不均一となり、その結果、得られる磁気記
録媒体のノイズ特性が著しく低下するということが問題
となっていた。
However, amorphous metal thin films such as Dy-Fe and MnB
i + G I Unlike G, it is amorphous, so it can be made into a thin film on any substrate, and the Curie point can be controlled arbitrarily to some extent by adding some impurities. and also DY
Due to the one-ion anisotropy of, compared to the above Gd-Fe,
It has the advantage of having a significantly large coercive force (c number KOe). For this reason, magnetic alloys such as Dy-Fe are attracting attention as magnetic recording media, especially magneto-optical recording media. There was a problem that magnetic recording media were difficult to obtain. In other words, when manufacturing a magnetic recording medium from a Dy-Fe alloy material, if internal stress σ is generated in the medium for some reason, σ caused by the reverse effect of magnetostriction
Due to the magnetic anisotropy energies Kd=, λ, and σ in the directions, physical properties such as anisotropy become microscopically nonuniform, resulting in a decrease in the S/N ratio. For example, when producing a Dy-Fe magnetic alloy thin film using the bias sputtering method, the stress within the film varies depending on the gas pressure in the Pelger and the bias voltage during sputtering, resulting in microscopically non-uniform physical properties of the film. As a result, there has been a problem in that the noise characteristics of the resulting magnetic recording medium are significantly degraded.

[発明の目的] 本発明は、低磁歪で、かっ−軸磁気異方性、保磁力特性
の優れた磁性合金を提供し、以って磁気記録媒体のノイ
ズ特性を改善することを目的とする。
[Objective of the Invention] An object of the present invention is to provide a magnetic alloy with low magnetostriction and excellent coercive force characteristics, and to improve the noise characteristics of magnetic recording media. .

[発明の概要] 本発明者らは、上記目的を達成すべく、Dy −Fe系
合金の組成および組織につき鋭意研究を重ねた結果、磁
歪特性へのCOのFe置換効果が顕著であることを発見
し、より詳細に現象解析を試みたところ、(Fel −
a Co a ) z Dy 1−b Rbなる組成で
あられした場合、a〈02とa≧0.2とでは、磁歪特
性〔例えば(Fe 1−a Co a ) z Dy 
1−b Rb結晶質においては、λ11.(立方晶(1
11)結晶軸方向の磁歪)特性〕が著じるしく異カリ、
a≧02の場合、a (0,2に比し、IKOeを超え
る強磁場下での磁歪特性が1桁以上小さい低磁歪特性を
示す新事実を見い出し本発明を完成するに到った。
[Summary of the Invention] In order to achieve the above object, the present inventors have conducted extensive research on the composition and structure of Dy-Fe alloys, and have found that the effect of replacing CO with Fe on the magnetostriction properties is significant. When we discovered this and tried to analyze the phenomenon in more detail, we found that (Fel −
When the composition is a Co a ) z Dy 1-b Rb, the magnetostrictive property [for example (Fe 1-a Co a ) z Dy
1-b In Rb crystal, λ11. (Cubic crystal (1
11) The magnetostriction properties in the direction of the crystal axis are significantly different,
In the case of a≧02, we have discovered a new fact that shows a low magnetostriction property in which the magnetostriction property under a strong magnetic field exceeding IKOe is one order of magnitude smaller than that in a (0,2), and we have completed the present invention.

すなわち本発明の磁性合金は、(Fe 1−a Co 
a)zDyl−bRb(ここでR: Gd、Th、Ho
、Erのうちの1種又は2種以上の組み合わせ)0.2
≦a≦0.7.0.02≦b≦0.8.1.0≦2≦4
.0であることを特徴とする。
That is, the magnetic alloy of the present invention has (Fe 1-a Co
a) zDyl-bRb (where R: Gd, Th, Ho
, Er) 0.2
≦a≦0.7.0.02≦b≦0.8.1.0≦2≦4
.. It is characterized by being 0.

本発明において、a(Coの置換量)を0.2以上07
以下とするのは、0.2未満では、λ5の減少が顕著で
たく、高保磁力(IKOe以上)を有する記録媒体のご
とく作用磁場の大なる場合、特に好ましく々く、本発明
の目的が十分達成されず、まだ0.7を超えるとキュー
リ一点が著しるしく減少するとともに、非晶質の結晶化
温度も著じるしく低下し、キューリ一点以下となり、本
発明の目的を満さなくなる。
In the present invention, a (substitution amount of Co) is 0.2 or more 07
If the value is less than 0.2, the decrease in λ5 will not be noticeable, and the following is particularly preferable in the case of a recording medium having a high coercive force (IKOe or more), where the applied magnetic field is large, and the object of the present invention is sufficiently achieved. If it is not achieved and still exceeds 0.7, the Curi point will be significantly reduced, and the amorphous crystallization temperature will also be significantly lowered to below the Curi point, which will not satisfy the purpose of the present invention.

b(Hの置換量)を0.02以上0,8以下とするのは
凡の置換により、低磁歪特性は維持した寸ま記録媒体特
性(保磁力、動作温度、カー回転角)が向上するが0.
02未満ではその効果が認められない。
Setting b (substitution amount of H) to 0.02 or more and 0.8 or less improves recording medium characteristics (coercive force, operating temperature, Kerr rotation angle) while maintaining low magnetostriction characteristics. is 0.
If it is less than 02, the effect is not recognized.

また、0.8を超えると低磁歪特性と記録媒体特性の両
立が困難となり、よって発明の目的が達成されないため
である。
Moreover, if it exceeds 0.8, it becomes difficult to achieve both low magnetostriction characteristics and recording medium characteristics, and therefore the object of the invention is not achieved.

2z(遷移金属/希土類元素モル比)を1.0≦2≦4
.0とするのけ、1.0未満では保磁力が低下し、4.
0を超えても保磁力が低下し、本発明の目的が達成され
ないかむである。
2z (transition metal/rare earth element molar ratio) is 1.0≦2≦4
.. 4. Even if it is set to 0, if it is less than 1.0, the coercive force decreases.
Even if it exceeds 0, the coercive force will decrease and the object of the present invention will not be achieved.

本発明の磁性合金中、DYはDy単独またはRとの複合
効果により垂直磁気異方性および保磁力を高める上で必
須の成分である。
In the magnetic alloy of the present invention, DY is an essential component for increasing perpendicular magnetic anisotropy and coercive force through the effect of Dy alone or in combination with R.

本発明の磁性合金は通常、薄膜もしくは粉末として提供
される。より好ましくは薄膜の形態をとる。薄膜におい
ては、より高密度の磁気記録が可能と々るからである。
The magnetic alloy of the present invention is usually provided as a thin film or powder. More preferably, it takes the form of a thin film. This is because higher density magnetic recording is possible in thin films.

合金組織は多結晶もしくは非晶質であってもよいが、多
結晶ではその結晶粒界が物性不均一の主因とカシ易くノ
イズ特性が低下するので、非晶質であることが好ましい
The alloy structure may be polycrystalline or amorphous, but it is preferably amorphous because polycrystalline grain boundaries are the main cause of non-uniform physical properties and tend to crease, reducing noise characteristics.

次に本発明(7) (Fe s −a Co a ) 
z Dy 1−b Rb系磁性合金の調整法およびその
非晶質薄膜の製造方法について例示する。
Next, the present invention (7) (Fe s -a Co a )
A method for preparing a z Dy 1-b Rb-based magnetic alloy and a method for producing an amorphous thin film thereof will be exemplified.

本発明tD (Fe 1−a Co a ) z Dy
 1−b Rb系磁性合金は、上記組成の合金材料を周
知の方法によって真空、不活性ガスもしくは還元ガス雰
囲気中、融点以上の温度で溶解した後、冷却することに
よってインゴットとして得られる。
The present invention tD (Fe 1-a Co a ) z Dy
The 1-b Rb-based magnetic alloy is obtained as an ingot by melting an alloy material having the above composition at a temperature above the melting point in vacuum, an inert gas or reducing gas atmosphere by a well-known method, and then cooling the melted material.

このインゴットを適当な寸法に切断して、スパッタリン
グ用のターゲット(陰極)を得た後、これを用いて、例
えばガラス基板上にDy−Fe−C。
This ingot is cut into appropriate dimensions to obtain a sputtering target (cathode), which is then used to deposit Dy-Fe-C on a glass substrate, for example.

系合金をスパッタリングすると、その非晶質薄膜磁性合
金が得られる。
By sputtering the alloy, an amorphous thin film magnetic alloy is obtained.

このようにして得られた非晶質薄膜磁性合金は膜面に垂
直な方向(C−軸磁気異方性を有し、その方向が磁化容
易軸であるととも如、50°C〜200°Cの間にキー
ーリ一点があり、しかもその飽和磁歪定数の絶対値が1
×10−5以下と外るため、ノイズ特性の優れた磁気記
録媒体とたり、とりわけ、磁気光学記録媒体に適する。
The amorphous thin film magnetic alloy obtained in this way has magnetic anisotropy in the direction perpendicular to the film surface (C-axis), and as this direction is the axis of easy magnetization, the temperature is 50°C to 200°. There is one key point between C, and the absolute value of the saturation magnetostriction constant is 1.
Since it is less than ×10 −5 , it is suitable for magnetic recording media with excellent noise characteristics, and particularly for magneto-optical recording media.

[発明の実施例] 以下、本発明の磁性合金を実施例によって詳説する。[Embodiments of the invention] Hereinafter, the magnetic alloy of the present invention will be explained in detail with reference to Examples.

実施例 1゜ (Fe 、5Co、5)3,35 Dyo、6Tbo、
2HO0,2から成る合金材料を真空誘導溶解炉で溶解
、冷却して合金インゴットを得た。次に、この合金イン
ゴットを適当な寸法に切断して、スパッタ用ターゲット
(陰極)を作製した。
Example 1゜(Fe, 5Co, 5)3,35 Dyo, 6Tbo,
An alloy material consisting of 2HO0,2 was melted in a vacuum induction melting furnace and cooled to obtain an alloy ingot. Next, this alloy ingot was cut into appropriate dimensions to produce a sputtering target (cathode).

上記ターゲットを用いて、アルゴンガス圧6×10 ”
 Torr、基板バイアス電圧−50vでバイアススパ
ッタリング法により、ガラス基板上に膜厚1000又の
非晶質薄膜からなる本発明の磁性合金を得た。
Using the above target, argon gas pressure 6×10”
A magnetic alloy of the present invention consisting of an amorphous thin film with a thickness of 1000 mm was obtained on a glass substrate by bias sputtering at Torr and a substrate bias voltage of -50 V.

この磁性合金は垂直磁気異方性を有しており、飽和磁束
密度4 πMs 600 Gauss 、保磁力5.0
 KOe、キーーリ一点120°Cおよび飽和磁歪値(
λ5〈1×10Jを示した。
This magnetic alloy has perpendicular magnetic anisotropy, has a saturation magnetic flux density of 4 πMs 600 Gauss, and a coercive force of 5.0.
KOe, Kiley single point 120°C and saturation magnetostriction value (
λ5〈1×10J.

これを磁気光学記録媒体として使用した場合の書換え可
能ディスクの各諸元を第1表に示した。
Table 1 shows the specifications of the rewritable disk when it is used as a magneto-optical recording medium.

比較例 1゜ 合金組成がFe 3.8 Dyであることを除いては、
実施例1と同様に非晶質合金膜を作製した。得られた垂
直磁気異方性を有する非晶質磁性薄膜は膜厚1000A
 、飽和磁束密度750Gauss 、保磁力1.2K
Oe、キーーリ一点65°C1飽和磁歪値λ、、)20
X10であった。本磁性薄膜を記録媒体として使用した
場合の書換え可能ディスクの各諸元を第1表に示す。
Comparative Example 1゜Except that the alloy composition is Fe 3.8 Dy,
An amorphous alloy film was produced in the same manner as in Example 1. The obtained amorphous magnetic thin film with perpendicular magnetic anisotropy has a film thickness of 1000A.
, saturation magnetic flux density 750 Gauss, coercive force 1.2K
Oe, key point 65°C1 saturation magnetostriction value λ, )20
It was X10. Table 1 shows the specifications of a rewritable disk using this magnetic thin film as a recording medium.

実施例1および比較例1より、COを添加した( Fe
1−a Co a )z Dy 1−b Rb系低磁歪
非晶質磁性薄膜は磁歪値の大なるDY −Fe系磁性薄
膜に比し、優れたS/N比を示すことは明らかである。
From Example 1 and Comparative Example 1, CO was added (Fe
1-a Co a ) z Dy 1-b It is clear that the Rb-based low magnetostriction amorphous magnetic thin film exhibits an excellent S/N ratio compared to the DY-Fe-based magnetic thin film, which has a large magnetostriction value.

加えてCO添加によるカー回転角の改善も同時に認めら
れ両者の相乗効果がSA比の著しるしい改善をもたらし
ている。
In addition, the Kerr rotation angle was also improved by the addition of CO, and the synergistic effect of the two brought about a significant improvement in the SA ratio.

第1表 実施例2〜6および比較例2〜5 第2表に示す組成(原子チ)の実施例2〜6及び比較例
2〜5の9種類の合金材料を用いて、実施例1と同様の
方法で非晶質合金膜からなる磁性合金を得た。
Table 1 Examples 2 to 6 and Comparative Examples 2 to 5 Using nine types of alloy materials of Examples 2 to 6 and Comparative Examples 2 to 5 having the compositions (atomic atoms) shown in Table 2, Example 1 and Comparative Examples 2 to 5 were used. A magnetic alloy consisting of an amorphous alloy film was obtained in a similar manner.

これら磁性合金の膜厚、飽和磁束密度、キーリ一点、飽
和磁歪定数を組成と共に第2表に示した。
The film thicknesses, saturation magnetic flux densities, Kiley points, and saturation magnetostriction constants of these magnetic alloys are shown in Table 2 together with their compositions.

第2表から明らかな通り、本発明の磁性合金(実施例2
〜6)は、比較例2〜5の磁性合金に比べ飽和磁歪定数
の絶対値が著しく小さい。
As is clear from Table 2, the magnetic alloy of the present invention (Example 2
-6) have significantly smaller absolute values of saturation magnetostriction constants than the magnetic alloys of Comparative Examples 2-5.

以下余白 [発明の効果] 以上の説明から明らかな通り、本発明の磁性合金は■飽
和磁歪定数の絶対値がI X”10−・以下であるため
、その加工時に加わる内部応力によって磁気異方性が微
視的に変動することが外く、物性の均一性が保たれるの
で、得られる磁気記録媒体のノイズ特性が優れ、特に磁
気光学記録媒体如あっては、光磁気書き込み(熱磁気)
時の熱的外乱による媒体の特性劣化が防止されること、
■また、COa 添加によって、磁気光学記録媒体のケ
ル回転角が大きくなり、」二記■七の相乗効果によって
ノイズ特性が著しく改善されること、■1イオン異方性
の大なるDy、Tb系合金であるため一軸磁気異方性お
よび保磁力特性に優れること、■キーリ一点が50〜2
00℃の間にあるので光磁気書き込みに大きなエネルギ
ーを要しないこと、等の効果を奏し、その工業的価値゛
は極めて犬である。
Blank space below [Effects of the Invention] As is clear from the above explanation, the magnetic alloy of the present invention exhibits magnetic anisotropy due to the internal stress applied during processing, since the absolute value of the saturation magnetostriction constant is less than I Since the properties are not subject to microscopic fluctuations and the uniformity of physical properties is maintained, the resulting magnetic recording medium has excellent noise characteristics. )
deterioration of the characteristics of the medium due to thermal disturbances at times is prevented;
■Additionally, the addition of COa increases the Kel rotation angle of the magneto-optical recording medium, and the noise characteristics are significantly improved due to the synergistic effect of item 2.■7. Since it is an alloy, it has excellent uniaxial magnetic anisotropy and coercive force characteristics, ■A single point of key is 50~2
Since the temperature is between 00°C and magneto-optical writing does not require much energy, its industrial value is extremely high.

代理人 弁理士 則 近 憲、佑 (ほか1名)Agent: Patent attorney: Nori Chika, Yu (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1) (Fe 1−a Co a )z Dy 1−
b Rb(ここでR: Gd、Tb、Ho、Erのうち
の1種又は2種以上の組み合わせ) 0.2 ≦a≦0,7 0.02≦b≦0.8 1.0 ≦2≦40 であることを特徴とする磁性合金。
(1) (Fe 1-a Co a )z Dy 1-
b Rb (where R: one or a combination of two or more of Gd, Tb, Ho, Er) 0.2 ≦a≦0,7 0.02≦b≦0.8 1.0≦2≦ 40. A magnetic alloy characterized in that:
(2)磁性合金の形状が薄膜である特許請求の範囲第1
項記載の磁性合金。
(2) Claim 1 in which the shape of the magnetic alloy is a thin film.
Magnetic alloys described in section.
(3)磁性合金が非晶質である特許請求の範囲第1項記
載の磁性合金。
(3) The magnetic alloy according to claim 1, wherein the magnetic alloy is amorphous.
JP11510683A 1983-06-28 1983-06-28 Magnetic alloy Granted JPS609855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510683A JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510683A JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Publications (2)

Publication Number Publication Date
JPS609855A true JPS609855A (en) 1985-01-18
JPH0515778B2 JPH0515778B2 (en) 1993-03-02

Family

ID=14654376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510683A Granted JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPS609855A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPS62241547A (en) * 1986-04-14 1987-10-22 Nippon Sangyo Gijutsu Kk Contact reactor by concentric double cylindrical rotor
US4838962A (en) * 1985-07-12 1989-06-13 Hitachi, Ltd. Magneto-optical recording medium
JPH05174437A (en) * 1991-04-30 1993-07-13 Canon Inc Magneto-optical recording medium
JPH05182265A (en) * 1991-04-30 1993-07-23 Canon Inc Magneto-optical recording medium
US5336337A (en) * 1991-02-05 1994-08-09 Kabushiki Kaisha Toshiba Magnetrostrictive materials and methods of making such materials
US5449566A (en) * 1992-09-09 1995-09-12 Mitsubishi Denki Kabushiki Kaisha Overwritable, high-density magneto-optical recording medium and recording/reproduction method therefor
US5527605A (en) * 1989-02-16 1996-06-18 Hoechst Aktiengesellschaft Magnetooptic layer and a process for its fabrication
US5565830A (en) * 1989-09-08 1996-10-15 Kabushiki Kaisha Toshiba Rare earth-cobalt supermagnetostrictive alloy
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
US4838962A (en) * 1985-07-12 1989-06-13 Hitachi, Ltd. Magneto-optical recording medium
JPS62241547A (en) * 1986-04-14 1987-10-22 Nippon Sangyo Gijutsu Kk Contact reactor by concentric double cylindrical rotor
US5527605A (en) * 1989-02-16 1996-06-18 Hoechst Aktiengesellschaft Magnetooptic layer and a process for its fabrication
US5565830A (en) * 1989-09-08 1996-10-15 Kabushiki Kaisha Toshiba Rare earth-cobalt supermagnetostrictive alloy
US5336337A (en) * 1991-02-05 1994-08-09 Kabushiki Kaisha Toshiba Magnetrostrictive materials and methods of making such materials
US5527398A (en) * 1991-02-05 1996-06-18 Kabushiki Kaisha Toshiba Magnetostrictive materials and methods of making such materials
JPH05174437A (en) * 1991-04-30 1993-07-13 Canon Inc Magneto-optical recording medium
JPH05182265A (en) * 1991-04-30 1993-07-23 Canon Inc Magneto-optical recording medium
US5449566A (en) * 1992-09-09 1995-09-12 Mitsubishi Denki Kabushiki Kaisha Overwritable, high-density magneto-optical recording medium and recording/reproduction method therefor
US5764600A (en) * 1992-09-09 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Overwritable, high-density magneto-optical recording medium and recording/reproduction method therefor
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation

Also Published As

Publication number Publication date
JPH0515778B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JPS609855A (en) Magnetic alloy
US4497870A (en) Magneto-optical recording medium
EP0324854B1 (en) Optomagnetic recording medium and process for its manufacture
US4615748A (en) Amorphous soft magnetic thin film
KR940007048B1 (en) Soft-magnetic materials
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
US5534080A (en) Method for producing Mn-Al thin films
JPS59162250A (en) Magnetic alloy
JPS59113162A (en) Magnetic alloy
JPS59159510A (en) Magnetooptical recording medium
JPH0470705B2 (en)
JPS62222609A (en) Photomagnetic recording medium
JPH0646617B2 (en) Method for manufacturing magneto-optical recording material
JPH03265105A (en) Soft magnetic laminate film
JPH0354845B2 (en)
JPS6243847A (en) Photomagnetic recording medium
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPS62267950A (en) Magneto-optical recording medium
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JP2771664B2 (en) Soft magnetic alloy film
JPS63164049A (en) Magneto-optical recording medium and its production
JPS63266626A (en) Magnetic recording medium
JPH0439905A (en) Magnetically soft alloy film
JPH06302432A (en) Garnet polycrystalline film for optical magnetic recording medium, optical magnetic recording medium and optical magnetic recording disk
JPS63316341A (en) Magneto-optical recording medium